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A possible way of building Planck's constant into the structure of  space-time is 
considered. This is done by assuming that the torsional defect that intrinsic spin 
produces in the geometry is a multiple of  the Planck length. 

1. INTRODUCTION 

Planck's constant h and the speed of light c play very fundamental 
roles in physics. They apply to the behavior of all matter through quantum 
mechanics and special relativity, respectively. Thus h and c logically precede 
other constants in physics, such as the coupling constants associated with 
the fundamental forces or dynamical quantities such as particle masses. 
Since h and c are so fundamental, one might expect them to be built into 
the local structure of space-time itself. Since the advent of special relativity 
(Einstein, 1905) and the conceptual revolution of taking four-dimensional 
space-time to be the arena of physics, we understand the geometrical role 
the speed of light plays. The speed of light is related to the topologically 
invariant signature and dimensionality of space-time. Planck's constant so 
far has not had a similar geometrical role. One might hope that the proper 
understanding of the geometrization of h might also have revolutionary 
consequences for the basic structure of the arena of physics. In particular, 
it might shed considerable light on quantum gravity. 

The present paper presents one straightforward way in which h might 
be geometrized. It is necessarily somewhat heuristic and should be con- 
sidered a first step only. No theory, heretofore, has even considered the 
geometrization of h. String theory (Gross et aL, 1985a, b; Candelas et aL, 
1985; Witten, 1985a, b), which is our deepest and most comprehensive theory 
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of physics to date, quantizes the string in the same way as any other system. 
The geometrical origin of h itself is not addressed. If  the existence of fi is 
intimately related to the existence of spinors, which is likely not the case, 
then work on spinor structures in general relativity (Lichnerowicz, 1961, 
1964; Milnor, 1962, 1963, 1965; Anderson et al., 1966a, b; Penrose, 1968) 
could be related ultimately to the geometrical origin of h. 

Planck's constant is so ubiquitous in quantum mechanics that it is hard 
to see where h enters the theory at a fundamental level, h can enter at any 
one of several doors: the basic commutation relations, the path integral 
phase factor (Feynman and Gibbs, 1965), the de Broglie relation, and so 
on. I take the point of view in this paper that h comes into quantum 
mechanics through intrinsic spin and its interaction with the underlying 
geometry. This is reasonable since h is intimately related to spin and since 
the square of  the spin commutes with all the dynamical variables that 
describe a particle and thus is a constant of the motion in all circumstances. 

Once intrinsic spin is known to be quantized in units of h/2  from 
geometrical arguments, one can argue that h must be present in the commu- 
tation relations for spin angular momentum. One can then argue that orbital 
angular momentum should obey the same commutation relations with h 
present. Since orbital angular momentum can be expressed as r • p, this in 
turn says that h must be present in the fundamental commutation relations 
for x and Px, for example. From there one is led to the ih O/Ox operator 
description of Px, to the de Broglie relation if one separately assumes that 
matter is described by waves, and to the SchrSdinger equation. One clearly 
cannot get all of  quantum mechanics-- the interpretation of ~0, the way 
amplitudes are combined, and so on- -bu t  one does get h and at least some 
of the basic ideas that lead to quantum behavior. 

Since we are interested in intrinsic spin and its interaction with the 
geometry, we are led consider a geometry with torsion present. As stressed 
by many authors, a geometry with torsion present is the natural extension 
of the Riemannian geometry of general relativity if sources with intrinsic 
spin are present. Early work on the relation of spin and torsion was done 
by Cartan (1922, 1923, 1924, 1925) and by Einstein (1955). Kibble (1961) 
and Sciama (1962, 1964) developed the gauge approach to a geometry with 
torsion present. They showed how natural torsion is if intrinsic spin is 
present. Trautman (1972, 1973a-c, 1975) analyzed and developed the theory 
in great detail using the techniques of modern differential geometry. I will 
use the work of Hehl (1973, 1974) and of Hehl et al. (1976) below. 

I will go beyond the usual work on spin and torsion mentioned above 
and consider the possibility of a quantized defect in space-time in the 
following section, as a way of bringing h into space-time and hence into 
physics. 
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2. D E F E C T S  IN SPACE-TIME 

Let us consider the possibility of  a quantized defect in space-time. 
Kondo (1952), Bilby et al. (1955), and Kr6ner (1960) have considered the 
geometrical description of crystal dislocations or defects. In the limit of  the 
dislocations having a continuous distribution, they found that torsion plays 
the role of  the defect density. I will use the nice paper  of  Bilby et al. (1955) 
in a space-time rather than in a crystal context. They consider a small closed 
circuit and use Stokes' theorem to write 

= f S,y ~ dA ~y (1) 
3 

where 

dA ~ -~ dx ~ ^ dx ~ (2) 

is the element of  area encircled by the loop and 

Sr -= Flay] (3) 

is the torsion associated with the connection F~v. In the crystal case, ~ 
represents the closure failure in the real dislocated crystal associated with 
a closed circuit in a perfect reference lattice. I will refer to this as the defect. 
The crystallographically equivalent steps are repeated in the real lattice as 
were used to obtain the closed circuit in the reference lattice. Closure does 
not happen,  because of the defects in the real lattice. 

For us the circuit is traversed using parallel displacement of  vectors in 
space-time with the connection F~v. The torsion is then the torsion present 
in space-time. Torsion has an intrinsic geometric meaning. From Misner 
et aL (1973), if torsion is absent [U, V] and V u V - V v U  represent the same 
vector, where U and V are vectors. V u V -  V v U -  [ U, V] = 0 represents a 
closed loop. I f  torsion is present (Wald, 1984), we get 

U ~ V ~ V  c _  V a v a U c _ [ w ,  V] c= cc rr~,zb O~b ~ -- (4) 

in terms of components ,  and the torsion term represents the failure of  the 
loop to close in analogy with the crystal case. 

I want to use (1) to quantize intrinsic spin. To do this, I want to relate 
the torsion S ~  ~ to intrinsic spin. I follow the work of Hehl et al. (1976) 
and use their notation and sign conventions. The signature is 
( - 1 ,  +1, +1, +1). I first need to define a spin angular momentum tensor. 
To do this I write down a special relativistic Lagrangian density of  matter 

for a matter  field 4' in Cartesian coordinates. This depends on the 
Minkowski metric. Gravity is then turned on by replacing the Minkowski 
metric with the space-time metric g ~  and by replacing 04' with the covariant 
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derivative containing F ~ .  The metric energy-momentum tensor is then 

~--gcr ~~ --= 2 8~/8g~o (5) 

and the spin angular momentum tensor is 

rc, ~ '  =- 6 ~ / ~ K ~  ~ (6) 

where the contortion is 

K~, S = - S ~  v + S~V~ - S v ~  (7) 

I use the usual Hilbert action, written in terms of the above connection, 
for the gravitational field. Varying the total action, composed of matter  plus 
gravitational parts with coupling constant k, with respect to g ~  and F ~  
gives the field equations 

O'~t3({'}) = k~ ~ (8) 

and 

where 

T ~ v  = kr ~ (9) 

T~t3 ~ =- S ~  ~ + 26~S t31~  ~ (10) 

is the modified torsion. ~ t~  is the effective energy-momentum tensor which 
sources the usual Einstein equation written in terms of  {~} Christoffel 
symbols. & ~  is cr ~ from (5) plus terms depending on the torsion (Hehl 
et  al., 1976). I will take the coupling constant k = 8 1 r O / c  3, so that r ~ has 
dimensions of  angular momentum/un i t  volume. S~ S has dimensions of  
length -~ as usual. Below, I am interested in (9), which gives the torsion in 
terms of the spin angular momentum tensor, since I am trying to relate 
torsion to intrinsic spin. Equation (9) contains no derivatives, so that the 
modified torsion is zero outside of the sources. Torsion does not propagate.  
Since spin is highly localized, this means that torsion is highly localized. 

To go further, one needs to know more about the properties of  the 
spin angular momentum tensor r ~ .  I f  one takes the matter  distribution 
to be the "perfect  fluid" of  general relativity generalized to have nonvanish- 
ing spin, then 

~'~t3 ~ = ~'~t3u ~ (11) 

with ~'~ = - r  where u ~ is the timelike four-velocity. In order to ensure 
that the equations of  motion for the particles are integrable, one also must 
have (Frenkel, 1926) 

r,,~u ~ = 0 (12) 
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This means that r~o ~ is completely antisymmetric (dual to an axial vector). 
If  one considers a Dirac field, %~r is also totally antisymmetric (Heh! et 
al., 1976). I f  r~o r is totally antisymmetric, then so is T ~ r  from (9) and 

T ~  ~ = S ~  ~ (13) 

from (10). Thus one has 

S~S = k'r~ ~ (14) 

as the desired relationship between the spin angular momentum tensor and 
torsion. These are both totally antisymmetric and the T index is timelike 
from (11). These are the properties needed below. I reiterate that ~'~r refers 
to intrinsic spin and not orbital angular momentum. This is clear from the 
whole foundation of the theory (Caftan, 1922, 1923, 1924, 1925). 

If one now puts (14) together with (1), one has 

~ = k r ~  dA 13~ (15) 

~ represents the closure failure or the "defect"  upon going around a loop 
whose interior is dA ~', produced by the spin angular momentum tensor 
~'~r The quantity ~ has dimensions of length and is timelike from (11). 
Equation (15) is essentially a classical expression, even though one is talking 
about intrinsic spin, which is not really a classical concept. 

I now assume that ~'~r is produced by a single particle with intrinsic 
spin. I want to rewrite (15) in terms of the spin of the particle. It is easiest 
to see what is going on by going to the center-of-mass frame of the particle, 
where u ~  1 and u i=  0. Since 3? ~ is timelike and totally antisymmetric, 
(15) becomes 

~, ~O=k f rif dx iAdx j (16) 

where i,j = 1, 2, 3 are spatial indices now. Multiply (16) by dx ~, where 1 ~ i 
and 1 ~ j ,  and integrate to get 

f ~~ f r176 (17) 

This can be written as 

f Le~ f r~~176 (18) 

where d3x is the usual three-dimensional spatial Reimann integral. Now 
the integral on the right-hand side of (18) is just twice the intrinsic spin s ~ 
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of the particle in the center-of-mass frame. One can see this from Weinberg's 
(1972) definition of intrinsic spin, 

=~e .t~vu~ (19) 

where the present r ~  is the intrinsic spin analogue of the density of his 
J~ .  Thus, one ends up with 

f ~ o  = (20) dx I 2ks I 

as the derived relation between the spin of the particle and the defect in 
the center-of-mass frame. The covariant expression is 

f Sg ~ dx  ~ = k e ~ s t 3 v  (21) 

where ~ is timelike and 

s k =- �89176 (22) 

in the center-of-mass frame. 
So far we have the interesting relation (20), but nothing radically new. 

I now make the key assumption that h enters physics through the integral 
defect on the left-hand side of (20). I assume that the timelike defect ~ 
of space-time is quantized in units of the Planck length Lp. Thus, I assume 
that space-time cannot have just any defect, but only multiples of Lp =- 
(hG /c3 )  1/2. ] use Le because it is the natural unit of length that can be 
built up from h, G, c. It is the only distance scale available. Also, defects 
would be expected to be on this order because space-time is likely a 
topological foam on this distance scale (Misner et al., 1973). This assumption 
then gives 

~ = - n Z L ~  (23) 

o r  

~o=  nLe (24) 

in the center-of-mass frame of the particle. This assumption builds h 
fundamentally into the torsion/defect properties of space-time. This 
geometrizes h in somewhat the same way that Minkowski space geometrizes 
c. The present assumption is analogous to the fundamental assumptions 
that go into Minkowski space. 

The test of assumptions at this fundamental level is whether or not 
they reproduce the physics that we observe. I show below, using the relation 
(2), that this assumption leads to the observed quantization of spin. 
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I also need to use the fact that torsion does not propagate and is 
nonzero only where the particle spin is nonzero. Thus, ~ is nonzero only 
where spin is nonzero. Spin, however, for a particle like an electron is 
viewed as being pointlike in extent. Again using the idea that space-time 
is a topological form of  distance scale - L p ,  it is reasonable to assume that 
spin and hence 5f ~ are nonzero over this distance scale. This is clearly 
heuristic, but it is difficult to do better. The integral in (20) thus has an 
extent - -  L p .  

Let me now put this together. If the area dA ~ is chosen to be in the 
1, 2 plane in the center-of-mass frame of the particle, then (20) gives 

f ~q~0 d x  3 = 2ks 3 (25) 

The assumptions of the quantization of the timelike space-time defect (24) 
and on the extent of the spatial region over which SE" is nonzero then give 
for (25) 

( n L p  ) L p  ~ k s  3 (26) 

Using the expressions for Lp and for k above then gives 

s 3 ~ n h  (27) 

to within uncertain numerical factors of order 1. 
Thus, the simple geometrical assumption (23) does lead to quantization 

of  angular momentum. From the introduction, this leads naturally to h in 
the commutation relations, to quantum operators for momentum and posi- 
tion, and to the Schr6dinger equation. We have geometrized h and have 
brought it into physics. The above is heuristic, but hopefully contains 
conceptual ideas that will lead eventually to a deeper geometrical under- 
standing of  Planck's constant. It is suggestive that h seems to be intimately 
related to geometrical structures of a size on the order of the Planck length. 
The fact that in this paper h is related to a quantized timelike vector with 
dimensions of length also suggests a possible relationship with the work 
on discrete time by Lee (1983). 

REFERENCES 

Anderson, D. W., Brown, E. H., and Peterson, F. P. (1966a). Bulletin of the American 
Mathematical Society 72, 256. 

Anderson, D. W., Brown, E. H., and Peterson, F. P. (1966b). Annals of Mathematics, 83, 54. 
Bilby, B. A., Bullough, R., and Smith, E. (1955). Proceedings of the Royal Society of London, 

A 231,263. 



1340 Ross 

Candelas, P., Horowitz, G. T., Strominger, A., and Witten, E. (1985). Nuclear Physics B 258, 
46. 

Caftan, E. (1922). Comptes Rendus de l'Academie des Sciences (Paris), 174, 593. 
Cartan, E. (1923). Annales de l'Eeole Normale Sup~rieure, 40, 325. 
Caftan, E. (1924). Annates de l'Ecole Normate Sup~rieure, 41, 1. 
Cartan, E. (1925). Annales de l'Ecole Normale Sup(rieure, 42, 17. 
Einstein, A. (1905). Annalen der Physik, 1, 891. 
Einstein, A. (1955). The Meaning of Relativity, 5th ed., Princeton University Press, Princeton, 

New Jersey. 
Feynman, R. P., and Hibbs, A. R. (1965). Quantum Mechanics and Path Integrals, McGraw-Hill, 

New York. 
Frenkel, J. (1926). Zeitschriftfiir Physik, 37, 243. 
Gross, D. J., Harvey, J. A., Martinec, E., and Rohm, R. (1985a). Physical Review Letters, 54, 

502. 
Gross, D. J., Harvey, J. A., Martinec, E., and Rohm, R. (1985b). Nuclear Physics B, 256, 253. 
Hehl, F. W. (1973). General Relativity and Gravitation, 4, 333. 
Hehl, F. W. (1974). General Relativity and Gravitation, 5, 491. 
Hehl, F. W., vonder Heyde, P., and Kelick, G. D. (1976). Review of Modern Physics, 48, 393. 
Kibble, T. W. B. (1961). Journal of Mathematical Physics, 2, 212. 
Kondo, K. (1952). In Proceedings of the 2nd Japan National Congress for Applied Mechanics, 

p. 41. 
KrSner, E. (1960). Archives of Rational Mechanics and Analysis, 4, 273. 
Lee, T. D. (1983). Physics Letters, 122B, 217. 
Lichnerowicz, A. (1961). Comptes Rendie de l'Academie des Science (Paris), 252, 3742; 253, 

940, 253, 983. 
Lichnerowicz, A. (1964). In Relativity Groups and Topology, C. DeWitt and B. S. DeWitt, eds., 

Gordon and Breach, New York. 
Milnor, J. (1962). Enseignement Mathematique, 8, 16. 
Milnor, J. (1963). Enseignement Mathematique, 9, 198. 
Milnor, J. (1965). Topology, 3, 223. 
Misner, C. W., Thorne, K. S., and Wheeler, J. A. (1973). Gravitation, Freeman, San Francisco. 
Penrose, R. (1968). In Battelle Rencontres: 1967 Lectures in Mathematics and Physics, Benjamin, 

New York. 
Sciama, D. W. (1962). In Recent Developments in General Relativity, p. 415, Pergamon, Oxford. 
Sciama, D. W. (1964). Review of Modern Physics, 36, 463, 1103. 
Trautman, A. (1972). Bull. Acad. Pol. Sci., Ser. Sci. Math. Astron. Phys., 20, 185, 503, 895. 
Trautman, A. (1979a). Bull Acad. PoL Sci., Ser. Sci. Math. Astron. Phys., 21,345. 
Trautman, A. (1973b). Symposia Mathematica, 12, 139. 
Trautman, A. (1973c). In The Physicist's Conception of Nature, J. Mehra, ed., Reidel, Dordrecht. 
Trautman, A. (1975). Annals of the New York Academy of Science, 262, 241. 
Wald, R. M. (1984). General Relativity, p. 53, University of Chicago Press, Chicago, Illinois. 
Weinberg, S. (1972). Gravitation and Cosmology, p. 47, Wiley, New York. 
Witten, E. (1985a). Physics Letters, 155B, 151. 
Witten, E. (1985b). Nuclear Physics B, 258, 75. 


