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On Geometrodynamics and Null Fields®
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Department of Physics, Israel Institute of Technology, Haifa, Israel

The possibility of describing null electromagnetic fields by purely metric
concepts has recently been subject to some doubt. Following a method devised
by Hlavaty, we here investigate the relations that a Riemannian manifold
must satisfy in order to correspond to a null electromagnetie field. It is shown
that in most cases the fulfilment of five geometrical relations is a necessary and
sufficient condition for the existence of a null electromagnetic field. The latter
is unique, except for an arbitrary constant phase factor (as in the case of non-
null fields). However, in some exceptional cases, there is a larger degree of
arbitrariness in the null electromagnetic field that corresponds to a given
metric. Such fields (which always possess wave fronts) are not reducible to
metric concepts. We then turn to examine how it can oceur that null electro-
magnetic fields require the fulfilment of five relations, rather than three, as
non-null ones. In order to settle this question, we make an attempt to consider
null fields as a limiting case of non-null ones, by superimposing an arbitrary
infinitesimal non-null field on a finite null one. It is then shown that the
Rainich vector of such a field does not have a well defined limit, when the
perturbing non-null field tends to zero. It is thereby inferred that null electro-
magnetic flelds really have a special status within the frame of geometro-
dynamies.

Geometrodynamics is the deseription of gravitational and electromagnetic
fields by purely metric concepts.

It was shown long ago by Rainich (1) that it is usually possible to eliminate
the Maxwell tensor F*" from the Maxwell-Einstein equations, so as to describe
the gravitational and electromagnetic fields by means of the symmetric tensor
gw only. However, Rainich’s unified field theory lay dormant during more than
30 years, because the restriction to gravity and electromagnetism without other
sources seemed too severe. Its recent revival is essentially due to Wheeler’s con-
ception of geons and wormholes (2): if proper account is taken of the space-time
topology, then the theory is capable of producing idealized classical models of
charged, massive particles constructed out of the fields (3). Recently, it has been
shown that this can be generalized to the neutrino field (4) and to real and com-
plex scalar fields (5). In this form, geometrodynamics provides a moderately

* This work was partly supported by the U. S. Air Force, through the European Office of
the Air Research and Development Command.
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rich idealization of classical physics, without appeal to phenomenological deserip-
tions of unanalyzed elements.

Of course, the relevance of the theory to the actual physical world can only be
investigated after its quantization. Now, in the usual procedure of quantizing
field equations, the infinite plane monochromatic waves play an essential role.
It is well known that this concept already leads to some difficulties in pure
gravitational theory (#). In geometrodynamics, the situation seems even worse,
since its usual form cannot be applied at all to null fields (1, 3).

Null fields, however, have recently been the subject of much attention (7) and
the purpose of this paper is to investigate whether it is possible to generalize
geometrodynamics so as to include in it null electromagnetic fields. We here
follow a method devised by Hlavaty (8), and show that in most cases the fulfil-
ment of five geometrical relations is a necessary and sufficient condition for the
existence of a null electromagnetic field. The latter is unique, except for an
arbitrary constant phase factor (as in the case of non-null fields).

There remains however one exceptional case where the electromagnetic field
is not determined locally by the geometry, namely, when the electromagnetic
field is not only null (and consequently defines a propagation vector L,) but
also possesses wave fronts in the sense that L, = MU /az".

The outline of this paper is as follows: after a review of the original Rainich
problem (in Section 1), we describe the necessary algebraic apparatus for the
study of the null case (Section 2), and complete the analysis of the null case with
a restatement of the Maxwell-Einstein equations in geometric form, when this is
possible (Section 3). The exceptional case referred to above is discussed in Sec-
tion 4, and the results summarized and compared with the non-null case in
Section 5. Finally, Sections 6 and 7 deal with “almost null”” fields, and explain
why it is not possible to deal with null fields as a limiting case of non-null ones.

1. INTRODUCTION TO THE RAINICH PROBLEM

From the mathematical point of view, the Rainich problem consists in the
elimination of the Maxwell tensor F*” from the Maxwell-Einstein equations’

™, =0, (1)

Py = 0, (2)

RS — 143/R = —FaF” + 145, F osF™". (3)

1 GGreek indices run from 0 to 3. The signature of the metric ¢, is taken as (+———),

unless otherwise stated. An index placed after an already defined symbol means covariant
differentiation. The pseudotensor e#7? is defined by 287 = + 1if aByé is an even permuta-
tion of 0123, &7 = — 1 if aByd is an odd permutation of 0123, and S = 0if any
two indices are equal. Throughout this paper, we shall use natural units: ¢ = 1 and 8=G
= 1.
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The investigation of these equations is greatly simplified by the introduction
of the tensor

Hy = 27 Fu + 150 enasF ™), (4)
where g is the determinant of the g,, . Since ¢"* is purely imaginary, one has
Fo =2""%H, + d.). (5)

From (4) it follows that
Hu = V50" pasH™, (6)

so that H,, is a self-dual tensor. It therefore satisfies the following identities

H,H" =0, (7)
HoHY = 146, H sH", (8)
Ha1" = HaHY. (9

(These generally covariant identities can easily be proved by taking a locally
Minkowskian coordinate system, where ¢'* = 4, and

f{23 — H‘23 — 7:Hm — —iHUI, (10)

with two similar equations obtained by eyclic permutation of 123.)
With help of these identities and of Eq. (4), we can now rewrite Eqs. (1-3) as

H", =0, (1)
R, — 198,R = —H,\H". (12)
Equation (12) can be further simplified, since its contraction leads to
R =0, (13)
by virtue of (7). One thus has
R, = —H,A". (14)
It further follows, with the help of (8) and (9) that
RaRY = H,. A \H”, (15)
= Yeb HosH " H ", (16)
whence
RJRY = Vs, RJSRy". (17)

It was first shown by Rainich (1), and later by Misner and Wheeler (3), that
the fulfilment of relations (13) and (17) entails the existence of an infinity of
self-dual tensors K* such that

R’ = —K.K". (18)
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Any two such self-dual tensors differ only by an arbitrary phase factor and/or
an inversion of the sign of 7. Since Eqs. (9}, (11), and (12) are invariant under
such an inversion, we can always write H* | if it exists, as

H” = K", (19)
where ¢ is real. It then follows from (11) that
K¢, = iK",. (20)

If the K* matrix is not singular, this equation can easily be solved for ¢, ,
c¢.g., by multiplying it by K, and making use of (8). It can then be shown (1, 3)
that the resulting equations are integrable if, and only if, the Rainich vector

Sy = g P graguse™ R 5, B/ RER, (21)
is a gradient, i.e., if
S — S = 0. (22)

In this case, ¢ is determined by the metric, up to an arbitrary real additive
constant.

If, however, the K* matrix is singular, the above method breaks down. It is
seen from (8) and (16) that this occurs if

R)RY =0, (23)

so that Eq. (21) is then meaningless. Such electromagnetic fields are called
null fields.

This apparent failure of geometrodynamics has been for some time rather
troublesome, and it was even suggested (9) that nontrivial null fields should be
ruled off by the combined Maxwell-Einstein equations. Such fields, however, do
exist (70, 71) and one has to decide whether geometrodynamics (in some modi-
fied form) can be applied to them, or not.

Recently, Hlavaty (8)° developed a rather sophisticated method enabling the
treatment of non-null and null fields on almost the same footing. He found the
vector ¢, and stressed that it must be a gradient, without going into detail about
this requirement.

In this paper, we derive necessary and sufficient conditions for ¢, to be a
gradient, which enable us to find ¢, explicitly, as well as to discuss exceptional
cases connected with this problem.

We here tackle the Rainich problem for null electromagnetic fields by two
different approaches. First, we solve Eq. (20) in a straightforward manner. The
result indicates that null fields really possess a kind of privileged status. In order

2 ] am greatly indebted to Prof. V. Hlavaty for making his results available to me prior
to publication.
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to clarify this point, we then try to consider them as a limiting case of non-null
electromagnetic fields. Both methods lean heavily upon the existence of a tetrad
of (nonorthogonal) isotropie vectors which is inherent to the problem, and the
importance of which has been emphasized by Hlavaty (8).

Our philosophy here will be essentially constructive: we shall take special pains
to establish how each of the quantities involved in the computations can be
explicitly constructed from geometrical concepts.

2. THE INTRINSIC TETRAD

From (13) and (23) it follows that all the invariants of the R,” matrix vanish.
Let us temporarily take a locally Minkowskian coordinate system and then
define an imaginary time coordinate, the metric tensor thereby becoming pro-
portional to the unit matrix, and therefore invariant under complex orthogonal
transformations. It can then be shown that any symmetric complex matrix, all
the invariants of which vanish (such as R,,) can be brought by orthogonal com-
plex transformations to one of the following canonical forms (12):

U w 0 0 w w0 0
wmw —u 0 0 w —u 0 0
9
0 00 0f 0 0 v i@ | (24a,b)
0 0 0 0 0 0 w —v
0 s 0 ¢ 0 u X 0
i 0 uw 0 U U u —u e
0O « 0 0) 2 U —u u (25 a, b)
0 0 0 0 0 —2u u 0,

However, the matrices (25 a, b) do not satisfy Eq. (23), so that we remain with
(24 a, b) only.

Let us now return to a real time coordinate, so that R,, is real and Ry, negative
definite. It is easily seen that (24 a) can be written as

Ry = —L.L., (26)
where L, is an isotropic vector:
'L, = 0. (27)
In any coordinate system, its components are uniquely defined by
Ly = (—Rw)", (28)

and the choice of the sign of Ly, which we shall take as positive, by definition.
Similarly, (24b) can be written as

Rn = —L,L, — K,K,, (29)
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where K, is another isotropic vector, orthogonal to L, . However, two real iso-
tropiec vectors in Minkowski space cannot ke orthogonal, unless they arc also
parallel. This is easily seen by writing L, and K, as (L, L) and (K, K), where L
and K are the three-dimensional lengths of L and K. The orthogonality of 7,
and K, implies LK — L-K = 0, so that K = KL/L. This is not, however, what
is meant by the matrix (24 b), so that it should also be ruled off, hecause of the
reality of R,, .

We thus remain with (24 a) only, i.e., with (26) and (27).

We further introduce two complex conjugate isotropic vectors M, and M, ,
which satisfy the relations

LM, = I'M, = 0, (30)
MM, = MM, = 0, (31
MM = —1. (32)

These are only five equations for eight components, and we remain with three
arbitrary parameters at our disposal. In fact, if Eqs. (30-32) are satisfied by
some M, , they will also be satisfied by

M, = M, + yL,, (33)

where ¢ is a real and ¢ a complex parameter. We shall call the transformation
(33) a T-transformation, for lack of a more appropriate name. A T-transforma-
tion involving only ¢ will be called a ¢-transformation, while one involving only
¢ will be called a ¢-transtormation.

In order to construct M, in some local Minkowski frame, let us choose any
three-dimensional vector K, not parallel to L, and let us form P = L X K and
Q = L X P. It is then easily seen that (30-32) are satisfied by M, = (0, M),
where

M = 27 "[(P/P) + i{(Q/Q)]. (34)
Finally, we can perform on this M, an arbitrary 7-transformation.
We further define
K" = I'M" — L'M". (35)
Notice that K* is y-invariant, but not ¢-invariant.
We shall now prove that K" is self-dual. To show this, it is sufficient to con-
sider the particular 3, given by (34), since self-duality is a linear property and

therefore cannot be affected by a ¢-transformation.
We take as basis the orthogonal unit vectorsi = L/L, j = P/P,andk = Q/Q.
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Then L, and M, take the form
L, = (L, L, 0,0), (36)
M, = (0,0,27"% 27"%), (37)

and it is seen, by simple inspection, that K* satisfies relations like (10), i.e., 18
self-dual.
We then notice that, by virtue of (26), (30), and (32),

KoK" = L' = —R,. (38)
This formula is T-invariant, and solves the algebraic part of the Rainich problem

Let us now consider the vector g eqs,:L°M"M°. This vector isreal, T-invariant
orthogonal to L, and isotropic. It must therefore be parallel to L, . In fact, one
easily sees, with the help of (36) and (37), that

7 eass IPMM? = — L. (39)

Finally, let us introduce the real isotropic vector N, by
N,N* = NJM* = NM* = 0, (40)
NI = 1. (41)

Since there are four equations for four components, N, is thereby defined.
It is ¢-invariant, but not y-invariant. If

M, =M, + yL,, (42)
then
N'y = N+ §M, + ¢M, + 9JL, (43)

as may be easily verified by substituting into (40) and (41).
In order to construct N, , let us choose any real vector 4, not orthogonal to
L, and let us define

Bo = ¢ easn AMTM? ) AL, (44)

B. is orthogonal to M* and M*, and satisfies B,L® = 1, by virtue of (39). It
follows that

N, = B, — 4B,B'L, (45)

satisfies (40) and (41).
From (39) and (41), one obtains the important relation

7" P easys L MPIMN® = 1. (46)



426 PERES
These four vectors are therefore linearly independent, and can serve as a new
basis. For instance, one can write any vector V, as
V.= AL, + BM, + CM, + DN,, (47)
where
A=VN' B=-V,M (= —-VM, D=VI' (48)

It is also possible to split tensors into sums of products of our new hasic vectors.
In order to work out this formalism systematically, let us denote our tetrad by

hm# = (L,,,ﬂ'],,,M,,,NF). (49)

Here, latin indices are enumerators. They also take the values 0123 and the
usual summation rule is to be followed. Let us define

0 0 01
==l 0 7o o) (50)
1 0 0 0
and let
Gmng"" = 8., (51)
50 that ¢ is numerically equal to g™". Let
how = Guih™s = (Nu, — My, =M, , L,). (52)
Tt is easily seen that
hah™ = 82", (53)
whence
hh™ =8, (54)
For any vector V, one has
Ve=h"V,, Voo = ha' V. (55)
Similarly, for a tensor:
Tw = h"h" T s Ton = Buhi’ Ty (56)
For instance
010 0
R
00 00
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and
-1 0 0 0
0000
0 0 0 0O

The latin indices are invariant under coordinate transformations, but they
transform according to a linear law under T-transformations. However, com-
ponents with only lower 0 indices and/or upper 3 indices are T-invariant, since
L* is T-invariant.

3. SOLUTION OF THE RAINICH PROBLEM

We now return to Eq. (20), which we try to solve in the case of null fields. The
solution, if it exists, can be written as

¢, = AL, + BM, + BM, + CN,, (59)

where A and C are real. Tt then follows from (20) and (35) that
—BL* — CM* = (LM + L*M°, — L', M* — L’MY,). (60)

Multiplying this in turn by L, , M, , M, , and N, , we obtain:

L'L’M,, = 0, (61)
M“M'L,, = 0, (62)
C =il + LM — L"MM"), (63)
B = —i(M’, + NJ*M' — N.L'M,). (64)

Equation (61) does not bring anything new, since by virtue of (30) and of the
Bianchi identities

(L'L), = LU + 'L, = 0, (65)
we can write
L'UM,, = —L'ML*, = I',M,[' = (. (66)
On the other hand, (62) represents two real conditions smposed on the metric.
We now pass to (63). Since C must be real and since, by virtue of (32)
MM, = —M,M* = —M,M",, (67)
is purely imaginary, then it follows that

C = —i|L’'M,M", + V5L, (M*M’ — M'M™)], (68)
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and
Ly + YBLy(M*M” + M'M*) = 0, (69)

which is another real condition. Notice that (62) and (69) are T-invariant, by
virtue of (27) and (65). This fact may be enhanced as follows.
We first introduce
quv - }é(L/w + Lvu) - guvL)\)\- (70)
It then follows from (56), (62), (65), and (69) that
W, = PL.L, + Q(LM, + LM,) + Q(LM, + LM,) (
71)
+ W (LN, + LN,),

whence
VVM)\WM = ,]"{Z/Wl)\WuV - SLuLys (72)

where S is a scalar. Equation (72) contains only T-invariant quantities and its
trace can be written as

LW(LW + L,) = 5(:L#”)2: (73)
a relation first derived by Robinson and Sachs (7).
We now return to Eq. (59). The values of B, B, and C are already known, but
A is still arbitrary. Let us define V,, by
V“v - ¢uv - ¢v# > (74)
= A(Lpy — L) + B(M,, — M,,) + B(M,, — M,,) + C(N, — N,)
+ LA, — LA, + M,B, — M,B, + M,B, — M,B, + N,.C, — N,C..
(75)
The integrability conditions of (59) are
Vo = 0. (76)
These six equations are not independent, since, by virtue of (74), V. satisfies
the four identities
Vs = 0. (77)
These four identities themselves are not independent, since for any antisym-
metric W,,, one has ("W .s,)s = 0. Therefore (76) actually represents
6 — 4 + 1 = 3 independent relations, and one may as well equate to zero three

independent linear combinations of the V,, .
Two such relations are

'M’V,, = 0, (78)
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and the complex conjugate equation, which do not contain A nor derivatives of
A. Explicitly, one has, with the help of (50), (62), and (65):

BL'M'(M,, — M,,) + CL!)M*(N,, — N,,) + LB, + M’C, = 0.  (79)
Now, it follows from (30), (32), (40), (41), (62), and (64) that

LM (M, — M,,) = L/ +iC, (80)
and
L'M'(N,, — N,,) = M, — 1B, (81
so that (79) simply becomes
(BL* + CMM), = 0. (82)
In fact, this result directly follows from (20) and (35), because B = —M"s,

and C = L', .

It may easily be seen that (82), like (62) and (69), is T-invariant. However,
it seems impossible to express (82) as a function of L, only, so that a seemingly
foreign element has to be introduced. {Such phenomena often occur in mathe-
matical theories. For instance, the general solution of the cubic equation necessi-
tates the use of complex numbers, even if all three roots are real).

A third relation, besides (78), may be

M*M'V,, = 0, (83)
le.,
AM*M’(Ly — L,,) — BM*M'M,, + BM*M'M,,

+ CM*M'(N,, ~ N,,) + M*B, — M’B, = 0.

If M*M’(L,, — L,,) 5= 0, this relation determines 4, and the problem is solved:
if (62), (69), and (82) are satisfied, then

(84)

¢ = ] (AL, + BM, + BM, + CN,) d2* (85)

is a single-valued function (we suppose that space-time is simply connected)
which satisties Eq. (20). As in the case of non-null fields, ¢ contains an arbitrary
additive constant.
4. THE EXCEPTIONAL CASEs
It
MM’ (L — L) =0, (86)

3 This case was not discussed by Hlavaty (8), who did not consider the problem of finding
A (£ by Hlavaty) at all.
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then (84) represents a seventh condition imposed on the metric. (The six others
are (62) and its complex conjugate, (69), (82) and its complex conjugate, and
(86) itself.) On the other hand, we still have to determine A.

Now, the fulfilment of (82), (84), and (86) implies that

¢ = BM, + BM, + CN, (87)

must be the gradient of some scalar £, since these relations are three independent
integrability conditions for (75), with 4 = 0. We can therefore take 4 = 0.
However, in this case, A is not unique, as will presently be shown.

If A does not vanish, then it follows from (75) that

44(L#u - Lu,‘) + Ly,fiv - Lw{u = Oy (88)
so that
e LsL; = 0. (89)
Moreover, it can be shown (138) that (89) is not only a necessary, but also a
sufficient, condition for the integrability of (88).
We now show that (89) necessarily follows from (86). Iirst, we notice that,
by virtue of (27) and (65),
Lu(Luv - Lvu) = LVL[[M) (90)
so that (L, — L,,) must be of the form
Ly — Ly = a(L,M, — LM,) + a(L,M, — LM,)

_ - (91)
— L\NL,N, — LN,) + 8(MM, — M,M,).

Since (86) implies that 8 vanishes, then (89) must hold if (86) does, and vice
versa.
One can then easily show (13) that L, must have the form

L, = \U,, (92)
where ) and U are two scalars, and that the solution of (88) is
4 = fU)/N, (93)
where f({/) is an arbitrary function of U.
The hypersurfaces {7 = const. are null hypersurfaces (wave fronts), and the
final solution is
o =H0) + [ (BM, + Bit, + CN,) de* (94)

Let us now choose a new system of coordinates y“, such that ¥ = U. The
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other y* will be denoted as y*, so that k = 1, 2, 3. In this new coordinate system,
Lo=)\ L, =0. (95)

1t then follows from (27) that

g =0, (96)
and from (73) that

g"n =0, (97)
whence, in general

L} =0, (98)
and

L' = 0. (99)

Moreover, since
al/oy* = 5, = const. (100)

one has, in general,

Uy =0 (101)

The isotropic vector U, is covariantly constant.
As an example, let us consider the metric (/1)
ds’ = dt* — da* — dy* — dZ’ + 2f(x, y, 2 + t)(dz + dt)”.
Wehave U = 2z 4 ¢, and
N = (fer 4 fu)" (103)

The intrinsic tetrad may be taken as

LY = (\,0,0, =), (104)
MF = (0,27 27V 0), (105)
M* = (0,27 —27% ), (106)
N* = (29271,0,0, Lox ™). (107)

One may easily verify that (62), (69), (82), and (86) are satisfied. On the other
hand, (84) gives

(In Nz + (InA)y, = 0. (108)
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and the final solution is
6= Flz+0) +15 [ LN dy = W) de. (109)

5. DISCUSSION OF THE RESULTS

We have hitherto found two essential differences between null electromagnetic
fields and non-null ones. If Egs. (13) and (17) are satisfied, and if the field is not
null, then we need three more independent conditions (22) in order to ascertain
that the Maxwell equations (11) are satisfied.

On the other hand, in the case of null fields, we need five independent condi-
tions: (62) and its complex conjugate, (69) and (82) and its complex conjugate.
However, the Bianchi identities (65) are not independent, since, for any null
vector V,, one has

Vu(VEV" + V7)) = 0. (110)

This might explain the need of one additional condition, but not of two addi-
tional ones.

The second, and much more important difference between null electromagnetic
fields and non-null ones, is the existence of the exceptional case discussed in the
previous section, and characterized by the fulfilment of the additional conditions
(84) and (86). We have called this case exceptional, because the phase of H*
is left arbitrary to a large extent, rather than being fixed (up to an additive
constant) by the metric field.

At first sight, such conelusions are rather surprising, since in the special theory
of relativity, it is always possible to superimpose an arbitrary infinitesimal non-
null field on a finite null one, so that there is a continuous transition from non-
null fields to null ones. Now, all previous considerations were special relativistic,
since the non-Euclicean character of the metric appeared nowhere in our argu-
ment.* One could therefore think of solving the Rainich problem by considering
a sequence of non-null electromagnetic fields having a null field as its limit. The
conditions for the existence of a null field would then be some appropriate limit
of the usual Rainich relations.

This program will be carried out in the next two sections, and the above sug-
gestion will turn out to be too naive. In fact we shall see that the superposition
of an infinitesimal non-null field on a finite null one determines the phase of the
latter no matter how small the perturbing field is, and in particular that fintte
phase differences of H* can he caused by ¢nfinitessimal variations of the metric
field. -

¢ The only role of the Ricci tensor was that of an energy-momentum tensor (with reversed
sign). Tts relation to curvature was nowhere used. Even the Bianchi identities (65) can be
deduced from Egs. (6), (7), (11), and (12).
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6. ALMOST NULL FIELDS: ALGEBRA

As suggested by Blancheton (74) and Bertotti (15), we shall now consider
null electromagnetic fields as a limiting case of non-null fields. From the physical
point of view, this may be described as the superposition of a small arbitrary
non-null electromagnetic field, of order e say, on a finite null field.

To put this in mathematical terms, let us consider a one parameter family of
metrics g,.(¢), and let us suppose that g,, can be expanded as

Gur€) = o + €10 + € o + oo . (11
Similarly we expand the mized Ricei tensor
Ruv = ()Ruv + € lRuv + 62 ER,: + et (112)

We further suppose that

()R“V - —L#Lv, (113)
where

Lu = Uguvl‘y; (114)

and
L0 = 0. (115)

We now require that

R =19, (116)
R RY = 148,/ R.Rs" # 0, (117)

and
SM - ‘Su)\ = 07 (118)

where Sy 1s defined by (21).

Tt then follows that g,.(€) describes a non-null electromagnetic field if ¢ = 0,
and that this field becomes a null one for € = 0. Our problems is the investigation
of the relations imposed on oy, by Eqs. (111-118). In this section, we shall
expand (116) and (117) into powers of e. The discussion of (118) will be post-
poned to the next section. As will be seen from the sequel, it is sufficient to con-
sider the first and second order terms only.

We shall find it convenient to raise and lower the indices of ;R,” and R,
with the help of the og,, tensor, as in Eq. (114), e.g.,

lRyv = 1Ry.)\ Og)\v . (1]9)

(Thus 1R,, is not the second term of an expansion R,, = L,L, + e R, + --+).
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In the first order, Eqs. (116) and (117) give

R =0, (120)

and, by virtue of (113):
LY Ry + {RAL'L, = 15 guL°L” \R.s, (121)
=0, (122)

the last step being obtained by contracting both sides of (121) with 7*. It follows
that
WR,L" = 0, (123)
so that, if |R,, is expanded as in (56), no terms with N, occur:
Ry = ALL, + B(LM, + LM,) + B(L,M, + L.M,) ‘
+ CMM, + CMM, + D(M,M, + M,M,). (1)

Here, M, , M, , and N, are defined as in Section 2, with the help of og, . From
(120), it follows that D = 0. On the other hand, we can always take C' 3 0,
since if C' vanished, we would have

R = —L.L" + 0(&), (125)
where

L',=1L, — e(ly AL, — BM, — BI,). (126)

This would mean that the non-null part of the field is of order ¢, and not of

order €, as initially supposed.
Let us now perform the following y-transformation:

M,=M,+ (B/C)L, . (127)
We obtain
R, =4 — (B/C) — (B/O)L,L, + CM',M', + CH',M', . (128)
The first term on the right-hand side can be omitted, since it can always be com-
bined with (R,, . Finally, a ¢-transformation
M7, = (C/0)"M',, (129)
gives
Ry = y(MM, + M,M,), (130)
where vy = (CC)"* is real, and primes have been dropped. It follows that
RS Ry = ~Y (MM, + M,M,). (131)
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We are now ready to pass to the second order. Equations (116) and (117)
give
RS =0, (132)
and, by virtue of (32), (113), and (131)
L.} sRy + 2RaLML, + ¥/ (MM, + M,M,) = 15 g,(L°Lf 3Ras — v5).  (133)

Contraction of this equation with L, gives

LR = —7, (134)
whence
L.L* Ry + 2RaL'L, = —¥'(g. + MM, + M,M,), (135)
= —'(L,N, + LN,), (136)
where use has been made of (50) and (56). It follows that
L*:Ry, = —+'N,, (137)
or
L*Rw + ¥'NWN,) = 0. (138)

Comparison of this result with (123) leads, when account is taken of (132),

to the expansion
Ry = ALL, + B(L,M, + LM,) + B(LM, + L,M,) (3
o , 139)
+ CMM, + CM,M, — yv'N,N, .

We have used the same letters A, B, and C as before, since 1R,, is now given by
(130) and no confusion can arise. Once more, the term AL,L, can be combined
with (R, and therefore can be omitted. Similarly, one can assume that (' is
purely imaginary, since its real part can be combined with v in 1R, . However, it
is impossible to further simplify (139), since the tetrad is already fixed.

7. ALMOST NULL FIELDS: ANALYSIS
As already stated, the vector
Sy = g graguse” " R's, R/ RER., (140)

has the form 0/0 for null fields, and is therefore meaningless. Nevertheless, it
would be reasonable to expect that it has a well-defined limit for almost null
fields, when ¢ tends to 0. (In faet, we shall show that there is no such limit).
From (1317, (133), and (134), it follows that the denominator is

EGR RS — 2017 3R,,) = 4y’ (141)
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Our perturbation procedure will therefore be consistent if, and only if, the fol-
lowing two conditions are satisfied:

(@) The first order terms in the numerator of (140) vanish.

(b) The second order terms in the numerator of (140) that are not propor-
tional to v~ vanish (Otherwise, there would be unwarranted limitations
on the perturbing field).

If both conditions are fulfilled, then S, has a definite limit S’y , which is inde-
pendent of the perturbing field, and one can write the integrability equations

S — S0 =0 (142)
Before we start examining these conditions, we still have to expand R’s,.
Let us define
A)\pv = I‘)\pu - UP)\,,W . (‘43)
Notice that A%, is a tensor. It can be expanded as
A)\yv = EIA)\‘AV + 62 QA)‘;W + . (144)

Let us now denote by a stroke, e.g., L,,, or R'g,, , etc., the covariant derivative
with respect to the (I, affinity. We then have

Ry = Ry 4+ RNy — R':A%, . (145)

(The last term does not contribute to the final result, because of ¢***). Notice
that since we raise or lower indices with the help of .. , these operations con-
mute with the stroke.

We now turn to examine the various terms in the numerator of (140). First,
we notice that, by virtue of (27) and (65)

(L' Lg) L'L, = 0, (146)
so that the vanishing of the first-order terms implies
ouse T (R sy + oR s 1870y )oRY, + oRs/y 1R = 0. (147)
With the help of (113), (123), and (130), this leads to
1L Ls( MM, + MM,) = 0. (148)

We now recall the discussion of Eq. (35), where we have shown that LM,
is a self-dual tensor, and similarly ¢**"LsM; an anti-dual tensor. It follows that

LW M (LMY — L'M®) — M,(L°M” — L"M%)] = 0. (149)
However, from the zero order Bianchi identities

(L°L)p = 0, (150)
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and from Eq. (30) it follows that
L'WL'M, =0, (151)
so that (149) is equivalent to
Lo (M'M? — M’M™) = 0. (152)

This equation is Y-invariant, by virtue of (151), but it is not ¢-invariant. We
shall now show that it implies the stronger conditions

LMM" =0, L, MM =0, (153)

which are also ¢-invanant.
Multiply (152) by

v = RasM°MP = \R MNP (154)
(which follows from (130) and the fact that y is real). One obtains
ReasLuyy (MM MM° — MM M°MP) = 0. (155)

which is obviously ¢-invariant, and also y-invariant, by virtue of (123) and
(151). Now, 1R,z is not an arbitrary tensor, because of (120) and (123). How-
ever, if V,is an arbitrary vector, and D an arbitrary scalar, then

Qos = 1Rag + VuNs + VsNo + D(M Mg + MsM.,) (156)

is an arbitrary symmetric tensor. Furthermore, it follows from (31), (40), and
(155) that

QusLy, (MMM MP — M'M"M°M*) = 0. (157)

Since Q,g is arbitrary, then it follows that L, (MM M°M* — M'M"M*M*)
must be antisymmetric in o8, which is possible only if this expression vanishes.
Multiplying it by M .My, or M Mg, we finally obtain (153).

In fact, we have just given a new derivation of Eq. (62). This partial success
may give us increased confidence in the present method.

We can now pass to the second order. We first notice that we can take, in the
numerator of (140), ¢ n. = o0 ira , since the factor

e (R’ + R, RY, (158)

must vanish in the first order. We thus have to compute (158) in the second
order. In this expression, 2R, occurs only in the following terms:

— R LoL, + (L'Lg) 1y 2Ra), (159)
where use has been made of (113). Now, by virtue of (137), one has

“Ryﬁlev = _('Y?NB)/Y - ‘IRyBLr/n (16())
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so that (159) becomes
fdﬁﬂ[(')’givﬂ)/vllﬁ + ?RVﬁLV/vLﬁ - 2R6vLVLB/7 - L’RﬁvLV/vLB]
= "(¥*Ng) ;Ls + ¥'NisLgy + 2:.RsL:L ), (161)

where use has again been made of (137).

We now recall that oR,s is given by (139). [t is easily seen that the terms
proportional to A and B do not contribute to (161). The terms proportional to
C also do not contribute, because K, as defined by (35), is self-dual, and there-
fore

g e P M ML L, = ML (L°M" — ML") =0, (162)
by virtue of (151) and (153). Thus, the only contribution of R, to (158) is
P ((¥'Ng) iyLs + ¥’ NiLgjy — 2¢'N.NL; L) (163)

Moreover, it is easily seen, with the help of (113), that ,A”., does not contri-
bute to (158) at our order, and therefore the only remaining terms, besides
(163), are

T gulo R (R 5y 4 R 180) 4 1R o s
+ 1R sy 1Re + 187 (0B 1Rsy + 1R s 0Rs0) }.

The 19,5 and ;A"., terms are still unknown. In order to determine them, one has
to make use of the formulas

(164)

R,w - '—'LuLv - A}‘MV/)\ + A)\)\ulv - A)\uVAEE)\ + A)\E/.LAE)\Vy (165)
and
A = 150" (e + Gorm — Guost), (166)

which are easily verified in the coordinate system where oI, locally vanishes,
and must therefore be true in any coordinate system, since they are generally
covariant.

In the first order these formulas give

A = Lo o (o + o — Wit (167)

and
lRuv = —IA)\[.W/)\ -+ IA)‘)\;I/V7 (168)
= 15 o™ (s T 1w — Warnt — Woue) - (169)

We now have to solve (169) for ig,, and then to substitute its value in (167)
and (164). Fortunately, such a laborious task is in fact unnecessary, since, as
explained in Footnote 4, the same problem also exists in special relativity theory.
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Now in special relativity, the terms involving g, and 1A’,; disappear from
(164). The numerator of (140) thus becomes, from (163) and (164):

0 P nat (V' N)yLs + v'NiLgy — 29N NSL Y Ls + 1Rusy RY), (170

where the zero prefix and the stroke have been omitted, for brevity. We further
define

§=2In~. (171)

Taking (130) into account, (170) becomes, after division by (141) and some
rearrangement:

8 = Yug " gnae” " (£,NsLs + Ng,Ls -+ NsLg, — 2N, NgL',Ls

o _ - (172)
+ 2MsMM'M,, — M:Mg, — M:Mg,).

We thus see that it is not possible to carry out the program proposed at the
beginning of this section: condition b cannot be fulfilled, because of the £ term in
(172). In physical terms, the limit S’, of the Rainich vector Sy essentially de-
depends on how the perturbing non-null field tends to zero. Since Sy is nothing
else but the gradient of ¢ (1, 3, 9), this explains the peculiarities pointed out in

Section 5.

It follows that null electromagnetic fields really imply a breakdown of geo-
metrodynamics and thus have a privileged status within the frame of the general
theory of relativity.

Rrceiven: October 5, 1960
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