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ABSTRACT
Approximate gravitational potentials are often used to describe analytically the motion of
particles near black holes (BHs), as well as to study the structure of an accretion disc. Such
‘pseudo-Newtonian’ potentials are used with the flat-metric equations. Here we consider the
motion of a free particle near a non-rotating BH in the context of an exact ‘logarithmic’
gravitational potential. We show how the logarithmic potential gives an exact solution for
a mechanical problem and present the relativistic Bernoulli equation for the fluid in the
Schwarzschild metric.
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1 IN T RO D U C T I O N

In the Newton celestial mechanics, a gravitational potential is one of
the basic concepts. In the General Relativity (GR) there is generally
no such concept as a gravitational potential. In some special cases,
however, it is possible to use such a concept, as we show in this
work. This gravitational potential is different from what is usually
termed as a pseudo-Newtonian potential.

To describe analytically and in a simple way the dynamics of
particles near a BH, as well as to study the structure of an accretion
disc, approximate approaches are frequently used. For example, it
is common to utilize pseudo-Newtonian gravitational potentials in
the equations written in the flat-metric. For a non-rotation BH, the
potential by Paczynsky & Wiita (1980) is used (hereafter, ‘PW po-
tential’). For a rotating black hole (BH), Artemova, Bjoernsson &
Novikov (1996) proposed a formula for a pseudo-Newtonian grav-
itational force acting on particles near Kerr BH.

Here we consider a non-rotating BH and a ‘logarithmic’ grav-
itational potential. This gravitational potential, together with an
allowance for the curvature of the space–time, provide the laws of
motion for a free particle, which are identical to those derived in
the GR.

In Section 2, the pseudo-Newtonian gravitational potentials are
very briefly reviewed. We introduce the logarithmic potential in
Section 3. In Section 4, we consider the equation of motion of a
particle in a curved space–time and derive the conserved value of
energy. We obtain the law of motion for the logarithmic potential and
consider its consequences in Section 5. The relativistic Bernoulli
equation for a stationary fluid around a Schwarschild BH is derived
in Section 6.
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2 PS E U D O - N E W TO N I A N G R AV I TAT I O NA L
POTENTIALS

Near a BH, the curvature of the space–time is a decisive factor
affecting the structure of an accretion disc. For a non-rotating BH,
the radius of the innermost stable circular orbit rISCO = 3 Rg, where
the Schwarzschild radius Rg is the event horizon of a non-rotating
BH and is given by

Rg = 2 G M/c2 .

To approximate effects of the GR in the vicinity of a non-rotating
BH, the Paczynski–Wiita potential can be used (Paczynsky & Wiita
1980):

�PW = − G M

r − Rg
. (1)

For free particles in circular orbits, the velocities can be found
from the radial component of the Navier–Stokes equation

v2
ϕ

r
= d�

dr
. (2)

As a result, one obtains the orbital velocity

vPW
ϕ

c
= 1√

2

√
r Rg

(r − Rg)
,

and the specific angular momentum of a test particle in the
Paczynski–Wiita potential

hPW = vPW
ϕ r =

√
G M r

(1 − Rg

r
)2

. (3)

The modified potential (equation 1) is often used in hydrody-
namic and magnetohydrodynamic numerical codes, since it ap-
proximates quite well the curvature effects of the space–time met-
ric around a Schwarzschild BH (Ohsuga & Mineshige 2011; Jiang,
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Figure 1. Illustration of the ‘shrinking’ of a coordinate element dr, corre-
sponding to an element of distance dl, measured by a local static or a fiducial
observer (‘FIDO’ of Thorne et al. 1986).

Stone & Davis 2014; Yuan & Narayan 2014). Other approximate
potentials, in particular such applicable to the case of rotating
BHs, can be found in Artemova et al. (1996), Kato, Fukue & Mi-
neshige (1998), Witzany, Semerák & Suková (2015) and, especially,
Witzany & Lammerzahl (2017).

3 LO G A R I T H M I C POT E N T I A L

To describe the relativistic motion in the vicinity of a Schwarzschild
BH we may use the following ‘logarithmic’ potential (Landau &
Lifshitz 1975; Thorne, Price & MacDonald 1986):

� = c2

2
ln

(
1 − Rg

r

)
= c2 ln

√
1 − Rg

r
. (4)

Below, we will show how the logarithmic potential gives an exact
solution for a mechanical problem. This will require consideration
of the space–time curvature near a Schwarzschild BH.

Note that Artemova et al. (1996) treated the logarithmic potential
as a pseudo-Newtonian potential and this provided an approximate
result, with an order of accuracy comparable to that of the PW
potential.

4 EQUATION O F MOTION W ITH
L O G A R I T H M I C POT E N T I A L

Let us write down the Schwarzschild stationary metric as the square
of an interval between two events separated in time and space:

ds2 = −(1 − Rg/r) dt2 + (1 − Rg/r)−1 dr2 + r2(dθ + sin2 θ dϕ) .

Here, t, r, θ , and ϕ are the Schwarzschild coordinates. Due to the
curvature of the space–time near a BH, the distance element dl
along the radius, as measured by a local observer, is longer than the
corresponding coordinate element dr (see Fig. 1):

dl = dr√
1 − Rg/r

.

Inherited by equation (4),
√

1 − Rg/r is a lapse function in the
Schwarzschild metric. It determines the redshift of a signal emitted
from the vicinity of a BH and the difference between two time
intervals, one of which, dt, is measured at infinity and the other, dτ l,
by an observer in the local stationary reference frame:

dτl/dt = √
1 − Rg/r . (5)

The time measured in the frame of a moving particle is related to
the time measured by a local stationary observer as

dτp/dτl =
√

1 − v2/c2 . (6)

Let us consider a relativistic particle with the rest mass mo. Its
momentum ppp and energy Elocal, relative to the local stationary ob-
server, are

ppp = mo vvv√
1 − v2/c2

and Elocal = mo c2√
1 − v2/c2

,

respectively, where the square velocity v2 = v2
r + v2

ϕ for particles
moving in the equatorial plane.

We may also introduce the notion of ‘energy at infinity’ E. This
value remains unchanged along the particle trajectory. Let us deter-
mine it.

Consider a particle travelling past a stationary observer who is
located at a distance from a BH. The equation of particle mo-
tion in the reference system of this observer can be written as
follows(Landau & Lifshitz 1975):

dppp

dτl

= − mo√
1 − v2/c2

∇� . (7)

As it is done in mechanics, the energy of a particle can be found
from the equation of motion by multiplying scalarly equation (7)
by vvv:

vvv
d

dτl

(
movvv√

1 − v2/c2

)
= − mo vvv√

1 − v2/c2
∇�

or, noting that the potential � is spherically symmetric,

vvv
d

dτl

(
movvv√

1 − v2/c2

)
= − mo vvv eeer√

1 − v2/c2

d�

dl
, (8)

where eeer is a unit radial vector in the Cartesian reference system
of the local observer. Further, we differentiate the left-hand part of
equation (8):

1

2

mo√
1 − v2/c2

dv2

dτl

+ 1

2

mo v2/c2

(1 − v2/c2)3/2

dv2

dτl

= − mo vvv eeer√
1 − v2/c2

d�

dl
.

When multiplying this by (1 − v2/c2)3/2, cancelling out the two
equal terms with opposite signs in the left-hand part of the equation
and using the equality vr = dl/dτ l for the radial velocity, we obtain

1

2

d

dτl

(1 − v2/c2) = (1 − v2/c2)
dl

dτl

d

dl
ln(1 − Rg/r)1/2 ,

which is equivalent to the following equation

d

dτl

ln(1 − v2/c2) = d

dτl

ln(1 − Rg/r) .

As a result, we obtain the following relationship:

(1 − Rg/r)
/

(1 − v2/c2) = const.

Hence, the value

E = mo c2√
1 − v2/c2

√
1 − Rg

r
= Elocal

√
1 − Rg

r
= const (9)

does not change for a freely moving particle, while the locally
measured energy Elocal varies in the gravitational field of the BH.
This value E is termed ‘energy-at-infinity’ (Thorne et al. 1986). In
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GR, the value E corresponds to the time component of the four-
vector impulse (Landau & Lifshitz 1975).

For a photon, the rest mass of which is mo = 0, equation (9)
yields a relation between its frequency νo in the reference system
of the local observer, and its frequency detected at infinity ν∞ =
νo

√
1 − Rg/r . This relation describes the redshift effect.

In the non-relativistic approximation, energy EN of a particle has
the well-known form

E − mo c2 ≡ EN = mo v2/2 − mo G M/r . (10)

Let us underline a difference between post-Newtonian approxi-
mations and the approach that we use here. A pseudo-Newtonian
potential enters (equation 10) in place of the Newtonian potential
and is a term of a sum, while the exact expression for the conserved
energy (equation 9) is a product of two terms.

5 V E L O C I T I E S A N D B I N D I N G E N E R G Y

Let us now determine the components of the particle velocity in
the equatorial plane. A freely moving particle with mass mo in the
spherically symmetrical gravitational potential keeps its angular
momentum unchanged (Landau & Lifshitz 1975)

hp = mo vϕ r√
1 − v2/c2

. (11)

When taking into consideration that v2 = v2
r + v2

ϕ , equations (9)
and (11) yield

v2
r

c2
= 1 − m2

o c4

E2

(
h2

p

r2 m2
o c2

+ 1

) (
1 − Rg

r

)
. (12)

Multiplying by a factor E2/(m2
o c4) and using equations (6) and (9)

together with the relation

v2
r

c2
= 1

c2

(
dr

dτp

)2
m2

o c4

E2
,

we may rewrite the last expression. As a result, we obtain the law of
motion for a particle with energy E, which is identical to the exact
solution in GR, see Shapiro & Teukolsky (1983):

1

c2

(
dr

dτp

)2

= E2

m2
o c4

−
(

h2
p

r2 m2
o c2

+ 1

) (
1 − Rg

r

)
.

Note that in the approximation of a Newtonian potential, this law
of motion looks like:

v2
r = 2

mo

(
EN + mo

G M

r

)
− h2

N

r2 m2
o

,

where hN = mo vϕ r = const .
Let us consider particles moving in circular orbits around a

Schwarzschild BH. For such motion, both vr and dr/dτ p become
zero. For the sake of convenience, we may introduce an effective
potential

V (r) =
(

h2
p

r2 m2
o c2

+ 1

) (
1 − Rg

r

)
.

For circular orbits, the first derivative of this potential becomes zero
(the potential has an extremum). The system of equations

dr

dτp
= 0 ,

∂V (r)

∂r
= 0

yields the following angular momentum in a circular orbit:

h2
p = m2

o r Rg c2

2 − 3Rg/r
. (13)

After squaring equation (11) and using equation (13), we obtain the
tangential velocity as measured by the local observer

vϕ

c
= 1√

2

√
Rg

r − Rg
. (14)

For the local observer, the angular velocity of a particle is

ωl = vϕ

r
= c√

2 r

√
Rg

r − Rg
. (15)

Using time dilation (equation 5), we obtain the angular velocity
measured by an observer at infinity:

ω = c
√

Rg√
2 r3/2

=
√

G M

r3/2
, (16)

that is, the classical expression following from Kepler’s law.
According to the Rayleigh criterion (Rayleigh 1917), stable cir-

cular orbits cannot exist where dhp/dr < 0. This criterion implies
that the innermost stable circular orbit has a radius rISCO = 3 Rg.

When substituting the velocity vϕ = c/2 that corresponds to rISCO,
into equation (9), we determine the energy of a particle rotating
in the last possible stable orbit. The energy of this particle, E =
mo c2 2

√
2/3, is less than its rest energy at infinity, m0 c2. This means

that when a particle moves from infinity towards the Schwarzschild
BH, i.e. in the process of accretion, the released energy is (m0 c2 −
E) ≈ 0.0572 m0 c2. Thus, the energy conversion efficiency in the
accretion process on to a non-rotating BH is equal to ∼ 6 per cent. A
calculation using the Kerr metric shows that the binding energy of
the particles is the largest for a maximally rotating BH and equals to
1 − √

1/3 ≈ 0.423 times the rest energy (Kato, Fukue & Mineshige
2008).

Extracting the square root of equation (13), we find the spe-
cific angular momentum of a particle in circular orbit in the
Schwarzschild metric:

h = hp

mo

=
√

G M r√
1 − 3 GM

c2 r

. (17)

Fig. 2 shows the dependence of the specific angular momentum
of a test particle on the radius of the orbit in the gravitational field
of the BH. In addition, the respective dependencies are shown in
the Newtonian potential (dashed line) and in the Paczynski–Wiita
potential (dotted line). In the gravitational field of the Schwarzschild
BH, the specific angular momentum h becomes minimum at the
radius of the innermost stable circular orbit 6 G M/c2. In contrast to
the case of the Newtonian potential, the first derivative of the specific
angular momentum, dh/dr, vanishes at this radius (see Fig. 2).

We notice that the innermost stable orbit for the logarithmic po-
tential treated as a pseudo-Newtonian potential within the classical
approach (Artemova et al. 1996) has radius 2 Rg, and the normalized
binding energy at this orbit is 0.096. This is an evidently much worse
result, comparing to the accuracy provided by the Paczynski–Wiita
potential. For the Paczynski–Wiita potential, the radius of the last
stable orbit coincides with the GR result, 3 Rg, although the binding
energy exceeds by ∼9 per cent the exact value (see Table 1).

MNRAS 480, 4273–4277 (2018)

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/480/3/4273/5068187 by guest on 10 February 2025



4276 N. I. Shakura and G. V. Lipunova

Figure 2. Specific angular momentum h of a test particle in the gravitational
field of a BH. The inner radius of the disc is rin = 3Rg = 6 G M/c2. The
solid lines show the dependence in the exact logarithmic potential (equation
4), dotted lines show the same in the Paczynski–Wiita potential, dashed lines
– in the Newtonian approximation.

Table 1. The normalized binding energy of a particle at the innermost stable
circular orbit in different gravitational potentials.

(m0 c2 − E)/(m0 c2)

Newtonian potential 1/12 = 0.08(3)
Paczynski–Wiita potential 1/16 = 0.0625
Logarithmic potential
as a pseudo-Newtonian potential 0.096
Logarithmic potential
in Schwarzschild metric 1 − 2

√
2/3 ≈ 0.0572

6 R E LATIV ISTIC BERNOULLI EQUATION

We have considered above the mechanical characteristics of moving
particles. Hydrodynamic equations can be also written for the case
of fluid motion in the gravitational filed of a Schwarzschild BH,
using the concept of gravitational potential. Here we consider the
Bernoulli equation.1

For an isentropic stationary motion of a fluid we can write an
Euler equation in a relativistic form

γ (vvv ∇)(γ wvvv) + c2 ∇w = −γ w ∇� . (18)

Here ω is a ‘specific’ dimensionless enthalpy (per one particle).
For v 	 c, we have w = 1 + wNR

c2 , where wNR is a non-relativistic
enthalpy. For the ideal gas,

wNR = n

n + 1

P

ρ
,

where P is the pressure, ρ is the density, and n is the adiabatic index
(P∝ρn). Equation (18) is obtained from a relativistic equation for
the energy conservation in a fluid (see section 134, Chap. XV of
Landau & Lifshitz 1987) by adding the term (−γ w ∇�) to its right-
hand side, which allows for the action of the gravitational force. In
this section, we use the following designation: γ = (1 − v2/c2)−1/2.

Following the usual rules for transformations with the operator
∇∇∇ (Korn & Korn 1961), we rewrite the first term in equation (18) as

γ vvv (γvvv · ∇w) + w(γ vvv∇) γvvv . (19)

1This section was added after we had received essential comments from the
anonymous referee.

Using the rules for a double vector product, the first term in equation
(19) can be transformed into

γ vvv (γvvv · ∇w) = γ vvv × [γvvv × ∇w] + γ 2 c2 ∇w.

The second term of equation (19) can be transformed using another
formula of the vector analysis (Korn & Korn 1961) as

(γ vvv∇) γvvv = 1

2
∇ γ 2 v2 − γ vvv × [∇ × γvvv]. (20)

Now let us convert the first term in the right-hand side of equation
(20):

1

2
∇ γ 2 v2 = 1

2
∇ (c2 + γ 2 v2) = 1

2
∇

(
c2 + v2

1 − v2/c2

)

= 1

2
∇ c2

1 − v2/c2
= c2

2
∇γ 2 .

We divide equation (18) by γ 2 w and, applying the above manip-
ulations, obtain

c2

w
∇w + vvv ×

[
vvv × ∇w

w

]
+ c2 ∇γ

γ

− 1

γ 2
[γ vvv × [∇ × γvvv]] = −∇�. (21)

Now let us scalarly multiply equation (21) by vvv. Vectors[
vvv ×

[
vvv × ∇w

w

]]
and [γvvv × [∇∇∇γvvv]] are orthogonal to the veloc-

ity vector vvv. Thus, their projections to the direction of the motion is
zero and the scalar product of equation (21) by vvv yields

vvv · (∇ ln w + ∇ ln γ + 1

c2
∇�) = 0. (22)

Taking into account the form for the gravitational potential � (equa-
tion 4), we rewrite the last expression as

vvv · ∇γ w
(

1 − Rg

r

)1/2
= 0.

We thus obtain the following result. Along the flow lines, the
following value is conserved:

mo c2 wγ
(

1 − Rg

r

)1/2
= mo c2 w

(
1 − Rg

r

)1/2

(
1 − v2

c2

)1/2 = const.

This is a relativistic Bernoulli equation, written for the case of the
Schwarzschild metric.

An elegant derivation of the relativistic Bernoulli equation, per-
formed taking into account the properties of the Killing vector field,
can be found in Gourgoulhon (2006, 2007).

7 SU M M A RY

The BH gravitation causes the curvature of space around it. A
logarithmic potential can be introduced to describe the motion of
particles in such gravitational landscape. In contrast with pseudo-
Newtonian potentials, which can give only approximate results, the
logarithmic potential provides the exact laws of motion. For this,
we consider the logarithmic potential within a different approach,
which represents the 3+1 decomposition of the Schwarzschild
space–time near a BH. The advantage of such an approach for GR
problems is that it allows using the physical concepts analogous to
those in the classical physics.

In particular, the energy of a particle can be derived from the
equation of motion using the logarithmic potential. We show that
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the derived velocity of a particle, physically measured by a local
observer, is correct in the sense that it is identical to that in GR.
The relativistic Bernoulli equation for a fluid in the Schwarzschild
metric is obtained.

The choice of a potential and a method to deal with it depends
on a desired accuracy of a problem. For considerations, which are
not very precise, one can use the classical Newtonian mechanics
and the Paczynski–Wiita’s potential. It is not advised to use the
logarithmic potential in the framework of the classical mechanics,
since it gives less accurate results comparing to those obtained
with the Paczynski–Wiita’s potential (see discussion at the end of
Section 5).

One can also use the potential approach in the framework of
classical mechanics to approximate the motion of a particle in the
Kerr metric, using a more sophisticated formula for a potential (see,
for example, Artemova et al. 1996; Kato et al. 2008, where index
β is introduced). However, the exact consideration of a particle
motion in the Kerr metric implies the existence of a gravitomagnetic
force, which is analogous to the Lorentz force in the electromagnetic
theory and which is not conservative, that is, it cannot be determined
by a potential (see, for example, Thorne et al. 1986, equations 3–18
and 3–19 abc). The exact force in the Kerr metric can be written out
in the context of problem 1 of paragraph 88 in Landau & Lifshitz
(1975) (see equation 3 there). This task could be a subject of another
study.
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