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Abstract. Recent work on gravitational geons is extended to examine the stability properties of
gravitational and electromagnetic geon constructs. All types of geons must possess the property
of regularity, self-consistency and quasi-stability on a time-scale much longer than the period of
the comprising waves. Standard perturbation theory, modified to accommodate time-averaged
fields, is used to test the requirement of quasi-stability. It is found that the modified perturbation
theory results in an internal inconsistency. The time-scale of evolution is found to be of the same
order of magnitude as the period of the comprising waves. This contradicts the requirement
of slow evolution. Thus not all of the requirements for the existence of electromagnetic or
gravitational geons are met though perturbation theory. From this result it cannot be concluded
that an electromagnetic or a gravitational geon is a viable entity. The broader implications of the
result are discussed with particular reference to the problem of gravitational energy.

PACS number: 0425

1. Introduction

The examination of the basic properties of the gravitational field as compared to other physical
fields has concentrated around the recently revived study of gravitational geons. The concept of
a structure comprised of electromagnetic waves held together by its own gravitational attraction
was first conceived by Wheeler [1]. The extension of this idea using only gravitational waves
was first studied by Brill and Hartle [2]. Their approach was to consider a strongly curved
static ‘background geometry’γµν on top of which a small ripplehµν resided, satisfying a
linear wave equation. The wave frequency was assumed to be so high as to create a sufficiently
large effective energy density, which served as the source of the backgroundγµν , taken to
be spherically symmetric on a time average. They claimed to have found a solution with a
flat-space spherical interior, a Schwarzschild exterior and a thin-shell separation meant to be
created by high-frequency gravitational waves. With the massM identified from the exterior
metric, there would follow an unambiguous realization of the gravitational geon as described
above. It has since been shown [3–5] that the Brill and Hartle model does not implement the
properties of high-frequency waves, nor can the spacetime be taken as singularity-free.

It was proposed by Cooperstock, Faraoni and Perry [3–5] (henceforth referred to as CFP)
that a satisfactory gravitational geon model must be constructed and solved in a manner similar
to that of Wheeler’s [1] electromagnetic geon model. Such a model necessarily requires firstly
that the Einstein field equations be solved in a self-consistent manner while satisfying the
regularity conditions. Secondly, it is required that the configuration represented by the metric
γµν be quasi-stable over a time-scale much larger than the typical period of its gravitational
wave constituents (i.e. a geon must maintain its bounded configuration for a sufficient length of
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time, since otherwise it would not be possible to attribute a structural form to the gravitational
geon). Thirdly, it is required that the gravitational field becomes asymptotically flat at spatial
infinity. Thus agravitational (electromagnetic) geonis a bounded configuration of gravitational
(electromagnetic) waves whose gravity is sufficiently strong to keep them confined on a time-
scale which is long compared to the characteristic composing wave period. For the gravitational
case, it is required that no matter or fields other than the gravitational field be present.

Through a series of papers, it was established by Anderson and Brill [6] and by CFP that
in the high-frequency approximation for a static background metric, the gravitational geon
problem and the electromagnetic geon problem are governed by the same set of ordinary
differential equations (ODEs) and boundary conditions. These equations are satisfactory
for considering the regularity and self-consistency aspects of the geon problem, but not the
evolution in time. Any solutions to these equations are necessarily equilibrium solutions since
the background metric is assumed to be static. Admissible equilibrium solutions satisfying
the boundary conditions have been shown to exist [6]. This paper provides an expanded
study of the gravitational and electromagnetic geon problem with particular emphasis upon
the dynamic evolution of geon constructs. Section 2 re-examines the numerical solutions to
the equations studied in [1] and extends the analysis to obtain information on the ‘stability’ of
these solutions with respect to perturbations of the amplitude eigenvalues. The word ‘stability’
used in section 2 should be viewed in the context of the boundary conditions of a spatial
variable, not a dynamic time variable. Both the analytic behaviour at spatial infinity and the
aforementioned stability properties are found by constructing a phase portrait of the ODEs.
It is shown explicitly that only unstable equilibrium solutions are possible with respect to
perturbations of the amplitude eigenvalues. This result serves to suggest further study of the
dynamics (time evolution) of geon constructs.

The evolution in time of electromagnetic geon solutions is studied in section 3. The
evolution of the electromagnetic geon is studied instead of the gravitational geon because of the
relative ease in computation for the former. With sufficiently high-frequency electromagnetic
waves, the results are expected to apply equally well to the gravitational case. The method used
is standard perturbation theory modified to accommodate time-averaged fields. The evolution is
achieved by applying a small-amplitude time-dependent perturbation to an equilibrium solution
and simultaneously solving for the time dependence of the background metric functions. The
problem of time averaging the background metric functions can only be solved in a meaningful
way if it is assumed that the characteristic frequency of the perturbations vary on a time-scale
which is much longer than that of the waves comprising the electromagnetic geon. This is
in accordance with the requirement that the background metric be quasi-stable. However,
the results of the analysis show that the perturbations must vary on the same time-scale as
the constituent waves. This is in contradiction with the original assumption. Hence an
internal inconsistency exists when applying perturbation theory to the geon problem. In
section 4, the possible interpretations and ramifications of this result are discussed. Since
not all of the requirements for existence of a geon are met, it is not possible to conclude that
an electromagnetic geon or a gravitational geon is a viable construct. The conclusions are
presented in section 5.

2. Phase space analysis

In the high-frequency approximation, the gravitational and electromagnetic geon problem for
a static background metric (on time average) reduces to the same set of ordinary differential
equations (ODEs) and boundary conditions given by [3–6] (reference [6] corrects sign errors
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and a difference in normalization found in [5])

φ′′ + j k φ = 0, (1)

k′ = −φ2, (2)

j ′ = 3− k−2
(
1 +φ′ 2

)
(3)

and

φ(x)→ 0, k(x)→ 1 and j (x)→−∞ for x →−∞,
φ(x)→ 0, 0< k(x) < 1 and j (x)→−∞ for x →∞, (4)

where x is a radial coordinate and a prime denotes differentiation with respect tox.
Therefore, any properties of equations (1)–(3) apply equally well to both the gravitational and
electromagnetic geon case. Any solutions to (1)–(3) are necessarily equilibrium solutions since
the background metric is assumed to be static. In section 2.1, the numerical solutions presented
in [1] will be re-examined. The results suggest further investigation of the numerical solutions
is required in order to determine whether the boundary conditions are satisfied. In [6], it was
shown that admissible equilibrium solutions to equations (1)–(4) exist. However, the stability
of these equilibrium solutions was not studied. The investigation presented in section 2.2
constructs a phase portrait of the ODEs from which both the analytic form at spatial infinity
and the stability with respect to perturbations of the amplitude eigenvalues of any solutions will
be obtained. Knowledge of solution stability provides a basis for investigating the evolution
in time of these solutions. Unlike other investigations [1, 7], we apply a small-amplitude time-
dependent perturbation to an equilibrium solution of (1)–(3) for the case of an electromagnetic
geon. This is done in section 3. Solving the time-dependent perturbation equations leads to
a contradiction with one of the initial assumptions. The contradiction suggests that neither
an electromagnetic geon nor a gravitational geon is a viable construct since not all of the
requirements for existence of a geon are met. This interpretation of the results obtained from
this investigation will be discussed in section 4.

2.1. Numerical integration

Wheeler [1] originally solved the system (1)–(3) by numerical methods in 1955. Since
then computer algorithms have evolved considerably for solving differential equations. It
is therefore worthwhile to utilize modern techniques† in re-examining those solutions. Even
with the algorithm employed in [1] for solving the equations, Wheeler’s results are remarkably
accurate.

The geon problem (both electromagnetic and gravitational) is reduced to finding a solution
to the autonomous system (1)–(3). Admissible solutions to equations (1)–(3) are defined as
thoseφ(x), j (x) andk(x) that satisfy the following criteria.

(a) For large negativex: the wavefunctionφ(x)→ 0 and metric functionk(x) → 1. Under
these conditionsj ′(x) → 2. If φ(x), j (x) andk(x) are solutions to the autonomous
system (1)–(3), then so areφ(x+a), j (x+a) andk(x+a)wherea is a constant. Choosing
the integration constant forj (x) to be zero fixesa and consequentlyj (x) → 2x. This
removes any ambiguity in the start of the integration process. Thus for large negativex,
φ(x) satisfies the equation

d2φ

dx2
= 2xφ. (5)

† To perform the numerical integration, a Fehlberg fourth–fifth order Runge–Kutta method from the MAPLE V R4
program library is used.
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The approximate solution to (5) as given in [1] is

φ(x) = 1
3A(−2x)−1/4 exp

(−(−2x)3/2
)
. (6)

(b) For large positivex: it is required thatφ(x)→ 0, 0< k(x) < 1 andj (x) approach large
negative values.

The only free parameter is the amplitudeA of the wave and this must be chosen so that
the solution fits the boundary conditions. The nonlinearity of the problem makes it necessary
to integrate the system of equations numerically. The integration is started atx = −4. The
initial conditions are as follows:

φ(−4) = φ0, (7)
dφ

dx

∣∣∣∣
x=−4

=
(

1
16 +
√

8
)
φ0, (8)

k(−4) = 1, (9)

j (−4) = −8, (10)

whereφ0 is to be chosen to give an admissible solution. Thoseφ0 values which yield admissible
solutions will be referred to as eigenvalues of the system (1)–(3) with initial conditions (7)–(10).

The behaviour forφ(x) asx → ∞ depends upon the value ofφ0 (which translates into
an initial choice of the amplitudeA). Figure 1 illustrates numerically integrated solutions for
values ofφ0 given in table 1. Solution set 1 shows that for sufficiently large values ofφ0, φ(x)
reaches a positive minimum and then increases exponentially. Asφ0 is allowed to decrease,
the exponential growth ofφ(x) is delayed. This is depicted by solution sets 2 and 3. A further

Figure 1. Results of the numerical integration for the geon differential equations (1)–(3). The
values ofφ0 for solution sets 1–6 are summarized in table 1. The integration started atx = −4 and
could not proceed beyondx ' 7 for the given initial values. The active region begins atx ' 0.12
and ends atx ' 2.13. A possible admissible solution lies between sets 3 and 4. Note that forj (x),
curves 1–6 are indistinguishable.
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Table 1. Values ofφ0 for solution sets 1–6.

Solution set φ0

1 9.7910× 10−5

2 9.7908× 10−5

3 9.7906× 10−5

4 9.7904× 10−5

5 9.7902× 10−5

6 9.7900× 10−5

reduction inφ0 results inφ(x)→−∞ exponentially as shown in solution sets 4–6. A possible
admissible solution lies between solution sets 3 and 4.

The mass of the geon inside radiusρ is related to the functionk(x) in the following way:

M(ρ(x)) = 1

b
λ0(x) = 1

2b

(
1− k2

)
, (11)

with b = 1/Q1(∞) = k(∞). This implies that

0< k2(x) 6 1 as x →∞ (12)

in order to have a positive total mass. The mass factork(x) gives a positive mass throughout
the integrable region and appears to have ak(∞) value of approximately 1/3. The ‘active
region’ can be identified in thex coordinate system as the region where the functionj (x) is
positive. In this region, the functionφ(x) has oscillatory behaviour. The functionj (x) is
positive only for a limited range in the neighbourhood ofx = 1, thus identifying the active
region. In figure 1, the active region begins atx ' 0.12 and ends atx ' 2.13. The first
admissible solution (characterized byφ(x) having one local maximum and no local minima)
appears to lie between those values ofφ0 in the range 9.7904× 10−5 < φ0 < 9.7906× 10−5.
Qualitatively, these results are similar to those in [1]. The only main difference between the
calculation of [1] and the present one is that in [1], the first admissible solution appears to lie
in the range 1.030 00× 10−4 < φ0 < 1.031 25× 10−4 and the active region starts atx ' 4.05
and ends atx ' 6.02.

2.2. Existence and stability of equilibrium states

We are interested in determining the analytical behaviour of the solutions shown in figure 1 as
x → ∞. By constructing the phase portrait for the differential equations, it will be possible
to determine both the existence and stability properties of potential admissible solutions. We
start by rewriting equations (1)–(3) as the set of first-order equations

u′ = −j k φ, (13)

φ′ = u, (14)

k′ = −φ2, (15)

j ′ = 3− k−2 + u2k−2. (16)

It is sufficient to look for solutions with the properties

φ, u→ 0
k→ 1

}
as x →−∞,

φ, u→ 0
k→ constant> 0

}
as x → +∞

(17)



1894 G P Perry and F I Cooperstock

andj remains finite for finitex. In a phase space, the critical points (or equilibrium points)
are characterized by those points where the derivatives ofu, φ, k andj are zero. The analytic
behaviour of the solution about a critical point is determined by analysing the corresponding
linear system in a neighbourhood of that critical point [8].

The first step is to obtain the critical points of the system (13)–(16). One can easily verify
that

u = 0, (18)

φ = 0, (19)

k = ± 1√
3

(20)

is sufficient to satisfyu′ = φ′ = k′ = j ′ = 0. Thus the coordinates of the critical point in the
phase space are

u = 0, (21)

φ = 0, (22)

k = 1√
3
, (23)

j = s, s ∈ R, (24)

wheres is any value ofj (x). The functionk(x) cannot pass through zero since equation (3)
becomes singular. The positive root of equation (20) is chosen to ensure positivek(x), since
initially k(−∞) = 1. It is useful to shift the critical point to the origin using the following
transformation:

φ(x) = f1(x), u(x) = f2(x),

k(x) = f3(x) +
1√
3
, j (x) = f4(x) + s.

(25)

Therefore, the field equations become

f ′1 = f2, (26)

f ′2 = − (f4 + s)

(
f3 +

1√
3

)
f1, (27)

f ′3 = −f 2
1 , (28)

f ′4 = 3− (1 +f 2
2

) (
f3 +

1√
3

)−2

, (29)

with the critical point atf1 = f2 = f3 = f4 = 0. To linearize the field equations about this
critical point, a MacLaurin series off ′i = f ′i (f1, f2, f3, f4), i = 1, . . . ,4 is taken to first
order and evaluated at the critical point (denoted by cp below), i.e.

f ′i = f ′i
∣∣
cp +

∂f ′i
∂f1

∣∣∣∣
cp

f1 +
∂f ′i
∂f2

∣∣∣∣
cp

f2 +
∂f ′i
∂f3

∣∣∣∣
cp

f3 +
∂f ′i
∂f4

∣∣∣∣
cp

f4 + · · · . (30)

Written in matrix form, the linearized field equations are
dw

dx
= Mw, (31)

where

w =


f1

f2

f3

f4

 and M =


0 1 0 0

−s/√3 0 0 0
0 0 0 0
0 0 6

√
3 0

. (32)
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The general solution to the above matrix differential equation is the eigenvector

w = c1


0
0
0
1

 + c2




0
0
0
1

 x +


0
0√

3/18
0


 + c3


1
α

0
0

 eα x + c4


1
−α
0
0

 e−α x,

(33)

whereα ≡
√
−s/√3 andci, i = 1, . . . ,4 are constants. Therefore, the solution to the linear

system is

f1(x) = c3 eα x + c4 e−α x, (34)

f2(x) = c3 α eα x − c4 α e−α x, (35)

f3(x) = 1
18

√
3c2, (36)

f4(x) = c1 + c2 x. (37)

The eigenvectorw shows that in a neighbourhood of the critical point, the nonlinear system
decouples into the disjoint subspaces(f1, f2) and(f3, f4).

Figure 2. The(f3, f4) phase space projection illustrates a non-isolated critical point. The critical
point under investigation is located at the origin. Thef4-axis is a continuous set of critical points
in a neighbourhood of the origin. The functionsf4 ∝ j andf3 ∝ k behave as a linear function of
x and a constant function, respectively, in a neighbourhood of the critical point not on thef4-axis.

The phase space projection of(f3, f4) (which is proportional to(k, j)) is illustrated
in figure 2. Sinces can take any value ofj , the critical point lies at an arbitrary position
s 6 max(j) on the curvek(x) = (

√
3/18) c2 + (1/

√
3) which is transformed back to the

origin in the(f3, f4) subspace. Equations (36) and (37) show that in a neighbourhood of the
critical point, but not on thef4-axis, f3 andf4 behave as a constant and a linear function
of x, respectively. If one is on thef4-axis in a neighbourhood of the critical point, then
c2 = 0. Hencef4 = c1 defines a continuous set of critical points. These critical points are
examples of non-isolated critical points. The(f3, f4) projection is insufficient for determining
the existence and stability of admissible solutions since it only gives information about the
functionsj andk.
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Figure 3. (a) Illustration of a stable critical point. This type of critical point occurs when the value
of the parameters > 0. (b) Illustration of an unstable critical point. This type of critical point
occurs when the value of the parameters < 0.

The nature of the(f1, f2) subspace† (or the(φ, u) subspace) depends upon the parameter
s ∈ j . It will determine the stability properties with respect to perturbations of the amplitude
eigenvalues of any admissible solutions. However, a three-dimensional phase space projection
in the coordinates(φ, u, j) is necessary to determine the existence of admissible solutions.
Illustrations of the two possible phase space projections of(φ, u) are shown in figure 3.
Examining (34) and (35), ifs > 0, thenφ andu behave as sinusoidal functions ofx. This type
of critical point is described as a centre (figure 3(a)) and is astablecritical point. Ifs < 0, then
φ andu have an exponential behaviour and the critical point isunstable. This type of critical
point is described as a saddle point (figure 3(b)). By following the integration procedure in
the parameterx for solution sets 1 and 6 of figure 1, the behaviour of the complete nonlinear
system can be described.

Figure 4 shows the three-dimensional(φ, u, j) phase space projection of solution sets 1
and 6. The integration procedure starts in plane B of figure 4 atj = −8. In addition, the
solution trajectories start somewhere along the lineu = ( 1

16 +
√

8)φ0, which must necessarily
lie to the left of the unstable asymptoteξ+. One such point is labelled ‘1’ in figure 3(b). In order
for the system to satisfy the boundary conditions (17), it is necessary for at least one solution
to flow along the unstable asymptoteξ− (in thej = s → −∞ plane). If figure 3(b) were a
complete description of the phase space, then it would be impossible for a solution starting
at position ‘1’ to crossξ+. This is a consequence of the well known property of autonomous
systems that phase space trajectories do not cross. However, as the integration process inx

continues, the value ofj increases from a negative value to a positive value. Therefore, the
nature of the critical point in the two-dimensional(φ, u) phase planes changes temporarily
from a saddle point to that of a centre. Plane A of figure 4 is an illustration of one such critical
point. Soon afterward,j decreases to negative values and the critical points are saddle points
once again. However, the solution trajectories have crossedξ+ and now follow the flow along
the unstable asymptoteξ−. Upon the transition of the critical points from centres to saddle
points, the asymptotes have been re-established with solution sets 1 and 6 on opposite sides of

† It is convenient to use the functionsφ, u in place off1, f2 for the remainder of this section. Recall that
φ = f1, u = f2 from equation (25).
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Figure 4. The three-dimensional(φ, u, j) projection of the phase space curves for the numerical
solution sets 1 and 6 shown in figure 1. The numerical integration starts in plane B, proceeds
up through plane A and continues down through plane C. The nature of the critical points along
the j -axis (origin of the(φ, u) planes) change from centres (j > 0) to saddle points (j < 0)
demonstrating the system instability.

theξ− asymptote. The positions where solution sets 1 and 6 cut the(φ, u) planes forj < 0
are schematically illustrated as points ‘2’ and ‘3’ respectively, in figure 3(b). In figure 4, these
positions are most clearly seen in plane C. Since trajectories for autonomous systems do not
cross and the trajectories depend continuously on the initial data, there must be a value ofφ0

for which the trajectory approachesξ− asj = s → −∞. The existence of this trajectory
shows that it is possible to find an eigenvalue ofφ0 which satisfies the boundary conditions
(17). However, the nature of the critical point asj = s → −∞ (x → ∞) is a saddle point
and therefore this eigenvalue solution is an unstable solution. Since solution set 1 cuts plane
C at position ‘2’ of figure 3(b), the flow of the integration process requires this set to approach
ξ+. Similarly, solution set 6 must approachξ−, since it cuts plane C at position ‘3’. Hence,
any small perturbation of the eigenvalue ofφ0 implies the constantc3 6= 0 in (34) and (35).
Thus the non-eigenvalue solutions do not satisfy the boundary conditions. Figure 5 shows
the (φ, u) subspace for the six solution sets of figure 1. The projection is forj < −15. A
comparison of figure 5 to figure 3(b) confirms that the admissible solution is unstable.

The existence of admissible solutions and instability of the electromagnetic geon system
were discussed in [1]. However, it was based on the numerical solution curves similar to



1898 G P Perry and F I Cooperstock

Figure 5. The (φ, u) phase space projection of solution sets 1–6 forj < −15. It has the
characteristics of figure 3(b). This indicates that the critical point at the origin is unstable as
j →−∞.

figure 1. Performing a phase portrait analysis, we have formally shown that an eigenvalue
does exist† which satisfies conditions (17). We have also shown that this solution must
necessarily beunstablewith respect to perturbations of the eigenvalue ofφ0. This result
suggests that geon constructs are dynamically unstable, i.e. the ensemble of waves must
collapse or explode. In [1], it was also suggested that a spherical geon would most likely
collapse to a toroidal geon [9], presumably thought to be more stable. It was argued by Ernst
[9] that the construction of a toroidal geon could be realized if one had complete knowledge of
a linear geon (which approximates a small segment of the toroidal geon). Numerical evidence
for amplitude eigenvalues in analogy with the spherical geon were presented in [9]. This work
was extended in [10] by performing a phase portrait analysis. It was found that only unstable
admissible solutions exist, as in the case of the spherical geon. It has been suggested [6] that
this is sufficient for proclaiming the existence of both types of geons (electromagnetic and
gravitational). However, in section 1, it was noted that a true geon must have the property
that the ensemble of waves comprising the geon be confined on a time-scale much longer than
the typical period of the constituent waves. Otherwise it would not be possible to attribute a
structural form to the geon. What is yet to be determined analytically is the dynamic behaviour
of geon constructs when perturbations are present. The next section presents a time-dependent
perturbation analysis of the equations that describe the electromagnetic geon in an attempt to
determine this time-scale.

† Existence of the eigenvalue was derived independently in [6] using an alternate method. However, stability aspects
were not discussed in [6].



Stability of gravitational and electromagnetic geons 1899

3. Time-evolution analysis of the electromagnetic geon

The electromagnetic geon model employed in [1] assumed a background metric which is
independent of time. This precludes the possibility of studying the time evolution of the
individual modes coupled to a time-evolving background metric. Instead of introducing a time
dependence into the system of equations and solving the coupled wave–background system,
an alternate method was employed in [1] for determining the time-scale of the collapse or
‘lifetime’ of the electromagnetic geon. It was based on an alpha-decay model of barrier
potential penetration. The quantum mechanical nature of alpha decay brings into question the
validity of using such a model for determining the lifetime of a classical object such as a geon
[10]. There are known phenomena which represent classical wave penetration of a potential
barrier. For example, the optical phenomenon of frustrated total internal reflection [11] is such
a process. It is important to note that in both alpha decay and frustrated total internal reflection,
the potential is supplied by some material and not the waves themselves, as is necessary for
the case of geons. Whether the analogy exists between these examples of barrier penetration
and the time evolution of a geon based upon the coupled Einstein–Maxwell equations is the
subject of this section.

Another approach towards determining the lifetime of an electromagnetic geon is that of
Brill [7]. The method is to study the evolution of the ensemble of photons which produce the
effective potential using a thin-shell model for the electromagnetic geon. It was found that the
radial position of the thin shell underwent a displacement towards collapse. It was also stated
that the rate of collapse was ‘slow’.

The junction condition problems associated with analysing thin-shell geon models has
previously been discussed in some detail in [5]. In addition, the evolution of the thin-shell
model in [7] does not allow for leakage of radiation during the collapse nor does it allow an
evolving shell thickness (evolving active region) as one might expect. The effect of correcting
these deficiencies on the rate of collapse is not clear. A full understanding of the evolution of a
geon must take into account the evolution of the typical individual modes of vibration coupled
to the evolution of the collective ensemble of waves in a singularity-free model.

It is evident that models for studying the evolution of geons must be based on solving
the Einstein (or Einstein–Maxwell) field equations. Intuitive models are not sufficient for
describing the true physical system. To avoid the interpretation problems associated with the
alpha-decay and thin-shell models and correct for the deficiencies of each model, the derivation
of the electromagnetic geon equations [1] will be modified to permit the study of the time
evolution of the electromagnetic geon. The electromagnetic geon will be studied instead of
the gravitational geon because of the relative ease in computation for the former. Equilibrium
solutions for the gravitational and electromagnetic geon are governed by the same set of
ODEs. Therefore, it is not expected that the modified gravitational geon equations in the high-
frequency approximation would yield a significantly different result from the electromagnetic
case.

We are interested in following the evolution of the electromagnetic geon in the radial
direction. Observing the time evolution of the metric reflects the evolution of the ensemble
of electromagnetic waves comprising the geon. However, it is not sufficient to simply perturb
the background metric functions. It is the electromagnetic waves which are the source for
the gravitational field, hence both the gravitational and electromagnetic quantities must be
perturbed. This will be done by applying an amplitude perturbation on the electromagnetic
waves comprising the geon in such a way as to induce the background metric to evolve in
time. Frequency perturbations are not explicitly considered in the following derivation for two
main reasons. Firstly, the stability analysis of the previous section indicates that the instability
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of the admissible equilibrium solution originates from changes in the amplitude eigenvalue
(initial condition). Secondly, it can be shown that a perturbation of the form� → � + δ�
(where� is the characteristic frequency of the electromagnetic waves) is a special case of the
amplitude perturbation studied below. Restricting study to the radial direction maintains the
field equations in their simplest form. It should be emphasized that the time–space average of
the electromagnetic disturbance must be incorporated into the background metric equations
to maintain spherical symmetry, but still allow for the solution to evolve in time. This time-
averaging problem will be addressed when the perturbation is applied. Before the perturbation
analysis is performed, the angle-averaged time-dependent electromagnetic geon field equations
must first be derived. This part of the derivation follows closely that of [1].

The equations presented below are derived in greater detail in appendix A. Only an outline
of the derivation is given here. We start by defining the electromagnetic vector potential for
one mode of the electromagnetic waves

Aµ =
(
0, 0, 0, Aϕ

)
, (38)

where

Aϕ = a(r, t)B(θ), B(θ) = sinθ
d

dθ
Pl(cosθ). (39)

The functiona(r, t) has been left unspecified at this stage. The time-dependent background
metric is

ds2 = gαβ dxα dxβ = −eν dt2 + eλ dr2 + r2 dθ2 + r2 sin2θ dϕ2, (40)

where

ν = ν(r, t), λ = λ(r, t).

In the absence of charges and currents, Maxwell’s equations in a curved spacetime are

1√−g
∂

∂xα

(√−gFβα) = 0, (41)

Fαβ,γ + Fγα,β + Fβγ,α = 0, (42)

whereg is the determinant of the metric (40) and the Maxwell tensor,Fαβ , is related to the
4-vector potential asFαβ = Aβ,α−Aα,β . The Einstein equations for the electromagnetic geon
are

Gµ
ν = 8π

〈
Tµ

ν
〉
, (43)

where〈·〉 denotes a time–space average over allN active modes† of the electromagnetic waves.
Substituting (38) into (41) and (43), taking the angle average and finally transforming to the
ρ = �r coordinate system yields the wave equation

�2 ∂
2a

∂ρ∗2
−�2l∗2ρ−2

(
1− 2L

ρ

)
Q2 a −

(
1− 2L

ρ

)2

Q2 ∂
2a

∂t∗2
= 0 (44)

† The active modes are characterized by a sequence of parameter values (a family of modes) for which the effective
stress–energy is concentrated in the same spatial region.
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and the background field equations

∂L

∂ρ∗
= κ2

l

2

(
Q−1

(
�2

〈(
∂a

∂ρ∗

)2
〉

T

+

〈(
∂a

∂t

)2
〉

T

)
+�2l∗2ρ−2

(
1− 2L

ρ

)
Q
〈
a2
〉
T

)
, (45)

∂Q

∂ρ∗
= κ2

l

ρ − 2L

(
�2

〈(
∂a

∂ρ∗

)2
〉

T

+

〈(
∂a

∂ρ∗

)2
〉

T

)
, (46)

∂L

∂t
= κ2

l �
2Q−1

〈
∂a

∂ρ∗
∂a

∂t

〉
T

, (47)

where

∂

∂ρ∗
≡
(

1− 2L

ρ

)
Q
∂

∂ρ
, (48)

∂2

∂t∗2
=
(

1− 2L

ρ

)−1

Q−1 ∂

∂t

((
1− 2L

ρ

)−1

Q−1 ∂

∂t

)
, (49)

and

κl ≡
√
Nl∗2

2l + 1
l∗ ≡

√
l(l + 1). (50)

In the above equationsL(ρ) andQ(ρ) are metric functions (see equations (A24) and (A25))
and the symbol〈·〉T denotes a time average is to be taken. Equations (44)–(47) are the
starting point for developing the dynamic perturbation (time-evolution) equations. The∂Q/∂t

equation (found from theGθ
θ = 8π

〈
Tθ
θ
〉
equation) is not used in the subsequent analysis, but

is given in appendix A for completeness.
The time-averaged equilibrium solution in [1] has the form

κl � a(ρ, t) = f0(ρ) sin� t, (51)

L(ρ, t) = L0(ρ), (52)

Q(ρ, t) = Q0(ρ), (53)

where f0(ρ), L0(ρ) and Q0(ρ) are known functions†. We will designate this as the
‘unperturbed solution’. Two general forms for the radial perturbation of the wavefunction
a(ρ, t) will be considered. The first is given by

κl � a(ρ, t) = f0(ρ) sin� t + δu1(ρ, t) + δ2u2(ρ, t) + O
(
δ3
)
, δ � 1, (54)

whereδ is the expansion parameter. (Note that the addition of a phase constant to sin� t does
not affect the results which follow. Thus the phase constant is set to zero.) As a result, a small
time-dependent perturbation is introduced in the metric functions,

L(ρ, t) = L0(ρ) + δL1(ρ, t) + δ2L2(ρ, t) + O
(
δ3
)
, (55)

Q(ρ, t) = Q0(ρ) + δQ1(ρ, t) + δ2Q2(ρ, t) + O
(
δ3
)
. (56)

The perturbation expansion will be carried out to the first order inδ. Before the perturbed
system is solved in a self-consistent manner, the problem of time averaging the functions on

† These are known as numerical solutions to the system (1)–(3) with initial conditions (7)–(10) in the high angular
momentum approximation.
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the right-hand side of equations (45)–(47) must be addressed. From the definition of a time
average and equation (54),

κ2
l �

2
〈
a2(ρ, t)

〉
T ≡

1

T

∫ T

0
κ2
l �

2a2(ρ, t) dt

= 1

2
f 2

0 (ρ) +
1

T

∫ T

0

(
2δu1(ρ, t)f0(ρ) sin� t

+ δ2
(
u2

1(ρ, t) + 2u2(ρ, t)f0(ρ) sin� t
)

+ O
(
δ3
))

dt, (57)

whereT = 2π�−1 is the period of the electromagnetic waves. In order to develop the
perturbation analysis, it is necessary to make some assumptions about the functionu1(ρ, t).
The presence of unevaluated integrals on the right-hand side of the differential equations (45)–
(47) would not make it possible to proceed with the analysis beyond this point. Let us suppose
that the time dependence ofu1(ρ, t) was sinusoidal and its characteristic frequency was of the
order� of the electromagnetic waves. In this case, the time dependence is lost to all orders
in δ upon time averaging. In essence, this assumption onu1(ρ, t) precludes the possibility
of a time-dependent evolution of the system. This is not satisfactory. To maintain a time
dependence after time averaging, another time-scale will be introduced into the problem.
Suppose the time dependence ofu1(ρ, t)was again sinusoidal and its characteristic frequency
was of the orderω � �. In this case,u1(ρ, t) is approximately constant over the short time
periodT = 2π�−1 of the electromagnetic waves and thus is constant in the time-average
integral. Evaluating the time average ofa2(ρ, t) under this assumption yields

κ2
l �

2
〈
a2(ρ, t)

〉
T =

1

T

∫ T

0

(
f 2

0 (ρ) sin2� t + 2δ u1(ρ, t)f0(ρ) sin� t

+δ2
(
u2

1(ρ, t) + 2u2(ρ, t)f0(ρ) sin� t
))

dt + O
(
δ3
)

= 1
2f

2
0 (ρ) + δ2u2

1(ρ, t) + O
(
δ3
)
. (58)

Therefore, the time dependence is not present until the second order inδ. This is sufficient to
proceed with the time evolution of the system, since each order in the expansion parameterδ

must be set to zero. Tofirst order inδ

κ2
l �

2
〈
a2(ρ, t)

〉
T = 1

2f
2
0 + O

(
δ2
)
. (59)

Similarly, the remaining time averages are

κ2
l �

2

〈(
∂a

∂ρ∗

)2
〉

T

= 1

2

(
df0

dρ∗

)2

+ O
(
δ2
)
, (60)

κ2
l �

2

〈(
∂a

∂t

)2
〉

T

= 1
2�

2f 2
0 + O

(
δ2
)
, (61)

κ2
l �

2

〈
∂a

∂t

∂a

∂ρ∗

〉
T

= O
(
δ2
)
. (62)

Substitution of (54)–(62) into (44)–(47), expanding to first order inδ and setting each order
in δ to zero yields the unperturbed equations (63)–(65). The properties of the unperturbed
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equations

d2f0

dρ∗2
+

(
1− l∗2Q2

0ρ
−2

(
1− 2L0

ρ

))
f0 = 0, (63)

dL0

dρ∗
= 1

2Q0

(
f 2

0 +

(
df0

dρ∗

)2

+ l∗2Q2
0ρ
−2

(
1− 2L0

ρ

)
f 2

0

)
, (64)

dQ0

dρ∗
= (ρ − 2L0)

−1

(
f 2

0 +

(
df0

dρ∗

)2
)
, (65)

are known from [1] and therefore can be used in the analysis of the first-order equations.
Setting the first-order part of the wave equation (44) to zero yields

A(ρ, t) sin� t +B(ρ, t) cos� t +C(ρ, t) = 0, (66)

where

A(ρ, t) ≡ �
((

Q1(ρ, t)

(
1− 2L0

ρ

)
− 2ρ−1L1(ρ, t)Q0

)
×
(

2ρ−2Q0
df0

dρ

(
L0 − ρ dL0

dρ

)
+Q0

d2f0

dρ2

(
1− 2L0

ρ

)
+

df0

dρ

dQ0

dρ

(
1− 2L0

ρ

))
+2ρ−3l∗2Q0

(
Q0L1(ρ, t)− ρQ1(ρ, t)

(
1− 2L0

ρ

))
f0 +Q0

(
1− 2L0

ρ

)
×
(

2ρ−2 df0

dρ

(
Q1

(
L0 − ρ dL0

dρ

)
+Q0

(
L1(ρ, t)− ρ ∂

∂ρ
L1(ρ, t)

))
+

((
1− 2L0

ρ

)
∂

∂ρ
Q1(ρ, t)− 2ρ−1L1(ρ, t)

dQ0

dρ

)
df0

dρ

+

(
Q1(ρ, t)

(
1− 2L0

ρ

)
− 2ρ−1L1(ρ, t)Q0

)
d2f0

dρ2

)
+

f0

ρ − 2L0

(
2L1(ρ, t)− ρ

(
1− 2L0

ρ

)
Q−1

0 Q1(ρ, t)

)
+

(
1− 2L0

ρ

)−1

Q−1
0

(
Q1(ρ, t)

(
1− 2L0

ρ

)
− 2ρ−1L1(ρ, t)Q0

)
f0

)
, (67)

B(ρ, t) ≡ f0

(
2ρ−1

(
1− 2L0

ρ

)−1
∂

∂t
L1(ρ, t)−Q−1

0

∂

∂t
Q1(ρ, t)

)
(68)

and

C(ρ, t) ≡ ∂2

∂ρ∗2
u1(ρ, t)− l∗2Q2

0ρ
−2

(
1− 2L0

ρ

)
u1(ρ, t)−�−2 ∂

2

∂t2
u1(ρ, t). (69)

In order to satisfy the first-order wave equation (66), the conditionsA(ρ, t) = 0,
B(ρ, t) = 0 andC(ρ, t) = 0 must be imposed. This is justified since sin� t and cos� t are
independent functions in the approximation whereA(ρ, t), B(ρ, t) andC(ρ, t) are slowly
varying functions of time. We will focus upon the latter equation, since it is the simplest of
the three equations. Setting (69) to zero yields the equation

∂2

∂ρ∗2
u1(ρ, t)− l∗2Q2

0ρ
−2

(
1− 2L0

ρ

)
u1(ρ, t)−�−2 ∂

2

∂t2
u1(ρ, t) = 0. (70)
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To solve this equation, we will first use the method of separation of variables. Later, this
restriction will be removed. Let

u1(ρ, t) = u(ρ) T (t). (71)

Substituting (71) into (70) and dividing byu(ρ)T (t) yields the two ordinary differential
equations

d2u(ρ)

dρ∗2
− l∗2Q2

0ρ
−2

(
1− 2L0

ρ

)
u(ρ) + βu(ρ) = 0, (72)

d2T (t)

dt2
+ β �2T (t) = 0, (73)

where−β is the separation constant. The solution to (73) is

T (t) = c3 sin(ωt + c4), c3, c4 constants, (74)

where we have chosenβ ≡ ω2/�2,ω � �. Making this choice forβ satisfies the requirement
of (58) for a meaningful time average.

In order to solve equation (72), it is necessary to apply the high angular momentum
approximation. It is therefore necessary to transformC(ρ, t) to thex coordinate system and
expand in inverse powers ofl∗1/3 as is done for the unperturbed system [1]. The transformation
in [1] for the unperturbed functions is repeated here for convenience

x = (ρ∗ − l∗) l∗−1/3, (75)

dρ∗ ≡ l∗1/3 dx,

ρ = l∗ + l∗1/3r0(x) + · · · ,
L0 = l∗λ0(x) + l∗2/3λ1(x) + l∗1/3λ2(x) + · · · , (76)

Q0 = 1/k(x) + l∗−1/3q1(x) + l∗−2/3q2(x) + · · · ,
f0 = l∗1/3φ(x) + φ1(x) + l∗−1/3φ2(x) + · · · .

In addition, the functionu(ρ) must be expanded in a similar manner, i.e.

u = l∗1/3µ0(x) +µ1(x) + l∗−1/3µ2(x) + · · · . (77)

After a lengthy computation, the asymptotic expansion of (72) yields

l∗1/3
(
ω2

�2
− 1− 2λ0(x)

k2(x)

)
µ0(x) + O(1) = 0. (78)

In order for (78) to be satisfied for large arbitraryl∗ (in the limit l∗ → ∞), each order ofl∗1/3

must be set to zero. Since settingµ0(x) = 0 implies the absence of electromagnetic wave
perturbations, the bracketed term must be zero. It is known from the unperturbed system that
[1]

λ0(x) = 1
2

(
1− k2(x)

)
. (79)

Substituting (79) into (78) and setting the bracketed term to zero yields the relation

ω2 = �2 (80)

which must hold in order to satisfy the conditionC(ρ, t) = 0. However, equation (80) is a
contradictionto the original assumptionω � �. Because of the presence of the contradiction,
it is not necessary to solve the remaining field equations.
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We arrived at this contradiction through the assumption that (70) could be solved by
separating variables (equation (71)). The same result is obtained ifu1(ρ, t) is not separable
as is shown below. Modifying (77) as follows

u1 = l∗1/3µ0(x, t) +µ1(x, t) + l∗−1/3µ2(x, t) + · · · (81)

and expanding (70) in inverse powers ofl∗1/3 yields

−l∗1/3
(
�−2 ∂

2

∂t2
µ0(x, t)− 1− 2λ0(x)

k2(x)

)
µ0(x, t) + O(1) = 0 (82)

to lowest order inl∗1/3. Setting each order inl∗1/3 to zero requiresµ0(x, t) to satisfy the
differential equation (using (79))

∂2

∂t2
µ0(x, t) +�2µ0(x, t) = 0. (83)

The solution is

µ0(x, t) = c5(x) sin(� t + c6(x)). (84)

The characteristic frequency ofµ0(x, t) is � which contradicts the assumptionu1(ρ, t) ∼
µ0(x, t) ∼ ω � �.

Before we proceed with the discussion of the perturbation analysis based on (54)–(56), a
second form for the wavefunction perturbation should be considered. Consider the perturbation
in the form

κl � a(ρ, t) = (f0(ρ) + δu1(ρ, t)) sin� t + O
(
δ2
)
, (85)

where the characteristic frequency ofu1(ρ, t) is of orderω � �. This form can be interpreted
as a slowly evolving amplitude of the rapidly varying function sin� t . Equations (54) and (85),
in addition to the assumptions placed onu1(ρ, t), cover the entire range of possibilities for these
types of perturbations (for example, a perturbation of the forma(ρ, t)→ a(ρ + δξ(ρ, t), t)
reduces to (85)). Evaluation of the time averages yields

κ2
l �

2
〈
a2(ρ, t)

〉
T = 1

2f
2
0 + δf0u1 + O

(
δ2
)
, (86)

κ2
l �

2

〈(
∂a

∂ρ∗

)2
〉

T

= 1

2

(
df0

dρ∗

)2

+ δ
df0

dρ∗
∂u1

∂ρ∗
+ O

(
δ2
)
, (87)

κ2
l �

2

〈(
∂a

∂t

)2
〉

T

= 1
2�

2f 2
0 + δ �2f0u1 + O

(
δ2
)
, (88)

κ2
l �

2

〈
∂a

∂t

∂a

∂ρ∗

〉
T

= δ1

2

df0

dρ∗
∂u1

∂t
+ O

(
δ2
)
. (89)

Hence, the time dependence of the time-averaged functions becomes manifest at the first order
in δ. This greatly increases the mathematical complexity of the system. The detailed analysis
for this system is derived in appendix B for the case ofu1(ρ, t) separable. From this analysis,
the same contradiction results for the characteristic frequency ofu1(ρ, t) as that found from
the analysis based upon equation (54). For non-separableu1(ρ, t), the differential equations
become unmanageable. Hence, it was not possible to obtain a conclusive result. However,
due to the similar nature of the systems based upon equations (54) and (85), there is no reason
to suspect a different result for the non-separable case.
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4. Discussion

We have seen from the analysis of the static solution (section 2) that the confinement of geon
constructs demands an absolutely critical choice of initial condition (amplitude eigenvalue).
The slightest deviation from that choice leads to a totally unconfined structure. While some
might argue that the confined structure being indicated with the critical initial condition is
already satisfactory [6], the general experience with solitonic structures is one of essentially
confined solutions in the neighbourhood of the best choice of critical condition [12]. The
failure to find a family of near confinement in the case of the geon already raises suspicions
as to its viability.

In the previous section, the time evolution of an electromagnetic geon equilibrium solution
was studied with the objective of determining the time-scale of collapse away from the
equilibrium configuration. Perturbations of the form (54) and (85) were analysed under certain
assumptions. The problem of time averaging the source terms (right-hand side) of the field
equations (45)–(47) requires the characteristic frequencyω of the perturbation term of the
wavefunctionu1(ρ, t) to be much less than the characteristic frequency� of the unperturbed
solution. Without this assumption, the time dependence of the perturbations is lost upon time
averaging, to all orders in the expansion. Hence, the assumptionu1(ρ, t) ∼ ω ∼ � is not
satisfactory for studying the time evolution of geons.

The assumptionu1(ρ, t) ∼ ω � �, for both forms of the perturbation, solves the
time-averaging problem in a simple manner. With this assumption, the differential equations
maintain a time dependence after the time average has been taken over the typical period of the
high-frequency waves. The perturbation analysis leads to the requirementω ∼ � in order for
the field equations to be satisfied. This is a contradiction to the original assumptionω � �.
Since all the possible combinations for the form of the perturbation (and assumptions placed
on u1(ρ, t)) have been explored, the possible interpretations of the results of section 3 are
given below.

A reasonable interpretation of the contradiction in the time-evolution analysis is that
the condition of slow evolution of the background cannot be satisfied. Since not all of the
required conditions are satisfied, it is not possible to construct a geon comprised of high-
frequency waves. It could be argued that an electromagnetic geon could be built from low-
frequency waves. This has not been ruled out by our model since it only accommodates
high-frequency waves. However, a gravitational geon necessarily must be constructed from
high-frequency waves, since otherwise the effective stress–energy would not be of the correct
order of magnitude to create the background gravitational field binding the waves [3–5, 13].
Therefore, the gravitational geon studied in this paper is subject to the same fate as its high-
frequency electromagnetic counterpart.

A geon with a rapidly evolving background metric, where the background is somehow
regarded as being distinct from the small-amplitude waves on the background, is conceptually
unsound. The definition presented in section 1 for this type of geon requires the background
solution of the Einstein or Einstein–Maxwell field equations be quasi-stable on a time-scale
much longer than the period of the constituent waves. If the background metric evolves
away from the equilibrium configuration on the same time-scale as the constituent waves, one
cannot speak of the waves binding gravitationally. Under these circumstances, there is no geon
structure to identify. Further arguments against a rapidly evolving background metric can be
found in [5].

The contradiction which arises in the perturbation analysis of section 3 is interpreted as
a breakdown of the model, i.e. the perturbation model is not able to describe the evolution of
the physical system. It might be argued that an alternative method of implementing the time
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evolution (not using perturbative methods) may be better suited to determine the time-scale of
evolution. For example, it may be possible to develop an exact numerical solution of the full
Einstein (or Einstein–Maxwell) equations without the splitting of the metric into a background
and waves on the background or taking time averages. Considering the complexity involved
in analysing the simple perturbative model of section 3, any new model would undoubtedly be
more complex to solve. However, it should be possible to approximate any exact method with
an appropriate perturbation expansion (as presented in section 3). Therefore, it is appropriate
to consider the contradiction in a physical context, as was discussed earlier.

At this point, we recall the original motivation, which led the authors to re-open the issue of
geons and their viability. One of the authors [14–16] had been led to propose a new hypothesis
regarding the localization of energy in general relativity, namely that the energy was localized
in regions of non-vanishing energy–momentum tensorT µν . There were various factors leading
to this. First, the energy–momentum conservation laws

T
µν

;ν = 0 (90)

are devoid of content in vacuum, producing the empty identity 0= 0. However, when (90)
is re-expressed as a vanishing ordinary divergence to create a global form of the conservation
law involving the introduction of pseudotensors, it is used to compute supposed fluxes of
gravitational field energy in vacuum where the originating law is devoid of content. It was
proposed that the ambiguity of the pseudotensorial flux vectors actually reflects the illegitimate
injection of supposed physical content where none actually exists. Furthermore, it was shown
that for Kerr–Schild metrics, all components of the gravitational pseudotensors vanish [17]
and gravitational plane waves can be expressed in Kerr–Schild form. Since a wave is plane
in a relatively small region, this is further support to the belief that waves of gravity are not
actually carriers of energy in vacuum, in accord with the localization hypothesis. Other aspects
to support the hypothesis had been outlined including the relationship to the important earlier
papers of Nissani and Leibowitz [18], the basis for non-excitation of a Feynman detector and
the work of Virbhadra [19] which showed that localization of energy is confined to theT µν

regions for static and stationary spacetimes. The gravitational geon remained an outstanding
challenge to the localization hypothesis since a purely gravitational non-singular construct
displaying an unambiguous mass would be a clear counter-example. The present work adds
new support for the hypothesis apart from the value of understanding this basic construct.
From another viewpoint, the results which we have found in this paper are not surprising.
From studies extending over 65 years, it was recognized that non-singular soliton structures to
model elementary particles are not easily achieved and they are successful only with a careful
mixture of different types of fields (see [12] for a review with earlier references contained
therein). The electromagnetic geon depends only on the electromagnetic field and its own
gravity, while the gravitational geon is even more restrictive, being a purely gravitational
construct. In the light of earlier studies, it is not surprising that such simple ingredients should
resist compactification.

5. Conclusions

The construction of a satisfactory gravitational geon model requires an asymptotically flat,
self-consistent solution of the Einstein field equations, which meets the regularity conditions
for a singularity-free spacetime. Furthermore, it must be demonstrated that the evolution in
time of the geon must take place on a time-scale much longer than the characteristic period of
the constituent waves (quasi-stability property).
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To satisfy these conditions, it was proposed [3–5] that a satisfactory gravitational geon
model must be constructed in a manner similar to that of Wheeler’s [1] electromagnetic geon.
This type of model for the gravitational geon is in contrast to the thin-shell model of Brill and
Hartle [2]. In order to construct a gravitational geon in principle, it was previously established
[3–5, 13] that gravitational waves of high frequency were necessary. The application of the
high-frequency approximation reduced the gravitational and electromagnetic geon problem to
the same set of ordinary differential equations and boundary conditions. Since the background
metric is initially assumed to be static, any solutions are necessarily equilibrium solutions.
From a phase portrait analysis of the ordinary differential equations governing gravitational and
electromagnetic geons, it was possible to determine both the existence and stability properties of
equilibrium solutions with respect to perturbations of the amplitude eigenvalues. It was found
that admissible equilibrium solutions were unstable to changes in the amplitude eigenvalues.
Since a basic requirement for the existence of both types of geon is the quasi-stability property,
an investigation of the time evolution of an electromagnetic geon was performed. In contrast to
other investigations, a small-amplitude time-dependent perturbation to an equilibrium solution
was applied. The time-averaging problem is solved by assuming the characteristic frequency
of the perturbations vary on a time-scale which is much longer than that of the waves
comprising the electromagnetic geon. This is in accordance with the requirement that the
background metric be quasi-stable. Solving the time-dependent perturbation equations leads
to the characteristic frequency of the perturbations being of the same order in magnitude as the
waves comprising the electromagnetic geon. This is a contradiction to the original assumption.
Thus it could not be shown that the time evolution of the electromagnetic geon proceeds on a
slow time-scale using standard perturbation theory modified for time-averaged fields. With not
all of the requirements for the existence of an electromagnetic geon being satisfied, it cannot
be concluded that an electromagnetic or a gravitational geon is a viable entity.

Given the results as applied to the gravitational geon, such a construct cannot be considered
a counter-example to the energy localization hypothesis as discussed in [14–16].
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Appendix A. Time-dependent electromagnetic geon equations

We start by defining the electromagnetic vector potential for one mode of the electromagnetic
waves

Aµ =
(
0, 0, 0, Aϕ

)
, (A1)

where

Aϕ = a(r, t)Bl(θ), Bl(θ) = sinθ
d

dθ
Pl(cosθ). (A2)

The time-dependent metric is

ds2 = gαβ dxα dxβ = −eν dt2 + eλ dr2 + r2 dθ2 + r2 sin2θ dϕ2, (A3)
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where

ν = ν(r, t), λ = λ(r, t).
In the absence of charges and currents, Maxwell’s equations in a curved spacetime are

1√−g
∂

∂xα

(√−gFβα) = 0, (A4)

Fαβ,γ + Fγα,β + Fβγ,α = 0, (A5)

whereg is the determinant of the metric (A3) and the Maxwell tensor,Fαβ , is related to the
4-vector potential asFαβ = Aβ,α − Aα,β . The only non-trivial equation is forα = ϕ in (A4).
It yields the wave equation

∂2a

∂r∗2
− l(l + 1)

r2
eνa − eν−λ

∂2a

∂t∗2
= 0, (A6)

where
∂

∂r∗
= e(ν−λ)/2

∂

∂r
,

∂2

∂r∗2
= e(ν−λ)/2

∂

∂r

(
e(ν−λ)/2

∂

∂r

)
, (A7)

∂

∂t∗
= e(ν−λ)/2

∂

∂t
,

∂2

∂t∗2
= e(ν−λ)/2

∂

∂t

(
e(ν−λ)/2

∂

∂t

)
. (A8)

The Einstein equations for the electromagnetic geon are

Gµ
ν = 8π

〈
Tµ

ν
〉
, (A9)

where〈·〉 denotes a time–space average over allN active modes of the electromagnetic waves.
In the equations below, the energy–momentum tensor for a single mode of electromagnetic
radiation is given by

T(I) µ
ν ≡ 1

4π

(
FµσF

σν − 1
4FαβF

αβδνµ
)
, (A10)

with Fαβ defined above. We will only evaluate the angle average ofTµ
ν . The time average

will be dealt with in the main text (section 3). In addition to the three angle averages [1]†〈
Tt
t
〉
TA = 1

2N

∫ π

0

〈
T(I) t

t
〉
T sinθ dθ, (A11)

〈
Tr
r
〉
TA = 1

2N

∫ π

0

〈
T(I) r

r
〉
T sinθ dθ, (A12)

〈
Tθ
θ
〉
TA =

〈
Tϕ

ϕ
〉
TA = 1

2N

∫ π

0

〈
T(I) θ

θ + T(I) ϕ
ϕ
〉
T sinθ dθ, (A13)

there is an additional average, which represents the radial flow of energy,〈
Tr
t
〉
TA = 1

2N

∫ π

0

〈
T(I) r

t
〉
T sinθ dθ. (A14)

Evaluating (A11)–(A14) using (A1) and the integrals of appendix C one obtains〈
Tt
t
〉
TA = −

Nl(l + 1)

8πr2(2l + 1)

(
e−ν

〈
a2
,t

〉
T

+ e−λ
〈
a2
,r

〉
T

+
l(l + 1)

r2

〈
a2
〉
T

)
, (A15)

〈
Tr
r
〉
TA =

Nl(l + 1)

8πr2(2l + 1)

(
e−ν

〈
a2
,t

〉
T

+ e−λ
〈
a2
,r

〉
T
− l(l + 1)

r2

〈
a2
〉
T

)
, (A16)

† The symbols〈·〉TA and〈·〉T denote a time–angle average and a time average, respectively.
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〈
Tθ
θ
〉
TA =

Nl2(l + 1)2

8πr4(2l + 1)

〈
a2
〉
T, (A17)

〈
Tr
t
〉
TA = −

Nl(l + 1)

4πeνr2(2l + 1)

〈
a,ra,t

〉
T. (A18)

The components of the left-hand side of (A9) are

Gt
t = − r−2 + r−2e−λ − r−1e−λλ,r (A19)

Gr
r = − r−2 + r−2e−λ + r−1e−λν,r (A20)

Gθ
θ = Gϕ

ϕ = 1
2

(
e−λ

(
r−1ν,r − r−1λ,r + ν,rr − 1

2λ,rν,r + 1
2ν

2
,r

)
+ e−ν

(
1
2λ,tν,t − λ,tt − 1

2λ
2
,t

))
(A21)

Gr
t = −r−1e−νλ,t . (A22)

The final step in obtaining the time-dependent electromagnetic geon field equations is to make
the transformation to theρ coordinate system. In addition to the transformation

r = ρ

�
, (A23)

we introduce the two metric functionsL(ρ, t) andQ(ρ, t) through the defining equations

e−λ ≡ 1− 2L(ρ, t)

ρ
, (A24)

eλ+ν ≡ Q2(ρ, t), (A25)

eν =
(

1− 2L(ρ, t)

ρ

)
Q2(ρ, t). (A26)

The operator∂/∂r∗ has the following form in theρ coordinate system:

∂

∂r∗
= e(ν−λ)/2

∂

∂r
= �

(
1− 2L

ρ

)
Q
∂

∂ρ
. (A27)

By defining

∂

∂ρ∗
≡
(

1− 2L

ρ

)
Q
∂

∂ρ
, (A28)

the operators of (A7) simply transform as

∂

∂r∗
= � ∂

∂ρ∗
,

∂2

∂r∗2
= �2 ∂

2

∂ρ∗2
. (A29)

The operator∂2/∂t∗2 of (A8) transforms as

∂2

∂t∗2
=
(

1− 2L

ρ

)−1

Q−1 ∂

∂t

((
1− 2L

ρ

)−1

Q−1 ∂

∂t

)
. (A30)

After applying the transformation (A23) and equations (A24)–(A30), a lengthy but
straightforward computation yields the wave equation

�2 ∂
2a

∂ρ∗2
−�2l∗2ρ−2

(
1− 2L

ρ

)
Q2 a −

(
1− 2L

ρ

)2

Q2 ∂
2a

∂t∗2
= 0 (A31)
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and the background field equations

∂L

∂ρ∗
= κ2

l

2

(
Q−1

(
�2

〈(
∂a

∂ρ∗

)2
〉

T

+

〈(
∂a

∂t

)2
〉

T

)
+�2l∗2ρ−2

(
1− 2L

ρ

)
Q
〈
a2
〉
T

)
,

(A32)

∂Q

∂ρ∗
= κ2

l

ρ − 2L

(
�2

〈(
∂a

∂ρ∗

)2
〉

T

+

〈(
∂a

∂ρ∗

)2
〉

T

)
, (A33)

∂L

∂t
= κ2

l �
2Q−1

〈
∂a

∂ρ∗
∂a

∂t

〉
T

(A34)

and

∂2L

∂t2
+ 4ρ−1

(
∂L

∂t

)2

−Q−1∂L

∂t

∂Q

∂t
= 1

2

(
1− 2L

ρ

)2

Q2ρ

×(A(ρ) + B(ρ)− 2κ2l∗2�4ρ−4
〈
a2
〉
T

)
. (A35)

In the above equations we have defined

κl ≡
√
Nl∗2

2l + 1
l∗ ≡

√
l(l + 1), (A36)

A(ρ) ≡ 2�2ρ−1

(
Q−1∂Q

∂ρ

(
1− 2L

ρ

)
+ 2ρ−1

(
ρ−1L− ∂L

∂ρ

))
(A37)

and

B(ρ) ≡ �2

(
1− 2L

ρ

)(
2

(
2Q−1

(
∂2Q

∂ρ2
−Q−1

(
∂Q

∂ρ

)2
)

−2ρ−2

(
1− 2L

ρ

)−1(
ρ−1L− ∂L

∂ρ

)
+4ρ−2

(
1− 2L

ρ

)−2(
ρ−1L− ∂L

∂ρ

)2

+ 2ρ−2

(
1− 2L

ρ

)−1(
∂L

∂ρ
− ρ−1L− ρ ∂

2L

∂ρ2

))

−
(

2ρ−1

(
1− 2L

ρ

)−1(
∂L

∂ρ
− ρ−1L

))

×
(

2Q−1∂Q

∂ρ
− 2ρ−1

(
1− 2L

ρ

)−1(
∂L

∂ρ
− ρ−1L

))

+

(
2Q−1∂Q

∂ρ
− 2ρ−1

(
1− 2L

ρ

)−1(
∂L

∂ρ
− ρ−1L

))2)
. (A38)

Equations (A31)–(A34) are equations (44)–(47) of section 3.

Appendix B. Perturbation analysis of a slowly varying amplitude

To investigate the time evolution of the unperturbed solution, the equilibrium solution (51)–
(53) will be perturbed by allowing the coefficient of sin� t to become a slowly varying function
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of time as compared to the period 2π�−1 of the electromagnetic waves. In addition, it will
be assumed thatu1(ρ, t) is a separable function (i.e.u1(ρ, t) = u(ρ)T (t)). Under this
assumption, equation (85) becomes

κl � a(ρ, t) = (f0(ρ) + δu(ρ)T (t)) sin� t, (B1)

where the characteristic frequency ofu(ρ)T (t) is of orderω � �. This introduces a small
time-dependent perturbation in the metric functions

L(ρ, t) = L0(ρ) + δL1(ρ, t), (B2)

Q(ρ, t) = Q0(ρ) + δQ1(ρ, t). (B3)

It is stated without proof that foru1(ρ, t) separable, the field equations impose the relations
u(ρ) = f0(ρ) andT (t) = sin(ω t). Therefore, the analysis in this appendix is carried out for
the perturbation

κl � a(ρ, t) = (f0(ρ) + δf0(ρ) sinωt) sin� t, ω � �, δ � 1. (B4)

The perturbation expansion will be taken to the first order inδ. We have assumed that the
coefficientf (ρ, t) ≡ f0(ρ) + δf0(ρ) sinωt of sin� t in (B4) varies on a time-scale much
longer than that of sin� t . Therefore,f (ρ, t) is approximately constant over the short time
periodT = 2π�−1 of the electromagnetic waves. Therefore, evaluation of the time averages
(86)–(89) yields

κ2
l �

2
〈
a2(ρ, t)

〉
T = 1

2f
2
0 (1 + 2δ sinωt) + O

(
δ2
)
, (B5)

κ2
l �

2

〈(
∂a

∂ρ∗

)2
〉

T

= 1

2

(
df0

dρ∗

)2

(1 + 2δ sinωt) + O
(
δ2
)
, (B6)

κ2
l �

2

〈(
∂a

∂t

)2
〉

T

= 1
2�

2f 2
0 (1 + 2δ sinωt) + O

(
δ2
)
, (B7)

κ2
l �

2

〈
∂a

∂t

∂a

∂ρ∗

〉
T

= 1
2δωf0

df0

dρ∗
cosωt + O

(
δ2
)
. (B8)

Substitution of (B4)–(B8) into (44)–(47), expanding to first order inδ and setting each order
to zero yields the unperturbed equations (63)–(65) and the first-order equations (B9)–(B14).
Setting the first-order part of the wave equation (44) to zero yields

A(ρ, t) sin� t +B(ρ, t) cos� t = 0, (B9)

where

A(ρ, t) ≡ �2

(
ω2�−2f0 +

(
1− l∗2ρ−2Q2

0

(
1− 2L0

ρ

))
f0 +Q0

(
1− 2L0

ρ

)
×
(

2ρ−2Q0
df0

dρ

(
L0 − ρ dL0

dρ

)
+Q0

d2f0

dρ2

(
1− 2L0

ρ

)
+

df0

dρ

dQ0

dρ

(
1− 2L0

ρ

)))
sinω t +�2

(
Q0

(
1− 2L0

ρ

)
×
(

2ρ−2 df0

dρ

(
Q1

(
L0 − ρ dL0

dρ

)
+Q0

(
L1(ρ, t)− ρ ∂

∂ρ
L1(ρ, t)

))
+

((
1− 2L0

ρ

)
∂

∂ρ
Q1(ρ, t)− 2ρ−1L1(ρ, t)

dQ0

dρ

)
df0

dρ
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+

(
Q1(ρ, t)

(
1− 2L0

ρ

)
− 2ρ−1L1(ρ, t)Q0

)
d2f0

dρ2

)
+2ρ−3

(
l∗2Q2

0L1(ρ, t)− l∗2ρQ0Q1(ρ, t)

(
1− 2L0

ρ

))
f0

+

(
Q1(ρ, t)

(
1− 2L0

ρ

)
− 2ρ−1L1(ρ, t)Q0

)(
2ρ−2 df0

dρ
Q0

(
L0 − ρ dL0

dρ

)
+

(
1− 2L0

ρ

)(
Q0

d2f0

dρ2
+

dQ0

dρ

df0

dρ

)))
(B10)

and

B(ρ, t) ≡ �f0

(
2ρ−1

(
1− 2L

ρ

)−1
∂

∂t
L1(ρ, t)−Q−1

0

∂

∂t
Q1(ρ, t) + 2ω cosω t

)
. (B11)

The derivatives ofL1(ρ, t) andQ1(ρ, t) with respect toρ are found from the first-order
equations(

1− 2L0

ρ

)
Q0

∂

∂ρ
L1(ρ, t) = −

((
1− 2L0

ρ

)
Q1(ρ, t)− 2ρ−1L1(ρ, t)Q0

)
dL0

dρ

+1
2Q
−1
0

(
Q2

0

(
1− 2L0

ρ

)2(df0

dρ

)2

sinω t +

((
1− 2L0

ρ

)2

Q0Q1(ρ, t)

−2ρ−1Q2
0

(
1− 2L0

ρ

)
L1(ρ, t)

)(
df0

dρ

)2

+ f 2
0 sin2ω t

)
−1

2
Q−2

0 Q1(ρ, t)

(
1

2

(
1− 2L0

ρ

)2

Q2
0

(
df0

dρ

)2

+
1

2
f 2

0

)

+1
2 l
∗2ρ−2Q0f

2
0

(
1− 2L0

ρ

)
sinω t

+1
4

(
l∗2ρ−2

(
1− 2L0

ρ

)
Q1(ρ, t)− 2l∗2ρ−3L1(ρ, t)Q0

)
f 2

0 (B12)

and(
1− 2L0

ρ

)
Q0

∂

∂ρ
Q1(ρ, t) = −

((
1− 2L0

ρ

)
Q1(ρ, t)− 2ρ−1L1(ρ, t)Q0

)
dQ0

dρ

+
1

ρ − 2L0

((
1− 2L0

ρ

)2

Q2
0

(
df0

dρ

)2

sinω t

+
1

2

(
2

(
1− 2L0

ρ

)2

Q0Q1(ρ, t)

−4ρ−1

(
1− 2L0

ρ

)
L1(ρ, t)Q

2
0

)(
df0

dρ

)2

+ f 2
0 sin2ω t

)
+
L1(ρ, t)

(ρ − 2L0)
2

((
1− 2L0

ρ

)2

Q2
0

(
df0

dρ

)2

+ f 2
0

)
, (B13)

respectively. The derivative ofL1(ρ, t) with respect tot is given by the first-order equation

∂

∂t
L1(ρ, t) = 1

2
ω

(
1− 2L0

ρ

)
f0

df0

dρ
cosωt. (B14)
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The simplest of the first-order equations is (B14). It is immediately integrable to yield

L1(ρ, t) = 1

2

(
1− 2L0

ρ

)
f0

df0

dρ
sinωt + c1(ρ), (B15)

wherec1(ρ) is a function ofρ. It is possible to obtain an equation for∂Q1(ρ, t)/∂t from (B9).
This is done by substituting (B14) into the coefficient of cos� t (namelyB(ρ, t)) and setting
the expression to zero. This is justified since sin� t and cos� t are independent functions in
the approximation thatA(ρ, t) andB(ρ, t) are slowly varying functions of time. Solving for
∂Q1(ρ, t)/∂t and integrating yields

Q1(ρ, t) = Q0

(
2 +ρ−1f0

df0

dρ

)
sinωt + c2(ρ). (B16)

Up to this point the only first-order field equation which has been satisfied is (B14). To
satisfy the first-order wave equation (B9), the conditionA(ρ, t) = 0 must be imposed. By
using the first-order field equations (B12) and (B13), theρ derivatives ofL1(ρ, t)andQ1(ρ, t)

found inA(ρ, t) (equation (B10)) can be eliminated. After substitution of (B15) and (B16)
into (B10),A(ρ, t) no longer depends on the first-order functionsL1(ρ, t) andQ1(ρ, t). As
a result of these substitutions, (B10) takes the form†

A(ρ) sinωt + B(c1(ρ), c2(ρ), ρ) = 0, (B17)

whereA(ρ) andB(ρ) depend only onρ, the unperturbed functionsf0(ρ), L0(ρ),Q0(ρ) (and
their derivatives) and the two functionsc1(ρ) andc2(ρ). Note thatc1(ρ) andc2(ρ) are only
found inB(ρ). Equation (B17) will be satisfied for allt only if A(ρ) = 0 andB(ρ) = 0. Since
c1(ρ) andc2(ρ) are yet to be determined, we will focus upon the equationA(ρ) = 0.

The functionA(ρ) is comprised of the known functionsf0(ρ), L0(ρ) andQ0(ρ). It
is therefore necessary to transformA(ρ) to thex coordinate system and expand in inverse
powers ofl∗1/3 as is done for the unperturbed system [1]. The transformation is given by
equations (75)–(76). After a lengthy computation, the asymptotic expansion ofA(ρ) = 0
yields

l∗1/3
(
k−2(x)

(
10λ0(x)− 5 + k2(x)

)
+
ω2

�2

)
φ(x) + O(1) = 0. (B18)

In order for (B18) to be satisfied for large arbitraryl∗ (in the limit l∗ → ∞), each order of
l∗1/3 must be set to zero. Since settingφ(x) = 0 implies the absence of electromagnetic wave
perturbations, the bracketed term must be zero. It is known from the unperturbed system that
[1]

λ0(x) = 1
2

(
1− k2(x)

)
. (B19)

Substitution of (B19) in (B18) leads to the relation

ω2 = 4�2 (B20)

which must hold in order for the field equation (B9) to be satisfied. However, equation (B20)
is acontradictionto the original assumptionω � �. This result is identical to that found for
the perturbation analysis based upon equation (54).

† Explicit forms ofA(ρ) andB(ρ) will not be given due to their extreme length.
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Appendix C. Angle average ofT νµ

Equations (A11)–(A14) include integrating over the angleϕ and dividing by the solid angle
4π , thus all that is left is evaluating theθ integrals. Theθ dependence ofTµν comes in three
forms

sin−2 θ (2l(θ))
2 , sin−2 θ

(
2l(θ),θ

)2
and sin−2 θ 2l(θ)2l(θ),θθ (C1)

where

2l(θ) = C0
l Bl(θ) (C2)

and

Bl(θ) ≡ sinθ
d

dθ
Pl(cosθ). (C3)

The exact integrals are evaluated below:∫ π

0
sin−2 θ (Bl(θ))

2 sinθ dθ = 2l(l + 1)

2l + 1
, (C4)∫ π

0
sin−2 θ

(
Bl(θ),θ

)2
sinθ dθ = 2l2(l + 1)2

2l + 1
, (C5)∫ π

0
sin−2 θBl(θ)Bl(θ),θθ sinθ dθ = −2l3(l + 1)

2l + 1
. (C6)

The normalization constant for2l(θ) is found by requiring∫ 2π

0

∫ π

0
|2l(θ)|2 sinθ dθ dϕ = 1. (C7)

Therefore,(
C0
l

)2 = 1

2π

(∫ π

0
(Bl(θ))

2 sinθ dθ

)−1

= 1

2π

(
4l2(l + 1)2

(2l − 1)(2l + 1)(2l + 3)

)−1

. (C8)

Thus the normalization constant is

C0
l =

(
(2l − 1)(2l + 1)(2l + 3)

8πl2(l + 1)2

)1/2

. (C9)
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(Bloomington, IN: Indiana University Press) p 38
[8] Jordan D W and Smith P 1987Nonlinear Ordinary Differential Equations(Oxford: Oxford University Press)

2nd edn
[9] Ernst F J 1957Phys. Rev.1051665

[10] Perry G P 1998PhD ThesisUniversity of Victoria
[11] Eisberg R and Resnick R 1985Quantum Physics of Atoms, Molecules, Solids, Nuclei, and Particles2nd edn

(New York: Wiley) p 203



1916 G P Perry and F I Cooperstock

[12] Cooperstock F I and Rosen N 1989Int. J. Theor. Phys.28423
[13] Isaacson R A 1968Phys. Rev.1661263

Isaacson R A 1968Phys. Rev.1661272
[14] Cooperstock F I 1992Found. Phys.221011
[15] Cooperstock F I 1993Topics in Quantum Gravity and Beyonded F Mansouri and J J Scanio (Singapore: World

Scientific) p 201
[16] Cooperstock F I 1997 Relativistic Astrophysics and Cosmologyed J Buitrago, E Mediavilla and A Oscoz

(Singapore: World Scientific) p 61
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