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The possibility of describing null electromagnetic fields by purely metric 
concepts has recently been subject to some doltbt. Following a method devised 
by Hlsvat$, we here investigate the relations that a Riemanninn manifold 
must satisfy in order to correspond to a null electromagnet,ic field. It is shown 
t,hat in most cases the fulfilment of five geometrical relations is a necessary and 
sufficient condition for t’he existence of a null elect’romagnetic field. The latter 
is unique, except for an arbitrary constant phase factor (as in the case of non- 
null fields). However, in some exceptional cases, there is a larger degree of 
arbitrariness in the null electromagnetic field that corresponds to a given 
metric. Such fields (which always possess wave fronts) are not reducible t,o 
metric concepts. We then turn to examine how it can occur that null electro- 
magnetic fields require the fulfilment of five relations, rather than three, as 
non-null ones. In order to settle this question, we make an attempt to consider 
null fields as a limiting case of non-null ones, by superimposing an arbitrary 
infinitesimal non-null field on a finit’e null one. It is then shown that the 
Rainich vector of such a field does not have a well defined limit, when the 
perturbing non-null field tends to zero. It is thereby inferred that null electro- 
magnetic fields really have a special status wit,hin t,he frame of geomet,ro- 
dynamics. 

Geometrodynamics is the description of gravit,ational and elertromagnet,ia 
fields by purely metric concepts. 

It, \vas sho\vn long ago by Itainich (1) that it is usually possible to eliminate 
t,he Maxwell t’ensor F“” from the Max~~,ell-Einsteiu equations, SO as to describe 
thr gravitational and electromagnetic fields by means of t,he symmetric tensor 
gPy only, However, Rainich’s unified field thtory lay dormant. during more thaII 
SO years, hecause the reatrict,ion to gravit,y and electromagnetism without, ot,her 
sources seemed t’oo severe. Its recent revival is essent’ially due to Wheeler’s con- 
ccpt,ion of geons and wormholes (2) : if proper account is t,aken of the space-t,inle 
topology, then the theory is capable of producing idealized classical models of 
charged, massive particles constructed out of the fields (3). Recently, it has been 
shown that this can he generalized to t)he neutrino field (4) and to real and com- 
plex scalar fields (6). In this form, geom&odynamics provides a moderately 

* This work was partly supported by the U. S. Air Force, through the European Ofice of 
the Air Research and Development Command. 
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rich idealization of classical physics, without. appeal to phenomenological &scrip- 
tions of unanalyzed elements. 

Of course, the relevance of the t’heory t’o the actual physical world can only be 
investigated after its yuantization. Now, in t,he usual procedure of quant,izing 
field equations, the infinit,e plane monochromat,ic waves play an essent,iaI role. 
It is well known t,hat, t,his concept. already leads to some difficulties in pure 
gravitat.ional theory (6 ) . In geomet.rodynamics, the situation seems even worse, 
since it’s usual form camlot be applied at all to null fields (1, 3). 

Ku11 fields, however, have recently been the subject of much attention (7) and 
t,he purpose of t,his paper is to invesbigate whether it is possible to generalize 
geometrodynamics so as to include in it null elect,romagnetic fields. We here 
follow a method devised by Hlavab$ (8), and show that in most, cases the fulfil- 
ment of five geometrical relations is a necessary and sufficient’ condition for thr 
existence of a null electromagnet’ic field. The latter is unique, except for an 
arbitrary const’ant phase factsor (as in t,he case of non-null fields). 

There remains however one except,ional case where t)he electromagnetic field 
is not determined locally by the geomet)ry, namely, when t,he electromagnetic 
field is not only null (and consequently defines a propagation v&or A,) but. 
also possesses wave front’s in t,he sense that L, = Ad I:/&?. 

The outline of t)his paper is as follows: after a review of the original Rainich 
problem (in Section 1 ), we describe the necessary algebraic apparat,us for t,he 
study of the null case (Section 2), and complete the analysis of the null case wit,h 
a restatement, of the Maxwell-Einstein equations in geomebric form, when this is 
possible (Se&on 3). The exceptional case referred to above is discussed in Sec- 
tion 4, and the results summarized and compared with t,he non-null case in 
S&on 5. Finally, Se&ions 6 and 7 deal with “almost null” fields, and explain 
why it is not possible to deal with null fields as a limiting case of non-null ones. 

1. INTRODUCTIOS TO THE RAINICH PROBLEM 

From the mathematical point of view, the Kainich problem consists in the 
elimination of the Maxwell t,ensor F’” from the Maxwell-Einstein equations’ 

FpVv = 0, (1) 

PFAp” = 0, (2) 

R,” - f$i,‘R = -FF,xF”” + ;&,‘F,oFP”. (3 ) 

1 Greek indices run from 0 t,o 3. The signature of the metric y,. is taken as (+ - - -), 
unless otherwise stated. An index placed after an already defined symbol means covarianl 

differentiation. The pseudotensor &ra is defined by @ra = + 1 if a&6 is a* even permuta- 
tion of 0123, &* = - 1 if c&S is an odd permutation of 0123, and eUsvs = 0 if an) 
two indices are equal. Throughout this paper, we shall use natural units: c = 1 and 8xG 
= 1. 
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The invest,igation of these equations is greatly simplified by the introduction 
of t#he t,ensor 

H,, = 2-‘I”( F,, + l,;g”‘,rvaBFap), (4) 

where g is t,he determinant of the g,, . Since g ‘D is purely imaginary, one has 

F,, = 2-“‘(H,, + A,,,. (5, 

From (4) it’ follows that 
H,, = J,$g1’2tpvaaHab, (6 1 

so that H,, is a self-dual tensor. It t,herefore satisfies the following ident#ities 

HJ?‘” = 0, (7) 

H,iHX’ = ‘,4cJ,vH,pH PO , (8) 

H,xi?” = &HA”. (9) 

(These generally covariant identities can easily be proved by taking a locally 
Minkowskian coordinate syst’em, where g”” = i, and 

Hz3 = H’” = iH”’ = -iH,, , ilO) 

with t#wo similar equations obtaiucd by cyclic permutation of 12;3.) 
Wit,h help of these identities and of Eq. (a), we can now rewrite Eqs. (l-3) as 

H’“, = 0, (11) 

R,’ - b~6pyR = - Hpxfl”“. (121 

Equation (12) can he further simplified, since its contract,ion leads t#o 

R = 0, (13) 

by virtue of (7). One thus has 

R,Y = - H,,I?“. (14) 

It further follows, with the help of (8) and (9) that 

R,hR’” = H,J?&H Pu ) (15) 

= 1~f6~lrYH~~HPaHy~~XY, (16) 
whence 

R,‘RT = $&“R,“R/. (17, 

It was first’ shown by Rainich (1) , and later by &Iisner and Wheeler (3)) that 
the fulfilment of relations ( 13) and (17’) entails the exist,ence of an infmit,y of 
self-dual tensors KP” such that 

R,Y = -K,J?“. (18) 
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Any two such self-dual tensors differ only by an arbitrary phase fact,or and/w 
an inversion of the sign of i. Since l$s. (9), (II ), and (12) are itt\rariant, uttdet 
such an inversion, we can always write H”“, if it, exists, as 

HP” = e”“k’““, (19) 

where C$ is real. It t,hett follows from ( 11) that 

~““$, = iKpyy . (20) 
If the K’” maQix is not1 singular, this equat,ion can easily he solved for 4y , 

e.g., by multiplying it, by Kx,, and making use of (8). It can then he shown (1, 3) 
that, t’hr resulting equations are integrable if, and only if, the Rainich vector 

Sx = g~i12g~agC6tUPr6RvayR(iv/RIwT~,‘, (21) 

is a gradient, i.e., if 

Sk, - s,x = 0. (22, 

In this case, 4 is determined hy the metric, up t,o an arbitrary real additive 
cwistant.. 

If, however, the K”” matrix is sittgular, t,he ahove met,hod hreaks down. It, is 
seen from (8) and ( 16) that this occurs if 

R,xRi’ = 0, (2%) 

so t.hat, ISq. (21) is t.hett meaningless. Such electromagnetic fields are called 
null Jielcls. 

This apparent failure of geometrodyttamics has been for some time rather 
troublesome, and it, was even suggested (9) that nontrivial null fields should he 
ruled off by the combined ~Iaxwell-EinstJein equations. Such fields, however, do 
exist, ( 10, 11) and one has to decide whether geometrodyttamics (in some modi- 
fied form) can he applied to t.hem, or ttotj. 

Reccnt,ly, Hlavatji ( 8)2 developed a rather sophisticat’ed method enabling the 
treat,ment, of non-null and null fields on almost, t,he same footjing. He found the 
vector 4” and stressed t,hat it, must he a gradient, wit.hout going into detail ahod 
this requirement. 

Itt this paper, we derive necessary and sufficient conditions for 4” to hc n 
gradient, whic+h enable us to find c#~ explicit.ly, as well as to diswxs exeept.ional 
cases c~otmectjed with this problem. 

We here tackle the Raittich problem for null electromagnetic fields by t,wo 
different approaches. First,, we solve Ey. (20) in a st’raightforward manner. The 
result, indicates that null fields really possess a kind of privileged stat’us. In order 

2 I am greatly indebted to Prof. V. Hlavat,$ for making his resu1t.s available to me prior 
to publication. 
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to clarify t,his point, we then try to consider t’hem as a limiting case of non-null 
electromagnetic fields. Both methods lean heavily upon the exist’ence of a t’etrad 
of (nonort8hogonal) isot8ropic vectors which is inherent’ to the problem, and the 
importance of which has been emphasized by Hlavat$ (8). 

Our philosophy here will he essentially constructjive: we shall take special pains 
to establish how each of t#he quantities involved in the computations can be 
explicitly constructed from geomct~rical concept’s, 

3. THE ISTRIXSIC TETRAT) 

From ( I:$) and (23) it follows that, all the invariants of the f&” matrix vanish. 
l,et us temporarily take a locally 114inkowskian coordinate system and then 
define an imaginary time coordinate, t,hc metric tensor thereby becoming pro- 
portional to the unit matrix, and therefore invariant under complex orthogonal 
transformst8ions. It, can then he shown that any symmetric complex matrix, all 
t’he invariants of which vanish (such as R,,) can be brought’ by orthogonal corn- 
plex transformations to one of t,he following canonical forms ( 1%‘) : 

[j ‘i i $, (“i ‘a !z i.), (2-l a, h) 

However, the matrices (25 a, b) do not sat,isfy Eq. (23), so t,hat, we remain with 
(24 a, b) only. 

Let US now return t’o a real time coordinate, so t,hat R,,, is real and Roe negative 
definite. It is easily seen that (24 a) can be writ,ten as 

R,, = -L,L,, 06) 

where L, is an isotropic vector: 

L"L, = 0. (27) 
In any coordinatje system, its romponents are uniquely defined by 

L, = (-Rppjl", (as? 

and the choice of t,he sign of Lo , which we shall take as positive, by definit,ion. 
Similarly, (24 b ) can be written as 

R,, = -L,L, - K,K,, (29) 
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W~XW hT,, is anot,her isot,ropic vector, ort.hogonal to I,, . However, t,wo real iso- 
t,ropicO vectors in &Iinkowski space cxnnot i:e orthogonal, unless they are also 
parallel. This is easily seen by writing I,, and IT,, as ( C, L ) and (K, K), where J, 
and h’ are the three-dimensional lengt,hs of L and K. The orthogonality of I,, 
and h’, implies IA - L.K = 0, so that K = k’LIL. This is not, however, what 
is meant, hy the mat,ris (24 h), so that it should also he ruled off, herause of the 
rca1it.y of R,, . 

We thus remain with (24 a) only, i.e., with (26) and (27). 
We further introduce two complex conjugate isotropic vectors 111, and A?,, , 

which satisfy the relations 

Lfl’nf, = L”hi, = 0, (30) 

.lI”ilIp = LG”il;lp = 0, (31) 

u,AP = - 1. (3” 1 

These are only five equat,ions for eight wmponents, and we remain with three 
arbitrary parameters at our disposal. In fact, if E:cls. (30-32) are satisfied hy 
some M, , they will also he satisfied h3 

ill’, = ri4Mr + +I,, ( ( 3s ) 

where 4 is a real and $ a complex parameter, We shall call the transformation 
(33) a l’-t,ransformatioll, for lack of a more appropriate name. A T-transforma- 
tion involving only 4 will he called a +transformation, while one involving only 
# will he called a Jt-transformation. 

In order t,o const,ruct, A/,, in some local Minkowski frame, let) us choose any 
t,hree-dimensional vector K, not parallel to L, and let us form P = L X K and 
Q = L X P. It, is then easily seen that (80-32) arc satisfied hy 31, = (0, MI, 
where 

M = 2-I’“[( P/P) + i(Ql&)l. (34 j 

Finally, \ve can perform on this AL,, an arbitrary T-t’ransformation. 

We further define 

I%otice t,hat ZC“” is #-invariant, but; not &invariant.. 
We shall non- prove t,hat, K’” is self-dual. To show this, it is sufficient to con- 

sider t)he particular AI, given by (34)) since self-duality is a linear propert’y and 
therefore cannot, he affwtcd by a +t’ransformation. 

We take as basis the orthogonal unit vectors i = L/L, j = P/P, and k = Q/Q. 
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Then L, and ill,, take the form 

L, = (L, L, 0, O), (36) 

hf, = (0, 0, 2-y 2-l’%), (37) 

and it is seen, by simple inspect8ion, that K’” satisfies relations like (lo), i.e., is 
self-dual. 

We then notice that, by virtue of (26)) (30)) and (32)) 

K,,P = L,L’ = --a;. (38) 

This formula is T-invariant, and solves the algebraic part of the Rainich problem 

Let us now consider the vector g1’“e,~,~LuMyh?16. This vector is real, T-invariant, 
orthogonal to L, and isotropic. It must therefore be parallel to L, . In fact,, one 
easily sees, with the help of (36) and (37), that, 

g”“~,B,aLPhT%16 = -La . (39) 

E’inally, let us introduce t,he real isotropic vector N, by 

N,N” = N,h!l” = N,h?P’ = 0, (40) 

NJ’ = I. C-11) 

Since there are four equat’ions for four component’s, N, is t,hereby defined. 
It is $-invariant, but, not #-invariant. If 

h/l,, = hl, + I//L, , (42) 

then 

N’, = N, + s/M, + $h&, + &JL, , (43) 

as may be easily verified by substitut~ing into (40) and (11). 
In order to construct N, , let us choose any real v&or A, not ort,hogonal t,o 

L, and let us define 

B, zz g1:2 ~,~,aA”M~~~/il~l,~. (44) 

R, is orthogonal to Ma and .A?, and satisfies B,L” = I, hy virtue of (39). It 
follows that 

satisfies (40) and (41). 

N, = B, - LiB,B”L, (4.5) 

From (39) and (al), one obt’ains t,he import,am relation 



426 PERES 

These four vectors are therefore linearly independent, and can serve as a new 
basis. For inst’ance, one can write any vector VP as 

I’, = AL, + BMp + Cl& + DN, , (47) 

where 

A = V,,N’, B = - V,kr, c = - VJP, D = VJ*. (48) 

It, is also possible to split tensors into sums of product’s of our new basic vectors. 
In order to work out this formalism systemat’ically, let, us denote our tetrad by 

hm,, = CL,, Jl,, J&t, Nd. (49) 

Here, latin indices are enumerators. They also take t’he values 0123 and the 
usual summation rule is to be followed. Let’ us define 

0 0 01 
mn 0 0 -1 0 

9 =hml,hnvgPY= o --1 o o, 

i r 

(50) 

1 0 00 

and let 
ns 

gnmg = n , 6” (51) 

so that gnzn is numerically equal to g”“. Let 

h mC = G,,,hn,, = (N,, - Ji!,, , -ill,, L,). (52) 

It is easily seen that 

h,,h"' = A,", (53) 

whence 

h,,h"' = 6,'. (54) 

For any vector V,, one has 

Vu = hm,V, , V, = h,“Vp . (55) 

Similarly, for a tensor: 

T,, = h”,h”,T,, , T,, = h,'hn"?;v. (56) 

For instance 
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and 

-10 0 0 

R 0 0 0 0 
mn = i ! 0000’ 

0 0 0 0, 

(58) 

The latin indices are invariant under coordinate t’ransformations, but they 
transform according to a linear law under T-transformat,ions. However, com- 
ponents with only lower 0 indices and/or upper 3 indices are T-invariant~, since 
L’ is T-invariant. 

3. SOLUTION OF THE RAIKICH PROBLEM 

We now ret’urn t’o Eq. (30)) which we try to solve in the case of null fields. The 
solution, if it exists, can be writ’ten as 

4,s = AL” + RM” + L%i” + CN” , (.59) 

where .4 and C are real. It then follows from (20) and (35) that 

-BL” - cx = i(L’,llz’ + L"M", - lJ",Jf' - ~IyWy). (60) 

Multiplying t.his in turn hy L, , M, , ii!?,, , and N, , we obtain: 

L’L”M,, = 0, (6lj 
Af”Ai’I,,, = 0, (62’) 

c = i(L”” + L,“ilPw” - L”lll,llr”“), ( 63 ) 

B = -i(Al”, + N,L’“ill” - N,L”W’“~. (64) 

Equation (61) does not’ hring anyt8hing new, since hy virtue of (30) and of the 
Rianchi identities 

(L”L”)” = L”“L” + L”L”” = 0, (65) 

we can write 

L’L”Mp, = -L”Jl,L”, = L”“nr,L~ = 0. (66) 

On t.he other hand, (62) represents two real comfitions imposed cm the nletric. 

We now pass to (63). Since (I must be real and since, by virtue of (32) 

aJf”” = -R,,AZ” = -llf,A?‘, ) (67) 
is purely imaginary, then it follows t,hat 

c = -i[L”ti,W”, + pjL,“( M”,lx” - Jl”,~‘)], (68) 
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and 

L”” + +iL,“(M%” + M”i@“) = 0, (69) 

which is another real condition. Nobice Ohat (62) and (69) are Y-invariant, by 
virtue of (27) and (65). This fact may be enhanced as follows. 

We first’ introduce 

W,” = >i (L,” + L”,) - gr”LxX. 

It then follows from (:i6), (62), (65), and (69) that, 

W,, = PI& + &(L,My + LvMp) + cj(r,,#, + LyMpj 

+ “g&?&N” + L”N,), 

whence 

(70) 

(71) 

W,xW”” = ?,$W,“W,” - SL,L”, (72) 

where S is a scaZar. EquaCon (72) contains only T-invariant, quantities and ibs 
trace can be written as 

L@“(L,, + L”,) = ;;(L,“j’, (73) 

a relation first derived by Robinson and Sachs (7). 
We now ret,urn to Eq. (59). The values of R, B, and C are already known, but 

A is still arbit’rary. Let us define V,,, by 

VP” = QP” - #“r > (74) 

= A(L,” - L”,) + B(M,” - M”,) + B(Az,” - ti”J + C(N,” - N”,) 

+ L,A” - I,“& + AZ,B” - M”B, + ii&B” - %“&t + N,C” - N”C,. 

(75) 

The integrability c*ondit,ions of t.59) are 

VP” = 0. (76) 

These six equations are not, independent, since, by virtue of (74), v,, satisfies 
the four identities 

eaPY6 vpy* = 0. (77) 

These four ident,ities themselves are not, independent, since for any antisym- 
metric W,” , one has (6 @y6Wasy)6 = 0. Therefore (76) actually represents 
6 - -j + 1 = :s independent relations, and one may as well equate to zero t’hree 
independent, linear combinations of the 8,” . 

Two such relat,ions are 

L’M’T~,” = 0, (78) 
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and the complex conjugate equation, which do not contain A nor derivatives of 
A. ExpIicitIy, one has, with the heIp of (50)) (62)) and (65 1: 

BL'nf"(ap, - Ax",) + CLPM'(N,, - N,,) + L"B, + WC', = 0. (79) 

?;ow, it follows from (30), (321, (AO), (Jl), (62), and (64) t’hat 

L”M”( a,, - LG,,) = L," + iC, 180) 

and 

L'M"(N,, - N,,) = AI," - 8, (81) 

so that (79 ) simply becomes 

@LX + CM")x = 0. (82) 

In fact, this result directly follows from (20) and (3.3 ), because B = -M”&, 
and C = L'&, . 

It may easily be seen that (82), like (ti2) and (69), is T-invariant. However, 
it, seems impossible to express (82) as a function of L, only, so that a seemingly 
foreign element has to be int,roduced. (Such phenomena oft,en occur in mathe- 
matical theories. For instance, the general solution of t’he cubic equation necessi- 
t#at,es the use of complex numbers, even if all three roots are real). 

X third relation, besides (78), may be 

M”d’V,, = 0, (83) 

i.e., 

=IiWP(L~v - Lye) - Bl~f"&l"M~p + Sll/piWi@pv 
+ CM"i@(N,, - N,,) + APB, - ,l?'l?, = 0. 

(84j 

If M”@( L,, - Lye) # 0, t,his relation determines ,4, and the problem is solved: 
if (62), (69), and (82) are satisfied, then 

C#J = / (AI.+ + BM, + i?h&, + CN,) dx' (85) 

is a single-valued function (we suppose that space-time is simply connected) 
which satisfies Eq. (201. As in the case of non-null fields, 4 contains an arbitrary 
additive const,ant. 

4. THE EXCEPTIONAL CASE3 

If 

mw(L,, - L",) = 0, (86) 
3 This case was not discussed by Hlavat$ (S), who did not consider the problem of finding 

A (E by Hlavat$) at all. 
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then (84) represents a seventh condkion imposed on the metric. (The six others 
are (62) and it’s complex conjugate, (69), (82) and it,s complex conjugate, and 
(86) itself.) On the other hand, we still have to determine A. 

Now, t’he fulfilment of (82), (84), and (86) implies that, 

&, = BM,, + Btip + CN, (87) 

must be the gradient of some scalar 4, since these relations are t,hree independent 
int’egrability conditions for (7.5), with A = 0. We can t,herefore take A = 0. 
However, in this case, A is not unique, as will presemly be shown. 

If A does not vanish, t,hen it follows from (75) that 

A(L,, - L,,) + L,*4, - L,=l, = 0, (88) 

so that 

eaPY6L~Lrs = 0. (891 

.Moreover, it can be shown (13) that (89) is not only a necessary, but) also a 
sufficient condition for the integrability of (88). 

We now show t.hst, (89) necessarily follows from (86). k’irst, we not,ice t,hat. 
by virtue of (27) and (65), 

L”(L,, - L,,) = I” L”Lg ) (90) 

so that (L,, - L,) must be of t,he form 

L,, - L,, = LX( L,ill, - LyiWp) + a( LJ?v - IJJ@pj 

- L;( L,N, - LPN,,) + P( rlI,,fl?l, - M& 1. 
(91) 

Since (86) implies t,hat /3 vanishes, then (89) must hold if (86) does, and vice 
versa. 

One can then easily show (13) t,hat, L, must have the form 

L, = x up ) (92) 

where X and U are two scalars, and that the solut’ion of (88) is 

A = f(c:)/A, (93) 

where f( C:) is an arbitrary function of U. 
The hypersurfaces I’ = const. are null hypersurfaces (,wave front(s), and the 

final solution is 

Let us now choose a new syst,em of coordinat,es y’, such t.hat. y” = C:. The 
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other $‘ will be denoted as $, so that k = 1, 2, 3. In t,his new coordinate system, 

LO = x, Lk = 0. 

It’ then follows from (27) that 

go0 = 0, 

and from (73) that 

g%, = 0, 

whence, in general 

and 

L,’ = 0, 

L’X, = 0. 

LIoreover, since 

one has, in general, 

r31~j&JP = s$ = const,. 

CT,, = 0. 

The isotropic vector U, is covariantly constant. 

As an example, let us consider the met’ric ( 12 ) 

di’ = dt’ - C!X” - dy” - d2” + ‘z.f(.c, y, x + t) (dz + dt) 

We have U = x + t, and 

A = (.L + fuu)l~z. 

The intrinsic tetrad may be taken as 

L’ = (X, 0, 0, --h), 

AI” = (0, 2-1’2, 2-l’“i, 0)) 

Jj” = (0, 2-y -i)p’?i, O), 

N’ = (;f$-‘, 0, 0, fix-‘). 

(95) 

(96) 

(97) 

(98) 

(99) 

(100) 

(1011 

(103) 

(104) 

(105) 

(106) 

(107) 

One may easily verify t’hat (62), (69), (82), and (86) are sat’isfied. On the other 
hand, (84) gives 

(In A),, + (In A),, = 0. (108) 
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and the final solution is 

4 = F(x + t) + l/i 1 (X.r/X) dy - (X,/X) dx. (109) 

5. DISCUSSIOK OF THE RESULTS 

We have hitherto found two essential differences between null electromagnetic 
fields and non-null ones. If Eqs. (13) and (17) are satisfied, and if the field is nob 
null, then we need three more independent conditions (22) in order t,o ascertain 
that the Maxwell equations (11) are satisfied. 

On the ot,her hand, in t,he case of null fields, we need five independent condi- 
tions: (62) and its complex conjugat’e, (69) and (82) and its complex conjugate. 
However, the Bianchi identities (65) are not, independent, since, for any null 
vector V, , one has 

V,( V’,V” + V”V’,i = 0. (110) 

This might explain t-he need of one additional condition, but not of two addi- 
t#ional ones. 

The second, and much more important difference between null electromagnetic 
fields and non-null ones, is t,he existence of the exceptional case discussed in t,he 
previous section, and characterized by the fulfilment of the additional conditions 
(84) and (86). We have called t’his case exceptional, because the phase of HP’ 
is left arbitrary t)o a large extent, rather than being fixed (up to an additive 
constant) by the metric field. 

At first sight, such conclusions are rat.her surprising, since in t’he special theory 
of relat,ivity, it, is always possible t’o superimpose an arbitrary infinit,esimal non- 
null field on a finit)e null one, so that there is a continuous transition from non- 
null fields to null ones. Sow, all previous considerations were special relativistic, 
since the non-Euclicean character of the metric appeared nowhere in our argu- 
ment,.4 One could t,herefore t,hink of solving the Rainich problem by considering 
a sequence of non-null electromagnetic fields having a null field as its limit. The 
conditions for the existence of a null field would then he some appropriate limit 
of the usual Rainich relations. 

This program will be carried out in t’hc next t,wo sections, and the above sug- 
gestion will turn out, to be too naive. In fact we shall see t,hat the superposition 
of an infinitesimal non-null field on a finite null one determines the phase of the 
latter no matter how small the perturbing field is, and in particular that jhite 
phase differences of H” can he caused by injhitesimal variations of the metric 
field. 

4 The only role of the Ricci tensor was that of an energy-momentum tensor (with reversed 
sign). Its relation to curvature was nowhere used. Even the Binnchi identities (65) can be 
deduced from Eqs. (6), (7), (ll), and (12). 
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6. ALMOST NULL FIELDS: ALGEBRA 

As suggested by Blancheton (1.4) and Bertotti (15), we shall now consider 
null electromagnetic fields as a limiting case of non-null fields. From t’he physical 
point of view, t,his may be described as t,he superposition of a small arbit’rary 
non-null electromagnetic field, of order c say, on a finit’e null field. 

To put this in mathematical terms, let, us consider a one paramet’er family of 
metrics grv(c), and let’ us suppose that’ g,,v can be expanded as 

g,.(t) = ogpv + e 1gp + EZ ?Qp + . . . . (111) 

Similarly we expand the mired Ricci tensor 

R,Y = OR,” + e IR,,” $ E’ ,R; $ . . . . (112) 

We further suppose that 

where 

OR,,” = -L,L’, (113) 

and 

We now require that 

L, = ogJ”, (114) 

L&L’ = 0. (11.5) 

R = 0, (116) 

R,‘Rl = ,~.$,‘R,‘RBa # 0, (117) 

and 

sx, - s,x = 0, (llsj 

where &‘A is defined by (21) . 
It then follows t’hat gcy(e) describes a non-null electromagnetic field if e # 0, 

and that this field becomes a null one for t = 0. Our problems is the investigation 
of the relations imposed on ogrV by Eqs. (111-118). In this section, we shall 
expand ( 116) and ( 117) into powers of C. The discussion of ( 118) will be post- 
poned to the next section. As will be seen from the sequel, it is sufficient to con- 
sider the first and second order t’erms only. 

We shall find it convenient t’o raise and lower the indices of $,,” and 2R,,Y 
with t’he help of the ogrv tensor’, as in Eq. ( 11-k), e.g., 

IR,, = 3,X ogxv . (119) 

(Thus IR,, is 7bot the second term of an expansion R,, = L,L, + C $,” + . ). 
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In the first’ order, Eqs. (116) and (117) give 

IR,” = 0, 

and, by virtue of (113): 

( 120) 

LLx &v + IR,&L, = .1,2 og,,L”L’ lRa~, (121) 

= 0, (122) 

the last’ step being obtained by rolArarting both sides of ( 121) with 1,“. It follows 
that 

lR,,L’ = 0, (123) 

so t’hat, if &,, is expanded as in (56)) no t’erms w&h N, occur: 

J&w = AL,L, + B(L,M, + L,M,j + B(L,& + L&, 

+ CMpM, + iCf@,A, + D(MJT, + &@,). 
(124) 

Here, M, , BP , and N, are defined as in Sect’ion 2, with the help of ngpv From 
(120), it follows that’ D = 0. On t’he other hand, we can always take c’ # 0, 
since if C vanished, we would have 

R,” = -L’,L’” + O(E”), (125) 

where 

L’, = L, - E( .‘,z AL, - Bdl, - &l&J. (126) 

This would mean that t’he non-null part of the field is of order 6’) and not, of 
order t, as init,ially supposed. 

Let us now perform t’he following #-transformatjion: 

ill’, = 31, + (B,/C)L, . 

We obtain 

(127) 

lR,, = [A - (B’/C) - (B’/(?)]L,L, + CM’,M’, + &$if’,i@‘~ . ll28) 

The first term on the right-hand side can be omit’ted, since it’ can always be com- 
bined wit#h oR,, . Finally, a +transformation 

dl”, = ( C/C) 1~41wp ) (129) 

gives 

112,” = y (dl,iz~, + XlJlL) ) ( 130) 

where y = (C~j “’ is real, and primes have heen dropped. It follows that 

lR,X lRXv = -y2(Mpi@, + M,ti,). (131) 
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We are now ready t,o pass to the second order. Equations (116) and (1171 
give 

zR; = 0, 

and, by virtue of (X2), (113), and (131) 

LPI,’ ?Rhv + 2R,xL”L, + ~“(M,%, + M,i~,) = l,i gpv( L”Lp zRtio - 7’) 

Contraction of this equation with L, gives 

L”L”oRap- = -y’, 

whence 

L,Lx SRhv + &,xI~L, = -y’(g,,v + M,,Aif, + M&J, 

= -r2(L,N, + LN,), 

where use has been made of (501 and (56). It follows t’hat 

L”~Rx~ = -$N,, 

or 
L’(sRx, + y2NxNJ = 0. 

(132) 

(133) 

(1.311 

(135) 

(138) 

(137) 

(138) 

Comparison of this result with (123) leads, when account, is taken of (132 ), 
to the expansion 

2R,v = AL,L, + B(L,JI, + L,M,) + B( L,M, + L”xlJ 

+ CX,,M, + C%l,i@, - r”N,Ny . 
(139j 

We have used the same letters A, B, and (7 as before, since lR,, is now given by 
(130) and no confusion can arise. Once more, the t’erm AL,L, cm be comb&y-j 
with OR,,, and therefore can be omitted. Similarly, oue can assume t,hat c’ is 
purely imaginary, since its real part ran be rombined wit,h y in & . Home\yer, it, 
is impossible to further simplify ( 139)) sinw the t,etrad is already fixed. 

7. BLNOST NULL FIELDS: A?,-ALYSIS 

As already stated, the vector 

has the form O/O for null fields, and is therefore meaningless. Nevertheless, it, 
would be reasonable to expect that it has a well-defined limit for almost null 
fields, when t tends to 0. (In fact, we shall show that there is TLO such limit, ). 
Prom ( 131)) (1X3), and (13-k), it follows that’ t,he denominator is 
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Our perturbation procedure will t,herefore be consistent if, and only if, the fol- 
lowing two condit,ions are sat,isfied: 

(a) The first order terms in the numerator of (140) vanish. 

(b) The second order terms in the numerator of (140) that are not propor- 
tional to y’ vanish (Otherwise, there would be unwarranted limitations 
on t’he perturbing field). 

If both conditions are fulfilled, t.hen Sk has a definit,e limit Sx , which is inde- 
pendent of the perturbing field, and one can write the int,egr&ility equations 

S’xp - SrA = 0. (142) 

Before we start examining these conditions, we still have to expand RvBr. 
Let us define 

Ax - lYXpv - Jx,, . P’ - (143) 

Notice that AhrY is a tensor. It can be expanded as 

AX,” = E IA’,,, + E’ zA’,,y + . . . (144) 

Let’ us now denot,e by a stroke, e.g., L,,, or RYBir , etc., the covariant derivat,ive 
with respect to the or’,,, affinity. We then have 

RYBr = R"~jy + RWoAYWy - RvgASp, . (145) 

(The last term does not contribut’e to the final result, because of tO”‘). Notice 
that, since we raise or lower indices with the help of ugrV , these operat)ions con- 
mute with the stroke. 

We now turn to examine the various terms in the numerator of ( 140). First, 
we notice that, by virt’ue of (27) and (65) 

PS( L”Lp),,L’L, = 0, ( 14ti) 

so that the vanishing of t,he first-order t’erms implies 

,,gpata8ra[(lR”g,y + oR”8 ~A’oy)oR’v + oR’g,r X’vl = 0. ( 147) 

With the help of (113), (123), and (1:30), t*his leads to 

ca%Y,rL~(Aml~y + A~&f”) = 0. L 148) 

We now recall the discussion of Eq. (35), where we have shown that t”“Y’LpV~ 
is a self-dual t,ensor, and similarly 6 aPr6Lg#Q an ant,i-dual tensor. It follows that 

L”,,[Af,(L*M’ - L’M”) - lG,(LaAzy - LYM”)J = 0. (l-1-9) 

However, from the zero order Bianchi identities 

(LBLY),” = 0, i 150) 
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and from Ey. (30) it follows that 

L”,,LYM” = 0, (151) 

so t’hat (149) is equivalent to 

L”/,(M”W - LWAP) = 0. (152) 

This equation is #-invariant, by virtue of (l.il), but it is not $-invariant. We 
shall now show that it implies t.he st,ronger conditions 

I,“/,M”M y = 0, Lyly‘mP = 0, (15:3) 

which are also +-invariant. 
Multiply (1.52) by 

y = ~R,BAf”ill” = ,Raoil~olA?4, (154) 

(which follows from (130) and the fact, that, y is real), One obtains 

lR,aL”,,(M”MY#l”i@” - i4?i”iif~MaMp) = 0. (155) 

which is obviously +-invariant, and also $-invariant, by virtue of (128) and 
(151). Now, 1R,B is not an arbitrary t,ensor, because of (120) and ( 123). How- 
ever, if V, is an arbit,rary vector, and D an arbit.rary scalar, then 

Qoa = IRcqo + V,N,y + VBN, + D(M,~, + M,i@,) (156) 

is an arbit,rary symmet,ric tensor. Furthermore, it, follows from (31), (40), and 
(155) that 

QaoL”,,( M”M’~@“@ - i$ii”i%‘M ‘Wp) = 0. (157) 

Since Qab is arbitrary, then it, follows that L”,,(lll”MYl@*@” - @“~‘M”M’) 
must he antisymmetric in c+, which is possible only if this expression vanishes. 
Multiplying it by M,Mb , or MUas , we finally obtain (153). 

In fact, we have just, given a new derivation of Eq. (6’2). This partial success 
may give us increased ronfidencbe in the present, met,hod. 

We can now pass t.o the second order. We, first. notice that we can take, in the 
numerator of (140)) g-1’2gxa = ng-“” ,,gxa , since t,he factor 

g,,&? R”B:r + RwpA”uy)RB” (158) 

must vanish in the first, order. We thus have to compute (158) in the second 
order. In t,his expression, zR,, occurs only iu the following terms: 

- ~UPra[~R”~,,LaLv + (L”L,),, zRb”l, (159) 

where use has been made of (113). Now, by virtue of (137), one has 

oR”s/,L” = -iySN+& - pR”BL”,y, (160) 
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so that. (13) becomes 

e”B’“K~fNohrLs + ?R”&“,yLa - nRa”L”Lm, - ?Ra”L”,,L,d 

=E a”ra[(~2N~)l,La + yeN&~r + 2&“,9LJJ”j,J, (181) 

where use has again been made of ( 137). 
We now recall that ?R”g is given by (139). It is easily seen that the terms 

proportional t’o A and i? do not, contribute to ( 161). The terms proportional t#o 
C also do not cont,ribut,e, because K““, as defined by (35) , is self-dual, and t,here- 
fore 

9 -1~~~~“y6~~~“~~,L6L”,y = iv”L”,v( L”W - M”LY) = 0, (162) 

by virtue of (151) and (158). Thus, the only contribut,ion of ?R,,” t.o (158) is 

~aPrs[(y2Ngj,7L~ + y2NaLglr - S$N”NBLaLYirJ. (163j 

Moreover, it, is easily seen, with the help of (1131, that pAYyy does not cont,ri- 
bute t,o (1%) at, our order, and therefore the only remaining terms, besides 
(163), are 

Ea~YB~lgPSIORS”(IR”B,y + oR”p ~A”wy) + X‘” OR”& 
(16-r) 

f lRYBir ,Ra” + lA”ur (oR”p &au + IK”P oRa” ) 1. 

The lgra and ,A”,, terms are still unknown. In order to det)ermine them, one has 
to make use of the formulas 

R,” = -L,L” - Ahc”,h + Axxr,” - Ah,“Aiex + &A:” , (165) 

and 

AX /iv = xi7X?Yce,” + QE”/P - SP”IF) > (1%) 

which are easily verified in t.he coordinate system where oI”~” locally vanishes, 
and must therefore be true in any roordinate system, since they are generally 
covariant. 

In the first order these formulas give 

&iv = 1’2 “gx%gw” + lgt”/IA - lYP”lE), (167) 

and 
IR,” = -dpv,x + &,v , (168) 

= ?,i ogx~(lgp”,x~ + 1gXEI~” - lYN”C - li7vd. (169) 

We now have to solve (169) for lgp” and then to substitute its value in (167) 
and (164). Fortunately, such a laborious task is in fact Unilecessary, since, as 
explained in Footnote 4, the same problem also exists in special relativity theory. 



GEOMETRODYNAMICS ASD NULL FIELDS 439 

Now in special relativity, the terms involving lgra and lAyw6 disappear from 
(164). The numerator of (140) thus becomes, from (163) and (164) : 

g-1’2gXaf”PY*[(y2Ng)yLb + Y2N& - 2r2N,NoLv,La + lR,g, IRS*], (170) 

where t,he zero prefix and the stroke have been omitted, for brevit)y. We further 
define 

$ = 2 In y. (171) 

Taking (130) into accowlt, (170) becomes, after division by (141) and some 
rearrangement’ : 

,yi = f,4g-“‘2gXae@y6 (M-V&B + N,& + N&r - ~N,NBL*Js 

+ 2M&@&l"Ll~,, - Mail&, - A&M& 
(172) 

We thus see that it is not possible t.o carry out the program proposed at the 
beginning of this se&ion: condkion b cannot be fulfilled, because of the t term in 
(172). In physical terms, the limit S’X of the Itainich vector Sx essentially de- 
depends on how t’he perturbing non-null field tends to zero. Since Sk is nothing 
else but tbe gradient of (b (1, 3, 9)) t,his explains the peculiarities pointed out in 
Sect#ion 5. 

It follows that’ 111111 electromagnetic fields really imply a breakdown of geo- 
metrodynamics and thws have a privileged status within the frame of t,he general 
t.heory of relativity. 

I~ECEIVEI~: October 5, 1960 
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