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The Method of Images in Geometrostatics™
CuarRLEs W. MisNERt

Palmer Physical Laboratory, Princeton University, Princeton, New Jersey

Since there exist no nonflat singularity free static solutions of the empty-
space Einstein equations we give the name geometrostatics to the study of the
time-symmetric (instantaneously static) initial value problem. Using the
method of spherical inversion images from electrostatics, we construct the
initial values for a time-symmetric solution of the empty space Einstein equa-
tions having the topology of an arbitrary number of Einstein-Rosen ‘‘bridges.”’
The initial data are analytic and asymptotically flat with positive apparent
mass.

I. INTRODUCTION

Physicists have many useful general ideas about the variety of solutions which
exist for the Maxwell equations; when applied to a problem this hard won
familiarity is usually called physical intuition. A considerable part of it is based
on the study of simple situations such as electrostatics or waves in empty space.
To obtain a familiarity with the gravitational field as described by the Einstein
equations, it is also useful to define and study simple cases. The present paper
is devoted to an example with analogies to electrostatics.

[Although it will not be considered in this paper, the gravitational analogue
of free electromagnetic waves is not being neglected at the present time. The
most important recent studies of gravitational waves are:

1. The Bondi asymptotic solution (7) with its generalizations by Sachs (2)
and by Newman et al. (3) which describe outgoing gravitational waves in terms
of the asymptotic properties of the Riemann tensor along a null ray.

2. The Brill initial conditions (4) which show a wave which will be an exact
solution of the empty space Einstein equations, free from singularities through-
out all space for at least a finite time, and which if chosen sufficiently weak
initially would be expected to spread out, getting weaker as predicted by lin-
earized theory, and to remain singularity-free for all time.

3. The Arnowitt, Deser, Misner wave zone analysis (§) which shows that
coordinate invariant wave amplitudes may be defined for the asymptotic 1/»
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(radiation) terms in a metric in such a way as to give a complete description of
the escaping radiation.]

The obvious analogue of electrostatics for the gravitational field would be
the theory of static solutions of the Einstein equations. This analogue, however,
is of very limited scope (6). In electrostatics, we may imagine distributions of
charge which are prevented from moving by forces irrelevant to electromagnetie
theory, i.c., by uncharged mechanisms. In gravitation theory, any mechanism
we Imagine to prevent a mass distribution from moving would itself have mass
(or at least stresses) and would also produce a gravitational field. In order to
define a highly simplified, yet nontrivial, class of solutions for special studyv |
define geometrostatics as the study of nstantaneously statie solutions of the
Eistein equations. This imposes special restrictions which are to hold only on
a single spacelike surface ¢ = 0, but not necessarily for all time.

Even without special restrictions, the metric on a hypersurface { = 0 is not
entirely arbitrary, just as in electromaguetism one cannot have arbitrary vector
fields E and B, but only fields subject to the initial value equations V-E = 0 =
v -B. The analogous Einstein equations are R, — 158,'R = 0, which do not
contain any second time derivatives of the metric. These equations are usually
written in a form independent of the choice of coordinates outside the initial
spacelike hypersurface (7):

R+ K — K K" =0 (1.1
(K — 8’K),, = 0. (1.2)

Here all notations are three dimensional; °R is the scalar curvature of the spacial
metric ¢,; , and K;; is the second fundamental form (27) whose eigenvalues are
the three principal curvatures of the initial surface as meagsured out into the
4-gpace in which it is imbedded. FFor our purposes it is sufficient to know that by
an appropriate choice of coordinates outside the initial surface (g, = —8,") one
has K;; = —13d¢,;/dt. Thus we define an instantaneously static solution as one
possessing a4 hypersurface { = 0 on which K,;; = (. This characterization is
geometrical (coordinate independent), hut by interpreting K;; as the normal
derivative of the metric as above, we see that it implies the existence of a co

ordinate system in which the mapping ¢ — —{, &' — 2 is an isometry. Thux
geomelrostatics 1s Just another name for the study of the time-symmetric initial
value problem (8-70). In this case the initial value equations (1) and (2) reduce
to the single equation

‘R = 0. (1.3

As in the case of more general initial data, it is known (/1) that to any 3-metric
satisfying Iiq. (33), there corresponds a solution of the full Einstein equations.
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The analogue of Eq. (3) in electromagnetism is V-E = 0, with the under-
standing that the other initial value equation, v-B = 0, is satisfied through the
choice B = 0. This does not coincide with the theory of electrostatics, which is
a specialization to solutions of V-E = 0 of the form E = —V¢. An analogy to
this condition can also be formulated in general relativity, namely, the spe-
cialization of ¢,; to the form (8)

il = x'(da® + dy + d°). (1.4)

This condition can be chosen on the basis of a canonical formulation of general
relativity (12). For a particular (arbitrary) way of defining canonical coordinates
and moments for the gravitational field, it corresponds to the vanishing of all
the canonical variables (“wave modes”). It is in this sense analogous to E =
—V¢ which corresponds to the vanishing of the transverse components of E
which are canonical coordinates in electromagnetic theory. This analogy is not
compelling since, in the gravitational case, statie solutions will not result from
these assumptions on the initial conditions, and a different choice of canonical
variables might lead to inequivalent results.

The initial value metric I shall construct in this paper satisfies both Eqs. (3)
and (4), and is a generalization of the initial conditions of the Schwarzschild
metric to many bodies in a manner first suggested by Einstein and Rosen (13).
The discussion is given in the framework of Wheeler’s (14) ‘‘geometrody-
namies,” so we can look for singularity free solutions of Eq. (3) without postu-
lating a source term on the left hand side. The Schwarzschild solution is treated
in this manner in Section II.

II. SCHWARZSCHILD INITIAL VALUE METRIC

With the assumption of Eq. (1.4) that the the metric is conformally flat, the
instantaneously static initial value equation (1.3) reduces to

F) a9
@‘f‘é@é‘Fé})XZO- (2-1)

2

R(—1x) =V'x = (
If, further, we assume spherical symmetry, then the solution is

x =14+ (m/2r), (2.2)

where m is an arbitrary constant, and the boundary condition x — 1 as r — «
was imposed to give an asymptotically flat metric. (Note »* = z° 4+ 3 + 2%.)
As a solution of Eq. (2.1), the function (2.2) is singular at » = 0. However, we
shall now see that the metric

df = [1 + (m/2r)]"(d2® + dy* + d2°) (2.3)

is not singular considered as a geometry satisfying °R = 0.
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Let
o= (/2 (E ) (2.4a)
where
=t =4+ (2.4h)
and substitute in the formula (2.3) to obtain
dE = [L + (n/2p) e + dn’ + di”). (2.5)

By comparing (2.5) and (2.3) we see that the geometry described by dfF ix
identical at the points +' = ' and &' = a'. Stated differently, the mapping

@ ,,_I!__, (m,"‘_%‘)")( £ ;”’ ) (2.6
in an isometry. As the sphere » = /2 is invariant under the mapping ./, and
since J* is the identity transformation, we think of J as a reflection in the
sphere » = lym. In Iig. 1 the 2-surface z = @ is shown unbedded in a flat 3-
space. The symmetry J is then reflection in the symmetry plane of the imbedding
space. The region near » = 0 is geometrically equivalent to the region near
r = =, hence we do not consider 1t singular. In the next section we will con-
struet a solution of R = 0 with the geometry indicated in Iig. 2. In the present

w
I
]
r=0
|
r=1/2— t+trt45&r-— - ——— v
o
7/
/ r=0
i
4

I'16. 1. The two-dimensional section z = (0 of the Schwarzschild 1 = 0 space (Eqg. (2.3))
shown isometrically imbedded in flat three-space as the paraboloid of revolution
(1 4+ )12 = Lgw? 4 2. The inversion J of Fq. (2.6) is represented by reflection in the plane
w = 0 of the imbedding space.
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F1a. 2. A sketeh of a two-dimensional section through the initial spacelike hypersurface
of a space-time containing Einstein-Rosen ‘‘bridges,”” shown imbedded in a higher dimen-
sional flat space in order to suggest the topology and curvature. Note the symmetry cor-
responding to reflection in a horizontal plane in the imbedding space.

example, we can go on from the initial data K;; = 0 and g¢;; from Eq. (2.3) to
the full solution of the Einstein equations. When written as

ds' = —[1 — (m/2)[L + (m/2r)]*d* + di (27)

this Schwarzschild metric appears static, but ¢* become infinite at the Schwarz-
schild radius » = m/2. Since the initial data were nonsingular, this singularity
must be spurious. It results from the singular choice of coordinates necessary
to make the metric look static. Kruskal (75) and Fronsdal (16) have given
complete representations of the four-dimensional geometry resulting from these
initial data. One finds that the sphere in which one has reflection symmetry
shrinks from its initial proper circumference 4mn down to a point in a proper
time #m. Thus even the Schwarzschild solution is not static when discussed
geometrically as a solution of the source-free Einstein equations.

III. EINSTEIN-ROSEN BRIDGES—ANALYSIS

The logical order in which to present the Riemann manifold suggested by Fig.
2 would be to construct first a differentiable manifold of the appropriate topology
and then present on it a metric satisfying the differential equations ‘R = 0. I
shall not follow this order, since it would be impractical to solve a differential
equation on such a manifold unless the construction of the manifold were con-
veniently related to properties of the differential equation. After the construc-
tion is complete I will make a formal presentation of the results in Section IV.
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As a rough sketch, my procedure is first to assume the conformally flat metric
of Eq. (1.4). The initial value equation 'R = 0 then becomes the Laplace
equation V'x = 0. This equation is to be solved under appropriate boundary
conditions which give the reflection symmetry between upper and lower branches
of the manifold sketched in Fig. 2. But a solution somewhat similar to this is
already known (17), for the geometry corresponding (by Eq. (1.4)) to the
solution

x =14 2 aj|x— ¢

of ¥x = 0 is easily seen to correspond to Fig. 3 when the points ¢, are well
separated. (The space is clearly asymptotically flat as | x| — =. Near any
pole c; of x, say ¢ , all terms in x except a; | x — ¢, | can be regarded as con-
stant, so in this neighborhood the geometry is the same as near r = 0 in the
Schwarzschild solution, Section IT and I'ig. 1. When the ¢; are well separated
the region where comparison to Schwarzschild is reasonable includes + ~
and hence includes the entire “flange” shown in Fig. 3 corresponding to each
pole of x.) The problem now is how to modify this geometry so the top and bot-
tom parts of Fig. 3 are identical. I attack this problem by attempting to make
“fange no. 1,” i.c., the region of small | x — ¢, |, look like the top, which clearly
means adding to x a few more poles located near ¢; (i.c., on the bottom sheet

o=

\

Fis. 3. A sketeh of a two-dimensional section of the initial spacelike hypersurface of «
space-time containing Schwarzschild-like ‘‘flanges.”” The *‘flanges’ are not connected to
each other in the lower half of this diagram, so the corresponding three-space is simply
connected.
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corresponding to €5, €3, - - - ¢y on the top sheet. It turns out that strengths and
locations of these poles in order to make the top and bottom sheets of “flange
no. 1"’ identical are determined by the formulas of spherical inversion images from
electrostatics (18). This is only a beginning, however, for we must establish
also symmetry at “flange no. 2,” where not only images of the poles¢, ,cs, ¢4, - - -
cy must be added, but also images of the new poles previously added near c, .
Doing this, however destroys the symmetry at “flange no. 1,” which we restore
with new images. This process of bouncing back and forth, adding images of
images of images, in fact converges and leads to the geometry of Fig. 2 after we
identify all the flanges. Thus in the function x corresponding to Fig. 2 there are
not only the basic poles at ¢, corresponding to each “bridge,” but also image
poles corresponding to the possibility of approaching each bridge not only by a
direct path from x = «, but also after a long detour threading through several
bridges first.

The key to the construction of the 3-space sketehed in Fig. 2 is the reflection
operation J discussed in Section II. We begin with a space whose points are
labeled x = (z, ¥, 2) and draw N nonintersecting spheres |x — c; | =a, where
| x }2 =+ y2 + 2°. Then we look for a metric on this space which is invariant
under reflection in each of these spheres. IFor definiteness consider the sphere
| x| = a. The reflection operation J is defined by

x— Jx = xd*/|x |} (3.1)
The requirement that a metric
dl = x'(x) dx’ da* (3.2)

be invariant under J is that this same metric di* should also be given by
2 4 2 7
4 2 X axr a’x
(e o (5 2 (57)
a a2x * i i
— X | —5 } | dx’dx".
Ix[~ \[x]

This requirement can thus be written

ar

JIx] = x (3.3)
where J is defined to operate on a funetion by the rule
JI(x) = o] x [ f(xd’/| x ). (34)
Note that both as a linear operator (3.4) and as a mapping (3.1), J satisfies
J* = I = identity. (3.5)

Since we are assuming a conformally flat metrie (3.2), the differential equation
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*R = 0 reduces to the simple form V’x = 0 with a flat ¥* (Eq. (2.1)). But then
we have the known result from electrostatics that v/ = 0 implies V°J[f] = 0.
We will need only two special applications:

J ] = a/r, (3.60)

1 a 1 ,
T T TS T T a0 3.61

J[\r—dd |dTr— Jd| (3.6b)

The second of these may be stated as follows:

LemMa 1. The iimage of a pole al a poinl p 1s @ pole at Jp. If the pole strength
at p s q, the strength of the image pole is (a/d)q where d is the (euclidean) distance
of p from the inversion center.

We can now construct the function x, and hence the metric. We make use of
inversion operators J,.(k = 1, 2, --- N) for each of the spheres marked out in
the coordinates x. Since x — 1 as | x| — = as a boundary condition, we scc
that by inversion symmetry in the ith sphere, x must also contain a term
J{1] = a,./| x — ¢, |. But then, by inversion in the {th sphere, there must
also be a term J,Ji[1]. If [ = k this term is already accounted for since it ix
just the constant J,'[1] = I{1] = 1. Otherwise it iz a new pole inside the /th

sphere. After n inversions we have a pole J; /., --- J;[1]in the sphere 7, .
Thus we are led to consider the series
S=IT+2"JJ, -1, (3.7)
where the sum extends over all series of indices (7, = 1, 2, --- N) of all finite
lengths n = 1, 2, - - subject to the restriction
i(-+] # iA- .

The function
x = S1] (3.8)

will satisfy the Laplace equation, since it is a series of poles, and we see that it
is invariant under all the reflections as a consequence of
LEmMMa 2.

JkS = S. (“’»“)

The proof of this lemma proceeds by inspecting the series which stand on each
side of Eq. (3.9). A typical term J; J;, --- J;, in the series for S on the right
is found on the left as J(J;,J, -+ J;,) incase i; = F, and as

Jk(JkJilJiQ tet Ji,,)
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in case 41 # k. (Recall J,© = 1.) This also accounts for all terms in J xS since
again a term’s first factor must either by J, or not.

Actually the formal symmetry (3.9) of the operator S doesnot solve our problem
unless x defined in Eq. (3.8) actually exists and satisfies the Laplace equation.
The existence of x means here the convergence of the series in Eq. (3.8), while
uniform convergence will allow us to differentiate term by term to verify the
Laplace equation. The simplest convergence criterion is obtained by recalling
from electrostatics that a finite amount of each positive and negative charge
distributed in any way leads to a well defined potential. More specifically, let
> (go/7o) be a sum of poles and let B be a region bounded away from the singu-
larities (r. = | X — p.| = 0), so that in R we have »; = p > 0 for all 4. Then
we have

|20 (qa/r)l = 2 (N gal/ra) = (/D)2 |gal,

so absolute and uniform convergence of 2, (gx/r%) In R follows from the absolute
convergence of 2 ¢;. Using this convergence criteria the next lemma shows
that x exists provided the spheres defining the inversion operators J; are not to
close to each other.

Lemma 3. The series S[1] converges to a function x which is analytic and satisfies
Laplace’s egquation tn an open reqion R including all points not interior to any
sphere, provided (N — 1)a/d < 1. Here a = mazx ay and d is the minimum euclidean
distance from the center of any of the N spheres to a point in ony other sphere.

The assertions of the lemma follow from uniform convergence in R, and by our
previous remarks, then, from the convergence of the series of pole strengths in
S[1] together with the absence of poles near R. Let us examine a typical term
JoJo_, - Ji(1] in S[1). Here J,,[1] = a;,/| x — ¢4, | is (cf. Eq. (3.6)) a pole
of strength a;, located at the center of sphere ¢ . Then by Lemma 1, J,,J[1] is a
pole inside sphere 7, of strength a;,a,,/d;,;, where d;,;, is the distance from the
pole in 7; to the center of 7, . Similarly J;J;,_, --- J;[1] is a pole in sphere
. Whose strength is a;, > 0 (from J,,) times a factor (a/d) > 0 for each of the
(n — 1) subsequent factors Jx . We may estimate it as

(strength J,, - -+ J;[1]) £ ((a/d)" "a)

where a and d are defined in the statement of the lemma. Now ¢, is any of the
N spheres, and ¢; is any of the (N — 1) spheres distinct from ¢_; , so there are
N(N — 1) terms of the type J,, --- J; (cf. Eq. (3.7)). The total pole
strength of all terms in S[1] is less than

i; NN = D™ 4= Na Y [~—————(N — l)a]n,

dn--l n=0
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which converges when (N — 1)a/d < 1. Thus the convergence of the series for
x is assured. To verify that the singularities of x do not lie arbitrarily close to
the surfaces of the spheres | x — ¢, | = a; we note that Ji./, - - - J, is not ouly
a pole in sphere 1, but it is the image of a pole in sphere 2. Hence it lies inside
the image of sphere 2 in sphere 1, and is therefore hounded away from the swface
of sphere 1, since the spheres, and therefore their images, do not intersect. Nee
Fig. 4.

For our purposes of defining a metric by Eq. (3 2), analyticity of x is not a
sufficient regularity condition. It is also necessary to require that x(x) > 0.
Since every term of the series S[1] is positive, we can state

LeMMma 4. In the region R of Lemma 3, x satisfies

x = S[1} > 1.

The construction of the metric corresponding to Iig. 2 and satisfying R = 0
is now complete. The metric is defined by Eq. (3.2) in terms of x as given in
Eq. (3.8). The regularity of this matric in a region R corresponding to slightly
more than the top half of Fig. 2 is established. Reflection symmetry suggests
that there must be an identical lower half, smoothly matched on. The next
section shows precisely how this is true. Note that if we accept the metric just
given in the largest domain where x(x) is regular, a picture very different from
Fig. 2 arises. Each pole in x corresponds (of Section I1) to a distinet asymptoti-
cally flat region, and there are infinitely many distinet polesin x. The domain of
regularity of x is precisely the universal covering of the manifold of Fig. 2.

J, (@)
Jd. (@)

F1a. 4. Three spheres are represented by circles labeled A, X, and ®. The first iniages
of the spheres are shown. Thus the most complieated pole in the series of Eq. (3.7) whiel
is shown here is JyJ ¢ [1].
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IV. EINSTEIN-ROSEN BRIDGES—TOPOLOGY

Let Ex’ be a three-dimensional, topologically euclidean manifold; a typical
point of Ex’ will be designated x in contrast to the typical point y of another
topologically euclidean 3-manifold E® which enters the discussion. Let z*(2)
be three functions which can be used as standard coordinates on Ex’. We will
frequently regard this set of coordinate values as a column matrix (vector)
x(z) = {2'(z), 2 (), 2’ (¢)}. Similarly, on E,* we choose a set of standard co-
ordinates y(y). Using these coordinates we draw in each space a set of N corre-
sponding spheres of radii a; with centers at ¢; . Then (to correspond to the upper
and lower sheets in Fig. 2) we define the subsets

U={z¢cE| [x(z) —cr| 2 & forallk =
L={yEEY3‘ fy(y)—ckl>ak for all &

, -+ N}

2
2 ... N

b

H

: 4.1
. (4.1)

b

consisting of the points outside all the spheres. We have included in U also the
points on the surface of the spheres. The manifold which Fig. 2 is to indicate
will be called M, a typical point of M is called 2. As a point set, M is defined by

M = {z|eitherz=2€ U or z=yc¢€lL} (4.2)

i.e., M consists of U and L taken together. To give M the structure of a differ-
entiable manifold® it is necessary that each point z of M lie in the interior of at
least one coordinate patch in a system of overlapping coordinate systems which
cover M. If z is not on the boundary of U, then this demand is satisfied by using
the coordinates x(z) = x(z) in case z = z was in U (the interior of U), or
y(z) = y(y) in case z = y was in L.

The only remaining case is to assume z is on the boundary of U and hence,
let us say, on the surface of sphere no. 1. The definition of a coordinate patch
around such a boundary point is the crucial step in defining M as a differentiable
manifold, since U and L have no significant relationship to each other before
this is done. Define a new set of coordinates y(z) = y(x) for points z € U on or
near sphere no. 1 by

y(@) = Jix(z) (4.3)

where .J; is the inversion in sphere no. 1 defined (assuming ¢; = 0) by Eq. (3.1).
Note that this equation implies that | y(z) — ¢; | < a; ;since | x(zx) —¢;| = a; ;
further, when x lies on sphere 1 one has y(z) = x(z). These relations allow us to
identify the points x in U near sphere 1 with points y in K v which are inside
or on sphere 1, (hence not in L) by

y =z when y(y) = y(z). (4.4)

! See ref. 14, p. 555, or ref. 19.
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The regularity of these new coordinate functions y'(x) in the interior, U, of U
where we have already picked one set of regular coordinates, a'(x), is deter-
mined by the regularity of the coordinate transformations Yy and &'y, i,
ofy = Jixand x = J7'y = Jiy. But Jix is an analytic function of its arguments
x = 'o'l except at X = ¢, , so we may consider y(x) as analytic coordinates on
{". Now cousider y(z) as coordinates defined over a region of A including not
only L where y(z) = y(y) but a neighborhood of sphere 1 in U (where y(z) =
y(x) as given in Eq. (4.3)). Of the two conditions (19) which a set of functions
y(z) must satisfy in order to be a coordinate system, we have verified one, namely,
that thev are related regularly to any other coordinate system where the patches
overlap. The other requirement on y(z) is that y(z) map the points z in the
y(z) coordinate pateh in a one to one way onto an open set of the euclidean
3-gpace of the column matrices y. The difficulty in achieving this is that we wish
to inelude the points of sphere 1, which are on the boundary of U as inlerior
points of the y(2) eoordinate patch. As defined here, y(z) satisfies this condition
if its domain of definition (coordinate patch) is taken to include, in addition to
L, those points of U satisfying

@ — e <!ly@) —al = a (4.5)

for some e > 0. Then, according to (4.4) the set L. of all corresponding matrices
y(z) can be thought of as consisting of L (in E,’) modified by reducing the
radius of sphere 1 by ¢, and this is an open set of /,", as is L. The preceding
sentence is precisely true only if all the points . of £y’ which satisfy (4.5) also
belong to U, i.e., if y(x) cannot be in the J; image of any other sphere. It the
spheres intersect this is impossible to achieve; we assume no intersections and
then take e sufficiently small.

(learly the definition of the y(z) coordinates can be similarly extended
(using y = J;x) to include e neighborhoods (4.5) of all the other spheres in r.
For sufficiently small ¢, these neighborhoods do not overlap and it is unambiguous
which .J, to take in defining y(x). The structure of 3/ as an analytic manifold
is then defined by the two coordinate patches, x(z) on U, and y(z) on L plus
the e neighborhoods of spheres in U (i.e., y(z) on the region R of Lemmas 3
and 4). An analytic Riemannian metric on A/ is defined by taking

dl* = X' (P)(dy” + dys” + dys’) LoV
on the y{z) coordinate patch, and
i = X'(x) (de® 4+ dy’ 4 das®) (63

on the x(z) coordinate patch, where x as a function of three real variables is
defined by Eq. (3.8). According to Lemma 3, x (and hence dl°) is analvtic:
according to Lemma 4, x is never zero, so dl’ always has the proper (elliptic)



114 MISNER

signature. I"urther, since x satisfies the flat space Laplace equation, it follows
from Eq. (2.1) that di’ has vanishing scalar curvature R. The final statement we
need is that, where the coordinate patches overlap, Eqs. (4.6) do not give in-
consistent definitions of d*, i.e., the right hand sides must be related by the co-
ordinate transformation law y°(2’). This coordinate transformation isy = J X,
choosing the appropriate J; in each connected overlap region. Substituting this
transformation law in Eqs. (4.6) yields as the consistency requirement just Eq.
(3.3). That is, x must have those symmetries which were established in Lemma 2.

V. DISCUSSION

Two questions will be discussed here: some special cases and possible generali-
zations of the result stated in the previous section, and the question of associating
a conserved “intrinsic mass” parameter with the topological features of this
manifold.

One special case of the solution of the initial value problem given in Section
IV is of course the Schwarzschild initial values discussed in Section II. Another
special case, where there are only two Einstein—Rosen bridges, has been ob-
tained previously (20) by other methods. If the two spheres which define the
solution mentioned above have the same radius, a; = a,, then the solution may
be interpreted (20) as a “wormhole” rather than as a pair of identical Einstein—
Rosen bridges. The methods of the present paper do not seem to allow a “worm-
hole” interpretation of the solution unless a plane of reflection symmetry is
introdueed; it does not appear sufficient merely to make the radii of the spheres
equal in pairs, as, = @opy1 -

The idea of using strange topologies was introduced by Wheeler (21) in order
to allow for charged objects without introducing a charge density, or a charged
field, into the theory. A manifold of the type shown in Fig. 3 has been given
(17), where the flux of electric field through each “neck’ is arbitrary. However,
1 had not been able to find any manifolds resembling Fig. 2 which satisfied the
equations of geometrostatics including an electric field, namely,’

g"R = Y59 "%g.;8'¢’, (5.1g)
g = 0. (5.1e)

This problem has been solved by Lindquist (22) who presents solutions of Eqgs.

2 In these initial value equations we have set Bi = 0 so that we might continue to as-
sume K;; = 0. The notations are all three dimensional, & is a vector density in the 3-mani-
fold so the metric does not appear in Eq. (6.1e). Heaviside (rationalized) electromagnetic
units are used, and we set ¢ = 1 = 16myc~* where v is the Newtonian gravitational constant.
Cf. ref. (12) and ref. (7).
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(5.1) with the topology of Einstein-Rosen bridges’ as in Fig. 2. In the neutral
case again, I have found solutions (9) which have the appearance of Fig. 3 on a
small scale, but on a larger scale (where the “flanges’” go unnoticed) have the
appearance of a spherical universe instead of an asymptotically flat space. An
analogous modification of the solution given in the present paper would give a
closed universe satisfying the empty-space Einstein equations, but I have not
succeeded in finding such a solution. In any case solutions of the empty-space
initial value problem, iq. (1.3), are known to exist in closed spaces (4) where
the effective matter density is supplied by *‘gravitons” (gravitational waves)
rather than by “topologicons” (Einstein—Rosen bridges, etc.).

To what extent will the “bridges” in I'ig. 2 maintain their identity as the
metric evolves in time? Assume the time dependent solution is obtained under
the coordinate conditions' ¢ = —1, go; = 0. Evidently the same computations
are involved in obtaining the solution using spacial coordinates x(z.) ncar a
point z,. = x in U as using the coordinates y(z_) near the corresponding point
[x(z4) = y(z)], 2= = y in L. The coordinate conditions gy, = —3dy, are pre-
served by time independent coordinate transformations of the type y = J,x, 50
all the symmetries of the initial conditions are preserved in the time develop-
ment. In particular the preferred spheres in terms of which the initial conditions
were defined have a geometrical significance for the dynamic 4-space as the set
of points invariant under the symmetry z — J4z. Thus the “bridges’” do remain
recognizable, and the time trajectory of the “‘neck” can even be located.

Sinee the ‘‘bridges” can be identified, the next question is whether they have
any simple properties by which they can be characterized. In the charged case
(22) the charge of each bridge is a well defined constant of the motion (/4);
in the present, neutral case the most natural thing to look for is some sort of
“intrinsic mass” parameter. This quantity is most easily found for metries of
the type indicated by Fig. 3. There one may introduce on any “flange” a set of
coordinates in which the metric components approach the flat rectangular

3 Note that Einstein and Rosen (I3) proposed changing the sign of the gravitational
constant, 1.e. of the right hand side of Eq. (5.1g) in order to avoid the excessively high
coulomb self-energies which result from the small gravitational (topological) cutoff. This
would have a disastrous effect on the equations of motion as is apparent from the fuct
that the Papapetron solution (23) where Newtonian attraction and coulomb repulsion are
exactly halanced by taking m; = e; would no longer be static with the Einstein-Rosen
choice of sign. The self-energy of physical particles in any case must certainly involve
quantum effects. Cf. ref. 14, Eq. (244), and ref. 12.

41t is known that in these coordinates the metric tensor components will develop a
singularity within a finite proper time (24). This could be merely a singularity of the co-
ordinate system (25) but in many cases it turns out to be a real geometrical singularity as
in the Nehwarzsehild solution (R. W. Lindquist, private communication) or the Friediman
cosmologica] models,
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metric, g;; ~ 8;, in the infinite regions out on the flange. Then, using any
standard surface integral formula for total energy, one defines the “intrinsic
mass” of flange & as the apparent total mass of the systems as viewed from the
asymptotic reaches of flange k. For instance, take (26)

My = é (gis; — @ii.e) dS; (5.2)

where the integral is over an arbitrarily large sphere in an asymptotically rec-
tangular coordinate system for flange & chosen (Lorentz transformations) so
that the corresponding integrals for total momentum vanish. Because of the
topological peculiarities, the time independence of an integral like (5.2) does
not follow by converting it to a volume integral of a pseudotensor #,” and apply-
ing a conservationlaw ¢,,, = 0. However a direct computation (26) of the time
derivative of (5.2) using the field equations only in the asymptotic region shows
that m; is in fact a constant. One might attempt to extend this argument to the
case of Fig. 2 as follows: Since the metric given in Section IV is analytic, one
can in principle analytically continue it from any small neighborhood to the
entire covering space consisting of all the regular points of the functions x de-
fined in Section III. This is then a manifold with infinitely many flanges (one
for each pole in x), and a constant of the motion m, is associated with each.
The m, corresponding to poles inside sphere k& (of Fig. 4) would then be char-
acteristic properties of sphere k. This argument fails when one remembers that
all the poles in x are images of each other under the symmetries J /4, - - - J;, of
the metric; consequently all the m, are equal and must be interpreted as the total
mass of the interacting system.

REcEIvED: December 26, 1962
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