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Abstract

It is well known that general relativity does not admit gravitational geons that are
stationary, asymptotically flat, singularity free and topologically trivial. However, it is
likely that general relativity will receive corrections at large curvatures and the modified
field equations may admit solutions corresponding to this type of geon. If geons are
produced in the early universe and survive until today they could account for some of
the dark matter that has been “observed” in galaxies and galactic clusters.

In this paper I consider gravitational geons in 1+1 dimensional theories of gravity.
I show that the Jackiw-Teitelboim theory with corrections proportional to R2 and 2R
admits gravitational geons. I also show that gravitational geons exist in a class of theories
that includes Lagrangians proportional to R2/3.
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1 Introduction

A gravitational geon is a nonsingular configuration of the gravitational field, without
horizons, that persists for a long period of time [1, 2] (see also [3]). An interesting
class of geons consists of nonsingular, asymptotically flat, topologically trivial vacuum
spacetimes without horizons. It has been shown [4, 5, 6] that general relativity does
not admit such geons. However, it is widely believed that general relativity will receive
corrections in regions of large spacetime curvature. These corrections may be either
classical and/or quantum mechanical in nature (both types occur in string theory).
Quantum effects are expected to become important by the time the Planck scale is
reached, but it is possible that classical corrections may appear long before the Planck
scale. It is also possible that the modified classical field equations admit gravitational
geons of the type discussed above. Such geons should have masses and sizes of order
of the scale at which the corrections become important. If geons are produced in the
early universe and survive until today they could account for some of the dark matter
that has been “observed” in galaxies and galactic clusters (this possibility has also been
discussed by Sones [3] for quantum geons with a Klein-Gordon field).

Static spherically symmetric gravitational geons have been found [7, 8] in 3+1 di-
mensional theories with a cosmological constant that depends on the radial coordinate
and is different in the radial and angular directions. However, it is difficult to find exact
solutions to most generalizations of Einstein’s equations in 3+1 dimensions. To simplify
the problem I will look for geons in two types of 1+1 dimensional theories of gravity.
The first theory that I will consider is a modified Jackiw-Teitelboim theory [9, 10]. The
modifications involve adding terms proportional to R2 and 2R to the field equations.
Such terms, involving higher order polynomials and derivatives of the curvature are ex-
pected to occur in quantum theories of gravity. It is shown that this theory admits
gravitational geons. The second theory considered is based on the Lagrangian

L =
√−g

[

1

φ
R + V (φ)

]

, (1)

which has been shown to admit nonsingular black holes, for a particular potential [13].
Here I show that the theory also admits geons for certain choices of V (φ). For a particular
choice of V (φ) I also show that φ can be eliminated from the action and the Lagrangian,
written in terms of the Ricci scalar, is proportional to R2/3.

2 Field Equations and Geons

First consider the 1+1 dimensional theory proposed by Jackiw [9] and Teitelboim [10]

R = Λ + 8πGT , (2)

where R is the Ricci scalar, Λ is a cosmological constant, G is Newton’s constant and
T is the trace of the energy momentum tensor. It has been shown [11] that this theory
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possess many features in common with 3+1 dimensional general relativity. At first sight
this theory does not seem to follow from the Einstein field equations, Gµν = λgµν+8πTµν ,
due to the fact that Gµν is identically equal to zero in 1+1 dimensions. However, in 1+1
dimensions there exists a conformal anomaly < T > ∝ R and Sanchez [12] has used this
to show that (2) does follow from Einstein’s equations.

Now, as discussed earlier, it is believed that there will be corrections to the Ein-
stein field equations in regions of large spacetime curvature. These corrections may be
expected to contain higher powers and derivatives of the Riemann tensor and its con-
tractions. In 1+1 dimensions the Riemann and Ricci tensors can be written in terms
of the Ricci scalar, so the corrections will involve higher powers and derivatives of the
Ricci scalar. Here I consider modifications to the Jackiw-Teitelboim theory of the form

R + αR2 + β2R − Λ = 8πGT , (3)

where α and β are constants and 2 = ∇µ∇µ. These are the most general corrections
involving polynomials and derivatives of R that involve constants with dimensions of
(length)2. For the remained of this paper I will set Λ = 0 for simplicity.

In vacuum spacetimes with

ds2 = −f(r)dt2 + f−1(r)dr2 , (4)

the Ricci scalar is R = −f
′′

and the field equation is given by

f
′′ − α

(

f “
)2

+ β
d

dr

(

ff
′′′

)

= 0 . (5)

Here I take r to be a radial like coordinate, so that r ≥ 0. The general vacuum solution
of the original Jackiw-Teitelboim theory (i.e. α = β = 0) with Λ = 0 is

f0(r) = ar + b , (6)

where a and b are constants. Now consider solutions to (5) of the form

f(r) = f0(r) + ǫ(r) (7)

with |ǫ(r)| << |f0(r)|.
First consider solutions with a = 0 and b = 1. The linearization of (5) gives

ǫ
′′

+ βǫ
′′′′

= 0 . (8)

If β < 0 set σ = 1/
√−β and the general solution is

ǫ(r) = A1 + A2r + B1e
−σr + B2e

σr . (9)

Imposing the condition |ǫ| << 1 gives A2 = B2 = 0, |B1| << 1 and we can set A1 = 0
since it just modifies the constant term in f . In order to be able to neglect the α(ǫ

′′

)2

term relative to the ǫ
′′

term the additional constraint
∣

∣

∣

∣

∣

α

β
A

∣

∣

∣

∣

∣

<< 1 (10)
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must be satisfied. If α ≃ β this reduces to |A| << 1. Thus,

f(r) = 1 + Ae−σr , |A| << 1 and

∣

∣

∣

∣

∣

α

β
A

∣

∣

∣

∣

∣

<< 1 (11)

is an approximate solution to the field equations if β < 0. In fact, if α = 2β this is an
exact solution for arbitrary A. The Ricci scalar is given by

R =
A

β
e−σr (12)

and is bounded everywhere. Note that R does not have to be small at the origin even
when |A| << 1. For example, if |A| ≃ 10−3 then R is about three orders of magnitute
less than the scale set by β, which could be quite large. For |A| << 1 there are no
horizons and this solution then describes a static gravitational geon. If α = 2β we
require that A > −1 to avoid the presence of a horizon.

If β > 0 set σ = 1/
√

β and the relevant solution is

ǫ(r) = A cos(σr + B) , |A| << 1 and

∣

∣

∣

∣

∣

α

β
A

∣

∣

∣

∣

∣

<< 1, (13)

where A and B are constants. This solution can be thought of as an infinite sequence
of geons.

Now consider solutions of the form (7) with a = 1 and b = 0. The linearized field
equation is

βrǫ
′′′′

+ βǫ
′′′

+ ǫ
′′

= 0 . (14)

First consider β > 0 with σ = 1/
√

β and let x = 2σ
√

r and y = ǫ
′′

. The field equation
is given by

x2y
′′

+ xy
′

+ x2y = 0 , (15)

which is a Bessel equation of order zero. The solution, which is nonsingular at the origin,
is

y(x) = ÃJ0(x) , (16)

where Ã is a constant and J0(x) is the Bessel function of the first kind of order zero.
This can be written as

ǫ
′′

(r) = ÃJ0

(

2σ
√

r
)

(17)

and can be integrated twice using

∫

xnJn−1(x)dx = xnJn(x) (18)

to obtain
ǫ(r) = ArJ2

(

2σ
√

r
)

, (19)
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where A = βÃ and integration constants have been set to zero. The function f(r) can
then be written as

f(r) = r
[

1 + AJ2

(

2σ
√

r
)]

, |A| << 1 and

∣

∣

∣

∣

∣

α

β
A

∣

∣

∣

∣

∣

<< 1 (20)

where I have imposed |ǫ| << 1 and |α(ǫ
′′

)2| << |ǫ′′ |. Since

Jn(x) ≃
√

2

πx
cos

(

x − nπ

2
− π

4

)

as x → ∞ (21)

we see that f(r) → r as r → ∞. The Ricci scalar is given by

R = −A

β
J0

(

2σ
√

r
)

(22)

and is therefore bounded and goes to zero as r → ∞.
Now consider β < 0 with σ = 1/

√
−β and define x = 2σ

√
r and y = ǫ

′′

. The field
equation becomes

x2y
′′

+ xy
′ − x2y = 0 . (23)

This is a modified Bessel equation of order zero. The general solution is

y(x) = AI0(x) + BK0(x) , (24)

where A and B are constants, I0 is the modified Bessel function of the first kind of
order zero and K0 is the modified Bessel function of the second kind of order zero.
Unfortunately, neither of these functions is bounded on x > 0 and we do not find geons
in the linearized approximation for β < 0.

Next I will consider geons in gravitational theories based on the Lagrangian

L =
√
−g

[

1

φ
R + V (φ)

]

, (25)

which has been used in [13] to produce nonsingular black holes in 1+1 dimensions. The
field equations that follow from this Lagrangian and the metric (4) are [13]

φ3V (φ) + 2fφφ
′′ − 4f

(

φ
′
)2

+ f
′

φφ
′

= 0 , (26)

φ2V (φ) + f
′

φ
′

= 0 , (27)

and
dV (φ)

dφ
= − 1

φ2
f

′′

. (28)

Solving for V (φ) in (27) and substituting it into (26) gives

φφ
′′ − 2

(

φ
′
)2

= 0 . (29)
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The solution to this equation is

φ(r) =
1

Ar + B
, (30)

where A and B are constants. The constant B can be eliminated by redefining r giving

φ(r) =
1

Ar
, (31)

The field equations can now be taken to be (27) and (28) with φ given by (31). Substi-
tuting (31) into the two field equations gives

V (φ) = Af
′

and
dV (φ)

dφ
= −A2r2f

′′

. (32)

It is easy to show that the first equation along with φ = 1/Ar implies the second
equation. The remaining field equation is then given by

Af
′

= V (φ) with φ =
1

Ar
. (33)

Thus, given a function f(r) it is easy to solve for V (φ).
For example if

f(r) = 1 − 2m

r + ℓ
, (34)

where m and ℓ are positive constants, then

V (φ) =
2mA3φ2

(1 + Aℓφ)2
. (35)

The Ricci scalar is given by

R =
4m

(r + ℓ)3
(36)

and is finite for all r ≥ 0. If ℓ > 2m there are no horizons and the solution is a static
gravitational geon. It is easy to see that other theories with different potentials can be
constructed that admit gravitational geons. One simply chooses a function f(r) that
describes a gravitational geon and solves for V (φ).

It is interesting to note that φ can be eliminated in favor of R in the action. From
(28) we see that R = φ2dV/dφ. Using this and (35) it is easy to show that

Aφ =
x

1 − ℓx
(37)

where
x = (R/4m)1/3 . (38)
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Substituting this into the Lagrangian (25) gives

L =
√
−g

[

6mA
(

R

4m

)2/3

− AℓR

]

. (39)

The last term can be dropped, since R does not contribute to the field equations in 1+1
dimensions. The vacuum field equations that follow from (39) and Rµν = 1/2Rgµν are

Rgµν = 4R1/3
[

gµν2R−1/3 −∇µ∇νR
−1/3

]

(40)

and it is easy to show that (34) is a solution.

3 Conclusion

In this paper I examined two gravitational theories in 1+1 dimensions to see if they
admit geons. The first theory was a modification of the Jackiw-Teitelboim theory of the
form

R + αR2 + β2R − Λ = 8πGT , (41)

where α and β are constants. I showed that there are vacuum solutions with Λ = 0
describing gravitational geons.

I also examined theories that follow from the Lagrangian

L =
√−g

[

1

φ
R + V (φ)

]

. (42)

I showed that there exist potentials that lead to theories that admit gravitational geon
solutions. For a particular choice of V (φ) I also showed that φ can be eliminated from
the action and the Lagrangian, written in terms of the Ricci scalar, is proportional to
R2/3.
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