Let θ be the angle between \mathbf{v} and \mathcal{P} [Figure 1(a)]. By trichotomy exactly one of the following conditions is true:

- θ > α: P ∩ C is V, and ℓ ∩ C is empty.
- $\theta = \alpha$: $\mathcal{P} \cap \mathcal{C}$ is the tangent line of \mathcal{P} and \mathcal{C} , and $\ell \cap \mathcal{C}$ consists of at most one point.
- θ < α: P ∩ C consists of two lines, and ℓ ∩ C consists of at most two points.

However, using θ directly is not as efficient as using $\cos \theta$, since the latter can be obtained easily as follows. Let $\phi = \theta + 90^{\circ}$ be the angle between **n** and **v** [Figure 1(b)]. Therefore, $\cos \phi = \mathbf{n} \cdot \mathbf{v}$ and

$$\cos \theta = \cos(\phi - 90^\circ) = \sin \phi = (1 - \cos^2 \phi)^{1/2} = (1 - (\mathbf{n} \cdot \mathbf{v})^2)^{1/2}.$$

Since the cosine function is monotonically decreasing between 0° and 90° , $\cos(x) > \cos(y)$ if and only if x < y for $0^{\circ} \le x, y \le 90^{\circ}$. Therefore, with $\cos \alpha$ and $\cos \theta$, tests $\theta > \alpha$, $\theta = \alpha$, and $\theta < \alpha$ can be replaced by $\cos \theta < \cos \alpha$, $\cos \theta = \cos \alpha$, and $\cos \theta > \cos \alpha$, respectively.

Copyrighted material

V.1 Computing the Intersection of a Line and a Cone 229

Figure 2. The u-v-w coordinate system and related information.