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Electrostatic equilibrium of two spherical charged masses
in general relativity

G P Perry† and F I Cooperstock‡
Department of Physics and Astronomy, University of Victoria, PO Box 3055, Victoria, BC
V8W 3P6, Canada

Received 3 December 1996

Abstract. Approximate solutions representing the gravitational–electrostatic balance of two
arbitrary point sources in general relativity have led to contradictory arguments in the
literature with respect to the condition of balance. Up to the present time, the only known
exact solutions which can be interpreted as the nonlinear superposition of two spherically
symmetric (Reissner–Nordström) bodies without an intervening strut have been for critically
charged masses,M2

i = Q2
i . In the present paper, an exact electrostatic solution of the

Einstein–Maxwell equations representing the exterior field of two arbitrary charged Reissner–
Nordstr̈om bodies in equilibrium is studied. The invariant physical charge for each source
is found by direct integration of Maxwell’s equations. The physical mass for each source
is defined invariantly in a manner similar to the way in which the charge was found. It
is shown through numerical methods that balance without tension or strut can occur for
non-critically charged bodies. It is demonstrated that other authors have not identified the
correct physical parameters for the mass and charge of the sources. Further properties of
the solution, including the multipole structure and comparison with other parametrizations, are
examined.

PACS numbers: 0420J, 0440N

1. Introduction

In a recent paper by Bonnor [1], the equilibrium conditions for a charged test particle
in the field of a spherically symmetric charged mass (Reissner–Nordström solution) were
investigated. He found that the classical condition for equilibrium

M1M2 = Q1Q2 (1.1)

for which the separation between the particles is arbitrary, was neither necessary nor
sufficient for electrostatic balance of two spherical masses. This is in conflict with
the earlier results of Barker and O’Connell [2] and Kimura and Ohta [3] who used
different approximation methods. Barker and O’Connell claimed that in the post-Newtonian
approximation, the equation

(M1Q2−M2Q1)(Q1−Q2) = 0 (1.2)
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had to be satisfied in addition to (1.1). Kimura and Ohta claimed that in the post-post-
Newtonian approximation, the necessary and sufficient condition for balance is that each
mass must be ‘critically’ charged,

Mi = |Qi | i = 1, 2 (1.3)

and balance can occur for arbitrary separation of the sources. Up to the present time, the
problem of gravitational–electrostatic balance of two spherical bodies in general relativity
without an intervening Weyl line singularity (strut or tension) has been solvedexactly
only for critically charged masses [4–6]. A balanced solution was originally thought to
have been found [7] within the Herlt class for both sources havingMi > |Qi |, but it
was subsequently shown that the intervening line singularity could not be removed [8].
Kramer [9] presented an exact solution for the electrostatic counterpart of the double
Kerr–NUT solution with zero spin parameter. He found that condition (1.1) holds for
electrostatic balance. However, he stated that his solution cannot be interpreted as the
nonlinear superposition of two Reissner–Nordström solutions and thus the masses are not
spherically symmetric.

In the present paper, an exact electrostatic solution of the Einstein–Maxwell equations
representing the exterior field of two arbitrary charged nonlinearly superposed Reissner–
Nordstr̈om sources in equilibrium is given. It is obtained with the aid of Sibgatullin’s [10]
method for constructing the complex Ernst potentials [11]. It is mathematically equivalent
to the solutions of Mankoet al [12] and Chamorroet al [13], henceforth referred to as
papers I and II, respectively (with their spin parameters set to zero) and they are all special
cases of the general mathematical solution given by Ernst [14]. It is of primary importance
that the parameters in the solution be related to aphysical set of parameters in order for
any subsequent analysis of the solution to have any significant physical meaning. For a
physical set of parameters, one would prefer to use the individual masses and charges of
each source and the distance between the sources. The invariant charge enclosed by a
spacelike hypersurface can be found by the direct integration of Maxwell’s equations. For
spacetimes with a timelike Killing vector, a conserved quantity which can be interpreted
as the contribution to the total mass from each body can be invariantly defined in analogy
with the charge (see, for example, [9, 15, 16]). This paper follows Kramer [9] for the
definition of the individual mass of each body. In section 2, the integrals of charge and
mass are given and they are applied to the Weyl-class solution for two Reissner–Nordström
bodies in section 3. Section 4 presents the solution for a parametrization of the non-Weyl-
class double Reissner–Nordström solution based on the Weyl-class parametrization. These
are then compared to the parametrizations proposed in papers I and II. It is shown that
the parametrizations employed in papers I and II do not represent the physical masses
or charges of the individual sources even in the Weyl-class limit (except for the special
case of identical bodies in paper I). Due to the complexities of the parametrization, a
rendering of the solution in terms of the individual masses and charges as given in section 2
has not yet been accomplished. However, numerical analysis of the physical masses and
charges is possible for a given set of parameters. In section 5, balance without a strut or
tension for numerical values of the physical mass and charge is examined. It is found
that there are balance conditions for which neither body is critically charged and the
Newtonian balance condition does not hold. This is in accordance with Bonnor’s [1]
test particle analysis. The dependence of the balance condition on the separation of the
bodies is not yet known. A discussion of the results and conclusions are given in sections 6
and 7.
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2. Mass and charge

For a static axially symmetric spacetime, the massMi and chargeQi of a source inside a
closed 2-surfaceσi are given by the integrals† [9]

Mi ≡ − 1

8π

∮
σi

Kab
√−g df ∗ab (2.1)

Qi = − 1

8π

∮
σi

F ab
√−g df ∗ab (2.2)

where

Kab ≡ ξa;b +8Fab. (2.3)

The timelike Killing vector is ξa, Fab is the electromagnetic field tensor,8 is the
electrostatic potential,g is the determinant of the metric and df ∗ab is the dual to the surface
element 2-form df ab,

df ∗ab = 1
2eabcd df cd (2.4)

(here eabcd is the flat space Levi-Civita permutation symbol). The above integral
conservation laws follow from the local conservation laws

Fab;b;a = 0 Kab
;b;a = 0, (2.5)

the first, following from the conservation of charge and the second from the existence of
the timelike Killing vectorξa and the restriction to a static axially symmetric spacetime
metric. Since the Einstein–Maxwell equations also imply

Fab;b = 0 Kab
;b = 0, (2.6)

in a source-free region, any deformation of the surfaceσi in the electrovacuum region
outside the sources does not change the values of the integralsMi andQi .

3. The Weyl-class two-body solution

To investigate the structure of spacetimes with two sources, the Weyl-class double Reissner–
Nordstr̈om solution provides a suitable yet mathematically uncumbersome framework from
which to proceed. The solution is easily found through the method presented in [4]. The
metric for a static axially symmetric spacetime can be written in the canonical form

ds2 = ew dt2− ev−w
(
dρ2+ dz2

)− ρ2e−w dφ2, (3.1)

wherew andv are functions of the cylindrical coordinatesρ andz. The Weyl-class solutions
are characterized by the metric functionw which is a function of the electrostatic potential,
i.e.w = w(8) so that the gravitational and electrostatic equipotential surfaces overlap. For
asymptotically flat boundary conditions, the unique functional relationship between ew and
8 is [18]

ew = 1− 2
mT

qT
8+82, (3.2)

where 8 is the electrostatic potential andmT and qT are the total mass and charge,
respectively. The solution representing two ‘undercharged’ (Mi > |Qi |) Reissner–
Nordstr̈om bodies (or ‘black holes’) is given by

8 = a f − 1

a2f − 1
, (3.3)

† Notations and conventions used are those of [17].
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where

f =
(
R1+ R2− 2l1
R1+ R2+ 2l1

)(
R3+ R4− 2l2
R3+ R4+ 2l2

)
, (3.4)

R2
1 ≡ (z − d − 2l1)

2+ ρ2, (3.5)

R2
2 ≡ (z − d)2+ ρ2, (3.6)

R2
3 ≡ (z + d)2+ ρ2, (3.7)

R2
4 ≡ (z + d + 2l2)

2+ ρ2. (3.8)

The constant parameters 2d and 2l1, 2l2 are the coordinate distance between the horizons
and the ‘lengths’ of the horizons (Weyl ‘rods’), respectively (see figure 1). The parameter
a is defined through the equation

1+ a2

a
= 2mT

qT
. (3.9)

The metric function ew is found through equation (3.2). The metric function ev is

ev = (R1+ R2)
2− 4l21

4R1R2

(R3+ R4)
2− 4l22

4R3R4

[
((l1+ l2+ d)R1+ (l2+ d)R2− l1R4) d

((l1+ d)R1+ R2d − l1R3) (l2+ d)
]2

.

Choosing the surfaceσ1 to encompass body 1 and the surfaceσ2 to encompass body 2 of
figure 1, the mass and charge integrals of equations (2.1) and (2.2) yield

M1 = 1+ a2

1− a2
l1 Q1 = 2a

1− a2
l1

M2 = 1+ a2

1− a2
l2 Q2 = 2a

1− a2
l2.

(3.10)

The above form of the individual mass and charge for each Reissner–Nordström body is
similar to the form proposed in [4] for the mass and charge decomposition of two charged
Curzon particles. It was stated in [7] that the conjectured charge decomposition for both the
double Reissner–Nordström and Curzon cases were verified by direct calculation through

Figure 1. Schematic of two Reissner–Nordström black holes in cylindrical coordinates. The
thick lines are the Weyl ‘rods’ which show the locations of the event horizon surfaces.
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equation (2.2). It is straightforward to verify that equation (2.1) yields the conjectured
mass decomposition for the double Curzon solution. Because of the functional relationship
between the gravitational potential and the electrostatic potential, not all of the parameters
M1,M2,Q1,Q2 are independent. Thus the Weyl class is also characterized by the constraint

M1Q2 = M2Q1. (3.11)

Removal of the line singularity between the bodies yields equation (1.1) as an additional
condition on the parameters. As a result, the parameters also satisfy equation (1.3). Thus
equilibrium without a strut or tension occurs for ‘critically’ charged sources and this balance
is found to be independent of the separation distance [4].

4. Non-Weyl parametrizations

Generalizing the Weyl-class double Reissner–Nordström solution to the case in which the
gravitational and electrostatic equipotential surfaces no longer overlap has usually been
attempted through the means of generating techniques (see, for example, [6, 7, 9]). In these
techniques, new solutions are generated from old ones rather than by solving the equations
directly. Recently, considerable interest has focused upon a method [10] which constructs
the Ernst potentials [11] from initial data on the symmetry axis. The complex Ernst
potentialsE(ρ, z) and 9(ρ, z) of all stationary axisymmetric electrovacuum spacetimes
with axis data of the form

E(z, ρ = 0) = U −W
U +W , 9(z, ρ = 0) = V

U +W , (4.1)

where

U = z2+ U1z + U2 (4.2)

V = V1z + V2 (4.3)

W = W1z +W2 (4.4)

and U1, U2, V1, V2,W1,W2 are complex constants, have been found [14]. However, a
mathematical solution to the Einstein–Maxwell field equations does not imply a well
understood physical interpretation of the solution. Sibgatullin’s method of constructing
the Ernst potentials aids in obtaining the physically meaningful parametrization which is
sought for the two-body case in question.

In Sibgatullin’s method, it is required that the Ernst potentials along thez-axis be
specified. Our choice was [19, 20]

E(ρ = 0, z) ≡ e(z) = 1− 2(m1(z + z2)+m2(z + z1))

(z + z1+m1)(z + z2+m2)− q1q2
,

9(ρ = 0, z) ≡ F(z) = q1(z + z2)+ q2(z + z1)

(z + z1+m1)(z + z2+m2)− q1q2
.

(4.5)

It has the form of the Weyl-class double Reissner–Nordström axis data. If the additional
Weyl-class constraint

m1q2−m2q1 = 0 (4.6)

is placed on the functionse(z) and F(z), then Sibgatullin’s method yields the Weyl-
class double Reissner–Nordström solution (in an alternate form to [4]) and the parameters
m1, m2, q1, q2 are the physical masses and charges as defined by (2.1) and (2.2) (i.e.
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M1 = m1,Q1 = q1,M2 = m2,Q2 = q2). For the solution of two Weyl-class Reissner–
Nordstr̈om black holes (given in section 3), figure 1 shows the coordinate positions of the
centres of the ‘rods’ asd + l1 for body 1 and−d − l2 for body 2. The parametersz1, z2

identify the negative of the coordinate positions of the centres of the ‘rods’, i.e.

z1 = −d − l1, z2 = d + l2.
If condition (4.6) is not imposed,w 6= w(8), i.e. the gravitational and electrostatic
equipotential surfaces no longer overlap. In section 5 it will be shown that the parameters
m1, m2, q1, q2 then no longer carry the suggested physical meaning and the parametersz1, z2

no longer coincide with the centres of the ‘rods’ when the Weyl-class constraint (4.6) is not
imposed.

The full Ernst potentialsE(ρ, z) and 9(ρ, z) for the axis data of equation (4.5),
expressed in terms of the cylindrical coordinates(ρ, z), are found to be (the details of
the method can be found in [10, 12, 21] and in the review article [22])

E = A− B
A+ B , 9 = C

A+ B , (4.7)

where

A ≡
4∑
i<j

aij rirj , B ≡
4∑
i=1

biri, C ≡
4∑
i=1

ciri,

rn ≡
√
ρ2+ (z − αn)2, (n = 1→ 4).

The constantsαn in equation (4.7) are the roots of the equation

e(z)+ [F(z)]2 = 0 (4.8)

and can only be real or complex conjugate pairs. The remaining constantsaij , bi and ci
are defined as follows:

aij ≡ (−1)i+j+1sisj ti tj (si tj − sj ti)
∣∣∣∣ skvk slvl
tkuk tlul

∣∣∣∣ ,
(i < j ; k < l; k, l 6= i, j ; i, k = 1→ 3; j, l = 2→ 4);

bi ≡ (−1)isi ti(si − ti)

∣∣∣∣∣∣∣
s2
k t

2
k s2

l t
2
l s2

mt
2
m

skvk slvl smvm

tkuk tlul tmum

∣∣∣∣∣∣∣ ,
(k < l < m; k, l,m 6= i; i = 1→ 4; k = 1, 2; l = 2, 3; m = 3, 4);

ci ≡ (−1)i+1si ti(si − ti)(K3Gi +K4Hi),

Gi ≡
∣∣∣∣∣∣
skt

2
k sl t

2
l smt

2
m

skvk slvl smvm
tkuk tlul tmum

∣∣∣∣∣∣ , Hi ≡
∣∣∣∣∣∣
s2
k tk s2

l tl s2
mtm

skvk slvl smvm
tkuk tlul tmum

∣∣∣∣∣∣ , (4.9)

(k < l < m; k, l,m 6= i; i = 1→ 4; k = 1, 2; l = 2, 3; m = 3, 4);
si ≡ β1− αi, ti ≡ β2− αi,
ui ≡ K1si ti +K2

3 ti +K3K4si, vi ≡ K2si ti +K2
4si +K3K4ti ,

K1 ≡ m1z2+m2z1+ (m1+m2)β1

β1− β2
, K2 ≡ m1z2+m2z1+ (m1+m2)β2

β2− β1
,
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K3 ≡ q1z2+ q2z1+ (q1+ q2)β1

β1− β2
, K4 ≡ q1z2+ q2z1+ (q1+ q2)β2

β2− β1
,

β1 ≡ − 1
2

(
z1+m1+ z2+m2−

√
(z1− z2+m1−m2)2+ 4q1q2

)
,

β2 ≡ − 1
2

(
z1+m1+ z2+m2+

√
(z1− z2+m1−m2)2+ 4q1q2

)
,

where all of the subsequent quantities introduced are constants ultimately defined in terms
of mi, qi, zi, i = 1, 2, which specify the character and locations of the sources in the
Weyl-class limit only.

The expressions forE and9 are in Kinnersley’s [23] form and this permits one to write
the corresponding metric functions as

ew = AĀ− BB̄ + CC̄
(A+ B)(Ā+ B̄) , ev = AĀ− BB̄ + CC̄

K0r1r2r3r4
, (4.10)

where

K0 =
(

4∑
i<j

aij

)(
4∑
i<j

āij

)
(4.11)

and a bar denotes complex conjugation. For a static metric, the electrostatic potential8 is
equal to the Ernst potential9 and this completes the solution.

With the knowledge of the full Ernst potentials and the metric functions, the next
step would be to evaluate the true mass and charge integrals in terms of the parameters
m1, m2, q1, q2, z1, z2. It is to be stressed that outside of the Weyl class, these parameters no
longer carry the suggested physical meaning. For the metric (3.1), the integrals (2.1) and
(2.2) can be written as relations in flat 3-space (i = 1, 2):

Mi = 1

8π

∮
σi

e−wE,αnα dA (4.12)

Qi = − 1

4π

∮
σi

e−w8,αn
α dA, (4.13)

wherenα (α runs from 1 to 3) is the unit vector orthogonal to the surface and dA denotes
the invariant (flat) surface element (see also [9] and references therein).

We can extend the Weyl-class definitions of the coordinate positions of the bodies to
the non-Weyl-class solution. There are three distinct types of sources of interest. They are
characterized by the transition between a source with an event horizon to one without an
event horizon. As mentioned previously, the constantsαn, n = 1→ 4 in equation (4.7) are
either real or complex conjugate pairs. By definition, we chooseα1 > α2 > α3 > α4. A
Reissner–Nordström ‘black hole’ is characterized by real pairs ofαn. Figure 1 shows that
in the Weyl canonical coordinate systemαn indicates the end points of a ‘Weyl rod’, which
itself is the event horizon surface. A ‘superextreme’ object [12] or ‘naked singularity’
is characterized by a complex conjugate pair ofαn. Body 2 of figure 2 illustrates the
manifestation of a ‘superextreme’ body in the spacetime. An ‘extreme’ object, for example,
would be characterized by realαn for which α1 = α2. Therefore we have the following
definitions for the coordinate positions of the sources:

(i) For a Reissner–Nordström ‘black hole’, we define−Zi to be the coordinate position
of the centre of the ‘Weyl rod’. For example, the coordinate position of body 1 of figure 2
is

−Z1 = 1
2 (α1+ α2) .
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Figure 2. Schematic of a Reissner–Nordström black hole and a Reissner–Nordström
superextreme body. The dotted line is a ‘complex Weyl rod’. The intersection of the ‘rod’
with the z-axis is defined as the coordinate position of body 2.

(ii) For a ‘superextreme’ object, we define−Zi to be the coordinate position of the
real part ofαn. For example, body 2 of figure 2 is a ‘superextreme’ object. Therefore its
coordinate position is

−Z2 = Re(α3) = Re(α4).

(One could consider the imaginary part ofαn as the end points of a ‘complex Weyl rod’
with the coordinate position of this ‘complex rod’ being defined as its intersection with the
real axis (z-axis).)

(iii) For an ‘extreme object’, we define−Zi to be the coordinate position of the point
locating the zero ‘length’ Weyl ‘rod’. For example, if body 1 was an ‘extreme’ object, then
α1 = α2 and−Z1 = α1.

We also define

Re(α2) > Re(α3) (4.14)

as the condition for having two separated bodies irrespective of the type of object.
With the above integrals and the coordinate positions as defined above evaluated in

terms of m1, m2, q1, q2, z1, z2, it would then be possible, in principle, to invert these
equations and hence write the solution (4.7)–(4.9) in terms of the true physical parameters
Mi,Qi and the coordinate positionsZi, i = 1, 2. Ideally, the coordinate positions of the
sources should be replaced with the proper separation of the sources. The complexity
of the above Ernst potentials makes the analytic evaluation of the integrals (4.12), (4.13)
and the proper separation difficult. Consequently, this goal has not yet been achieved.
However, it is possible to numerically integrate equations (2.1) and (2.2) for a given set
{m1, m2, q1, q2, z1, z2}. This will prove to be useful in studying balance conditions without
a strut in section 5.

Although the numerical evaluation of the physical mass and charge can be achieved
from the parametrizations of paper I or II, it was hoped that the parametrization proposed
in this paper, based on the Weyl-class solution, would facilitate the analytic evaluation of
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Table 1. The values of the parameters in the parametrizations of papers I and II is shown given
the Weyl-class values.

Weyl class Paper I Paper II

m1 = 8 m̃1 = 14.17 m̂1 = 3.58
q1 = 8 q̃1 = 14.17 q̂1 = 3.58
m2 = 3 m̃2 = −3.17 m̂2 = 7.42
q2 = 3 q̃2 = −3.17 q̂2 = 7.42
z1 = −7 z̃1 = −2.02 ẑ1 = −4.7
z2 = 7 z̃2 = 2.02 ẑ2 = 4.7

the integrals. It is not difficult to show that the parametrizations in papers I or II do not
correctly identify the individual masses, charges of each source. We stated earlier that
our parametrization{m1, m2, q1, q2, z1, z2} only represents the physical masses and charges
and coordinate positions of each source when the Weyl-class condition (equation (3.2) or
(4.6)) is imposed (i.e.{M1 = m1, M2 = m2, Q1 = q1, Q2 = q2, Z1 = z1, Z2 = z2}).
We can best demonstrate the problems with the parametrizations of papers I and II by
comparing the representation of a properly parametrized Weyl-class solution with each of
the other parametrizations. Let the set{m1, m2, q1, q2, z1, z2} represent the physical Weyl-
class parameters under the conditionm1q2 = m2q1. Then the relationships between the
three parametrizations are found by solving the set of equations (setting the spin parameters
found in papers I and II to zero):

Weyl class Paper I Paper II

m1+m2 = m̃1+ m̃2 = m̂1+ m̂2

q1+ q2 = q̃1+ q̃2 = q̂1+ q̂2

z1+ z2 = z̃1+ z̃2 = ẑ1+ ẑ2

m1z2+m2z1 = m̃1z̃2+ m̃2z̃1 = m̂1ẑ2+ m̂2ẑ1+ 2m̂1m̂2

q1z2+ q2z1 = q̃1z̃2+ q̃2z̃1 = q̂1ẑ2+ q̂2ẑ1+ q̂1m̂2+ q̂2m̂1

z1z2+m1m2− q1q2 = z̃1z̃2+ m̃1m̃2 = ẑ1ẑ2− m̂1m̂2 .

(4.15)

The tilded and careted parameters are the parametrizations of papers I and II, respectively.
Table 1 summarizes the results of solving the system (4.15) given the values shown in
column 1. The solution represents two Weyl-class Reissner–Nordström ‘critically charged’
bodies without an intervening line singularity. It is clear that none of the parameter values
in the latter two columns match the physical Weyl-class values. In fact, one has to assign
negative values tõm2, q̃2 in order to obtain apositivephysical mass and charge for source
2. Thus, apart from one special case, neither paper I nor paper II parametrizations can be
interpreted as the invariant physical parameters. The only exception is for identical bodies
(with or without a line singularity) in the parametrization of paper I. In this very special case
of the Weyl class, the parametersm̃1 = m̃2, q̃1 = q̃2 are the physical masses and charges.
However,z̃1 and z̃2 do not identify the coordinate positions of the bodies as defined earlier.
The paper II parametrization is not physical even for identical bodies.

It is the demand for the inclusion of the Weyl-class solution in [4] which led to our
form of e(z) and F(z). It should be emphasized that our parametrization contains as a
special case, the simplest clearly individually spherical two-body balance solution of two
critically charged bodies. This can be best illustrated by examining the Simon [24, 25]
relativistic multipole moments of each parametrization. The first five Simon relativistic
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mass and charge multipole moments for our parametrization are

M0 = m1+m2,

M1 = −m1z1−m2z2,

M2 = m1z
2
1 +m2z

2
2 − (m1m2− q1q2) (m1+m2),

M3 = −m1z
3
1 −m2z

3
2 + (m1m2− q1q2) (2m1z1+ 2m2z2+ z1m2+ z2m1),

M4 = m1z
4
1 +m2z

4
2 − (m1m2− q1q2)

[
(m1+m2) (q1q2−m1m2)

+2
(
m1z

2
1 +m2z

2
2

)+ (m1+m2) (z1+ z2)
2 (4.16)

+ 1
7 (m1+m2)

(
(q1+ q2)

2− (m1+m2)
2
) ]

− 1
210 (z1− z2)

[
16(z1− z2)(m1+m2) (m1q2−m2q1)

2

+z1
(
30m1

(
m1m2+m2

2− q2
2

)− 3q1 (3m2q1+ 7q2m1)
)

−z2
(
30m2

(
m1m2+m2

1− q2
1

)− 3q2 (3m1q2+ 7q1m2)
) ]

and

Q0 = q1+ q2,

Q1 = −q1z1− q2z2,

Q2 = q1z
2
1 + q2z

2
2 − (m1m2− q1q2) (q1+ q2),

Q3 = −q1z
3
1 − q2z

3
2 + (m1m2− q1q2) (2q1z1+ 2q2z2+ z1q2+ z2q1).

Q4 = q1z
4
1 + q2z

4
2 − (m1m2− q1q2)

[
(q1+ q2) (q1q2−m1m2)

+2
(
q1z

2
1 + q2z

2
2

)+ (q1+ q2) (z1+ z2)
2

+ 1
7 (q1+ q2)

(
(q1+ q2)

2− (m1+m2)
2
) ]

− 1
210 (z1− z2)

[
16(z1− z2)(q1+ q2) (m1q2−m2q1)

2

−z1
(
30q2

(
q1q2−m1m2+ q2

1

)− 3m1 (13m1q2− 3m2q1)
)

+z2
(
30q1

(
q1q2−m1m2+ q2

1

)− 3m2 (13m2q1− 3m1q2)
) ]

(4.17)

respectively. In Newtonian physics, a system of two monopoles at positionsz1, z2 has
multipole moments

Mn = m1z
n
1 +m2z

n
2, Qn = q1z

n
1 + q2z

n
2 . (4.18)

It is interesting to observe that this is also the relativistic multipole structure for two Weyl-
class critically charged bodies, at least up toM4,Q4. There is an inherent asphericity
imposed upon each, since the two bodies are interacting in a line. For nonlinearly interacting
sources in a line, one would not expect to realize perfect sphericity of the individual sources.
(It is yet to be explained why the sphericity is maintained in the Weyl class, at least up to
M4,Q4.) Once the solution is written analytically in terms of the physically meaningful
constantsMi,Qi and the coordinate positionsZi, i = 1, 2, one will be able to examine the
general multipole structure of nonlinearly interacting spherical bodies.
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For comparison, the first four Simon relativistic mass and charge multipole moments
for the parametrization of paper I (with their spin parametersai = 0, i = 1, 2) are

M0 = m̃1+ m̃2,

M1 = −m̃1z̃1− m̃2z̃2,

M2 = m̃1z̃
2
1 + m̃2z̃

2
2 − m̃1m̃2(m̃1+ m̃2),

M3 = −m̃1z̃
3
1 − m̃2z̃

3
2 + m̃1m̃2 (2m̃1z̃1+ 2m̃2z̃2+ z̃1m̃2+ z̃2m̃1)

(4.19)

and
Q0 = q̃1+ q̃2,

Q1 = −q̃1z̃1− q̃2z̃2,

Q2 = q̃1z̃
2
1 + q̃2z̃

2
2 − m̃1m̃2(q̃1+ q̃2),

Q3 = −q̃1z̃
3
1 − q̃2z̃

3
2 + m̃1m̃2(2q̃1z̃1+ 2q̃2z̃2+ z̃1q̃2+ z̃2q̃1).

(4.20)

The first four Simon relativistic mass and charge multipole moments for the parametrization
of paper II (with their spin parametersai = 0, i = 1, 2) are

M0 = m̂1+ m̂2,

M1 = −m̂1ẑ1− m̂2ẑ2+ 2m̂1m̂2,

M2 = m̂1ẑ
2
1 + m̂2ẑ

2
2 + m̂1m̂2(m̂1+ m̂2− 2ẑ1− 2ẑ2),

M3 = −m̂1ẑ
3
1 − m̂2ẑ

3
2 + m̂1m̂2

(
2m̂1m̂2+ 2ẑ1ẑ2+ 2ẑ2

1 + 2ẑ2
2

−m̂1ẑ2− m̂2ẑ1− 2m̂1ẑ1− 2m̂2ẑ2
)

(4.21)

and
Q0 = q̂1+ q̂2,

Q1 = −q̂1ẑ1− q̂2ẑ2+ m̂1q̂2+ m̂2q̂1,

Q2 = q̂1ẑ
2
1 + q̂2ẑ

2
2 + m̂1m̂2

(
q̂1+ q̂2

)− (q̂1m̂2+ q̂2m̂1
)
(ẑ1+ ẑ2),

Q3 = −q̂1ẑ
3
1 − q̂2ẑ

3
2 − m̂1m̂2

(
2q̂1ẑ1+ 2q̂2ẑ2+ ẑ1q̂2+ ẑ2q̂1

)
+ (q̂1m̂2+ q̂2m̂1

)
(m̂1m̂2+ ẑ1ẑ2+ ẑ2

1 + ẑ2
2).

(4.22)

If the above parametrizations did represent the physical mass and charge, it is evident that
the multipole structure would not be that of Newtonian spherical bodies even for critically
charged bodies. As stated earlier, it should be noted that in the parametrization of paper I,
it can be shown that only in the case of identical bodies, the parametersm̃1 = m̃2, q̃1 = q̃2

are the physical mass and charge. However, in this case the multipoles still do not have the
form of (4.18) since the parametersz̃1 and z̃2 do not identify the positions of the bodies as
defined earlier. A simple transformation would correct the multipoles in this case.

5. The equilibrium condition

In order for the spacetime to be regular on thez-axis between the sources (removal of
the Weyl line singularity or imposition of the condition for elementary flatness [26]), it is
required that the metric function

v(z, ρ = 0) = 0 (5.1)



1340 G P Perry and F I Cooperstock

between the sources. If the origin of the coordinate system is located between the sources
(i.e. Re(α2) > 0, Re(α3) < 0), then application of equation (5.1), after some simplification,
yields the balance equation

K ≡ a12 (ā13+ ā14)+ ā12 (a13+ a14)

K0
= 0. (5.2)

Three cases were examined: (i) two Reissner–Nordström black holes, (ii) two Reissner–
Nordstr̈om superextreme bodies and (iii) one black hole and one superextreme body.

The procedure for testing for equilibrium without an intervening strut or tension will be
as follows:

(i) Assign numerical values to five of the six parameters from the unphysical set
{m1, m2, q1, q2, z1, z2}.

(ii) Solve equation (5.2) for the unknown variable.
(iii) If a real root of equation (5.2) exists, then evaluate equations (2.1) and (2.2) to

determine the physical mass and charge parameters.
The results for each of the three cases are as follows:

5.1. Two Reissner–Nordstr¨om black holes

Numerous sets of the parameters{m1, m2, q1, q2, z1, z2}, such that the constantsαn, n =
1→ 4 are real, were investigated. No roots of equation (5.2) were found. For example,
choosingm1 = 9.0, q1 = 3.0, z1 = −15.0, m2 = 8.0, q2 = 2.0, no balance for
0 6 z2 6 1010 was found. These findings are consistent with other results [6, 8, 15] that
two Reissner–Nordström black holes cannot be found in equilibrium without an intervening
strut or tension.

5.2. Two Reissner–Nordstr¨om superextreme bodies

Numerous sets of the parameters{m1, m2, q1, q2, z1, z2}, such that the constantsαn, n =
1 → 4 are complex conjugate pairs, were investigated. No roots of equation (5.2) were
found. For example, in choosingm1 = 3.0, q1 = 9.0, z1 = −15.0, m2 = 2.0, q2 = 8.0, no
balance for 06 z2 6 1010 was found. These findings suggest that two Reissner–Nordström
superextreme bodies cannot be found in equilibrium without a strut or tension.

5.3. One black hole and one superextreme body

The following three different cases were found for which equation (5.2) has a real root.
Each case has the configuration illustrated in figure 2.

Case A. For m1 = 6.0, q1 = 2.0, z1 = −5.0, m2 = −0.7, q2 = 4.0, balance at
approximatelyz2 = 2.08 was found†. The values ofαn areα1 = 10.3, α2 = 1.74, α3 =
−3.11+ i4.30, α4 = −3.11− i4.30. Using equations (4.12) and (4.13), the physical masses
and charges areM1 = 3.95, Q1 = −0.887, M2 = 1.35, Q2 = 6.89. Using the definitions
of coordinate positions described in section 4, it was found thatZ1 = −6.03 andZ2 = 3.11.
Thus balance has occurred forM1M2 > Q1Q2, Q1Q2 < 0 at a coordinate separation of

† In cases A–C, equation (5.2) has been solved to a precision of|K| < 10−50 using highly refined values ofz2.
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S ≡ Z2− Z1 = 9.13. Note that the parameterm2 is negative but both physical masses are
positive. The parametrizations of papers I and II yield, respectively,

Paper I Paper II

m̃1 = 4.96 m̂1 = 4.36

q̃1 = 2.31 q̂1 = −1.05

m̃2 = 0.34 m̂2 = 0.94

q̃2 = 3.69 q̂2 = 7.05

z̃1 = −6.60 ẑ1 = −6.00

z̃2 = 3.68 ẑ2 = 3.08

which do not agree with the integrated values of equations (2.1) and (2.2). This demonstrates
that, in general, none of the analytic parametrizations proposed, including our own, are
suitable choices for the individual masses and charges of the sources.

Case B. For m1 = 9.0, q1 = 3.0, z1 = −40.0, m2 = 2.5, q2 = 8.0, balance
was found at approximatelyz2 = 34.6. The values ofαn are α1 = 48.4, α2 =
31.61, α3 = −34.62+ i7.65, α4 = −34.62− i7.65. The physical masses and charges
are M1 = 8.87, Q1 = 2.00, M2 = 2.63, Q2 = 9.00. The coordinate positions are
−Z1 = 40.01, −Z2 = −34.6 Thus balance has occurred forM1M2 > Q1Q2, Q1Q2 > 0
at a coordinate separation ofS = 74.6.

Case C. For m1 = 900.0, q1 = 300.0, z1 = −865.0, m2 = 0.025, q2 = 0.080, balance
was found at approximatelyz2 = 21.581. The values ofαn are α1 = 1713.5, α2 =
16.474, α3 = −21.582+ i0.262 26, α4 = −21.582− i0.262 26. The physical masses
and charges areM1 = 899.71, Q1 = 298.25, M2 = 0.318 97, Q2 = 1.8254. The
coordinate positions are−Z1 = 865.00, −Z2 = −21.582 Thus balance has occurred for
Q1Q2 > M1M2, Q1Q2 > 0 at a coordinate separation ofS = 886.58.

5.4. Comparison with test particle analysis

Bonnor’s [1] examination of a test particle in the field of a Reissner–Nordström source
yielded a wide variety of balance conditions. The following cases for separation-independent
equilibrium were examined (noteM,Q characterize the Reissner–Nordström spacetime and
m, q are the test body parameters):

Case 1. For q = εm, Q = ηM, ε, η = ±1, balance occurs ifε = η.

Case 2. If m = |q|, M 6= |Q|, or m 6= |q|, M = |Q|, no equilibrium is possible.

Case 3. If mM = qQ butm 6= |q|, then no equilibrium is possible.

Since the exact solution under study contains the Weyl-class solution as a special case,
we also find Bonnor’s case 1 as a separation-independent equilibrium condition. Case 2
or 3 cannot be readily tested by our numerical procedure. In order to do so, one would
have to have the good fortune of correctly choosing the set{m1, m2, q1, q2, z1, z2} such that
the physical masses and charges satisfy the given conditions (i.e.M1 = |Q1| etc). Then
to test the dependence on separation, one would need to choose a new set of unphysical
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parameters such that the proper separation changes while the physical masses and charges
remain the same.

The following separation-dependent cases were also found in [1]:

Case 4. If |Q| > M, mM = −qQ andm2 6= q2 with qQ < 0, then an equilibrium exists
at

r = Q2

2M
.

Case 5. If |Q| > M, |q| < m, qQ < 0 or

Case 6. If |Q| > M, |q| < m, qQ > 0, qQ < mM then an equilibrium position exists at

r =
Q2

(
M
(
m2− q2

)+ q√(m2− q2
) (
Q2−M2

) )
m2M2− q2Q2

.

Case 7. If |Q| < M, |q| > m, qQ > 0, qQ > mM then an equilibrium position exists at

r =
Q2

(
M
(
m2− q2

)− q√(m2− q2
) (
Q2−M2

) )
m2M2− q2Q2

.

Thus we have found a direct correspondence between cases A–C of the exact solution
and cases 5–7 of Bonnor’s test particle analysis. The separation dependence of cases 4–7
cannot be studied in the exact solution using the present methods for the same reasons
cases 2–3 cannot be studied. Since the separation dependence cannot be tested using the
present methods, there is little value in numerically calculating the proper separation of the
sources in cases A–C.

The physical parameters in case C could approximate a test body in a strong gravitational
field. Using these values in case 7 and transforming from spherical coordinates to cylindrical
coordinates for a single Reissner–Nordström body using the transformation (withθ = 0)

z = (r −M) cosθ, ρ =
√
r2− 2Mr +Q2 sinθ. (5.3)

Bonnor’s method yields a coordinate separation ofS = 1465.5. Since the separation of
the bodies from these two methods are not consistent, it would appear that case C does not
sufficiently approximate a test body.

6. Discussion

The essential departure in the present paper from previous work is the attempt to parametrize
the solution in terms of true physical constants of the spacetime. For a static axially
symmetric solution of the Einstein–Maxwell equations, the integrals of equations (2.1) and
(2.2) provide the invariant parameters required for meaningful analysis of the properties of
the solution.

There are three cases of the exact solution which have not been examined. They are
an extreme body with, respectively, a Reissner–Nordström black hole, a superextreme body
and another extreme body for which the solution is not of the Weyl class. Knowledge of the
solution analytically in terms of the physical parameters is required to analyse these cases
adequately.
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The terms ‘undercharged’, ‘overcharged’ and ‘critically charged’ are defined in [4] as
follows (i = 1, 2):

M2
i > Q2

i ‘undercharged’ (6.1)

M2
i < Q2

i ‘overcharged’ (6.2)

M2
i = Q2

i ‘critically charged’. (6.3)

For the Weyl class, the ‘lengths’ of the Weyl rods are 2li = 2
√
M2
i −Q2

i , i = 1, 2 [4].
If body 1 is ‘critically charged’†, thenα1 = α2 (= d) since l1 = 0 (see figure 1). This
implies that the terminology ‘critically charged’ body and ‘extreme’ body may be used
interchangeably for Weyl-class solutions. If body 1 is ‘undercharged’,α1 (= d + 2l1) and
α2 (= d) are real quantities. Thus ‘undercharged body’ and ‘black hole’ are synonymous
terms in the Weyl class. Finally, if body 1 is ‘overcharged’,α1 (= d+ l1) andα2 (= d+ l̄1)
are complex conjugates. Thus the terms ‘overcharged’ and ‘superextreme’ are equivalent
descriptions in the Weyl class. Unlike the Weyl-class solutions where the ‘lengths’ of
the Weyl rods (real or complex) depend only upon the mass and charge of that source,
it is strongly suggested from the analysis of section 5 that for the general (non-Weyl-
class) solution, the ‘lengths’ of the rods also depend on the mass and charge of the
other source and the distance separating the bodies as well. It would thus be possible
to have a ‘critically’ charged body (according to equation (6.3)) for which the ‘rod’ is
either of non-zero ‘length’ or ‘complex’. This is important in terms of nomenclature for
describing the physics of the spacetime. Since the transition of a pair (e.g. (α1, α2)) from
real values to a complex conjugate pair in Sibgatullin’s [10] method defines a differentiation
of an object with a horizon to one without, it would seem that the appropriate description
would be, respectively, a black hole (horizon), ‘extreme’ body (zero ‘length’ Weyl rod)
and ‘superextreme’ body (no horizon or naked singularity) as described in paper I. The
descriptions ‘under’, ‘over’ and ‘critically’ charged body should be reserved for the relations
M2
i > Q2

i , M
2
i < Q2

i andM2
i = Q2

i , respectively, between the individual masses and
charges. This classification scheme would describe equilibrium conditions more precisely
once all are identified. The appropriateness of such a scheme would become apparent when
the analytic physical parametrization of the solution is known.

Bonnor’s [1] test particle analysis has been modified [28] in such a way that the
equilibrium conditions of a charged test particle in the field of a Kerr–Newman source
can be studied. The generalization of the mathematically exact solution to two spinning
sources (Kerr–Newman sources) is already known [12–14]. One is able to invariantly
define angular momentum for a stationary spacetime in a manner similar to (2.1) and (2.2)
because of the presence of a spacelike Killing vector (rotational symmetry) (see [15] and
references therein for definitions of mass and angular momentum of stationary vacuum
fields). It is unknown how the subsequent analysis of two identical spinning bodies in
paper I based on the invariant definitions will affect their results, if at all. However, it is
clear that the parametrization given is inadequate for the physical analysis of the general
case (non-identical bodies).

† It should be noted that having identical rootsα1 = α2 is not sufficient for identifying critically charged bodies
even in the Weyl class. The Curzon particle is such an object withα1 = α2 but it is not necessarily critically
charged (see [27, 4]).



1344 G P Perry and F I Cooperstock

7. Conclusions

The solution derived in papers I, II and this paper is a generalization of the Weyl-class
double Reissner–Nordström solution. However, the analytic parametrizations presented in
papers I, II and this paper cannot in all cases be interpreted as the true physical constants of
the spacetime. The invariant physical charge for each source is found by direct integration
of Maxwell’s equations. The physical mass is invariantly defined [9] in a manner similar
to which the charge was found. Numerical methods were used to evaluate the invariant
individual masses and charges for the axially symmetric superposition of two Reissner–
Nordstr̈om bodies. It was found that neither the Newtonian balance condition nor critically
charged bodies are necessary for electrostatic equilibrium. The dependence of the balance
condition on the separation of the bodies is not yet known due to the complexities involved
in expressing the solution analytically in terms of the true physical set of parameters.
However, all the balance conditions found are consistent with Bonnor’s test particle analysis.
This suggests that there exist equilibrium conditions which depend on the separation of
the sources. The parametrization of this paper is manifestly physical in the Weyl-class
limit.
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