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The Method of Images in Geometrostatics* 

CHARLES W. MIsiVERt 
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Since there exist no nonflat singularity free static solutions of the empty- 
space Einstein equations we give the name geometrostatics to the study of the 
time-symmetric (instantaneously static) initial value problem. Using the 
method of spherical inversion images from electrostatics, we construct the 
initial values for a time-symmetric solution of the empty space Einstein equa- 
tions having the topology of an arbitrary number of Einstein-Rosen “bridges.” 
The initial data are analytic and asymptotically flat with positive apparent 
mass. 

I. INTRODUCTION 

Physicists have many useful general ideas about the variety of solutions which 
exist for t,he Maxwell equations; when applied t,o a problem this hard won 
familiarity is usually called physical i&&ion, A considerable part of it is based 
on the st,udy of simple situations such as eleckostatics or waves in empty space. 
To obtain a familiarity with t,he gravitational field as described by t,he Einstein 
equations, it is also useful to define and study simple cases. The present, paper 
is devoted t,o an example with analogies t,o electzostatics. 

[Although it will not, be considered in this paper, t,he gravitational analogue 
of free electromagnetic waves is not being neglected at the present time. The 
most important recent, studies of gravitational waves are: 

1. The Bondi asymptotic soluCon (I) with it,s generalizations by Sachs (2) 
and by Newman et al. (3) which describe outgoing gravitational waves in terms 
of t,he asympt,oGc properties of the Riemann tensor along a null ray. 

2. The Brill initial condiCons (4) which show a wave which will be an exact 
solution of t,he empt,y space Einstein equations, free from singularities through- 
out all space for at least a finite time, and which if chosen sufficiently weak 
initially would be expected to spread out, getting weaker as predicted by lin- 
earized theory, and t,o remain singularity-free for all time. 

3. The Arnowitt, Deser, Misner wave zone analysis (5) which shows that 
coordinate invariant wave amplitudes may be defined for the asymptotic l/r 
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(radiation) terms in a metric in such a way as to give a complete description of 
the escaping radiation.] 

The obvious analogue of electrostatics for the gravitational field would br 
the theory of static solutions of the Einstein equations. This analogue, however, 
is of very limited scope (6). In electrostatics, VW may imagine distributions of 
charge which are prevented from moving by forces irrelevant to electromagnetic 
theory, i.(‘., by uncharged mechanisms. In gravitation theory, any mechat~ism 
we imagine to prevent a mass distribution from moving would itself have mass 
(or at least stresses) and would also produce a gravitational field. In order to 
define a highly simplified, yet nontrivial, class of solutions for special study J 
define gwww/)wf&cs as the study of instantaneously static solutions (Jf t h+ 

Kin&in quations. This imposes special restrictions which are to hold only CIII 
a single spacelike surface t = 0, but not necessarily for all tinw. 

l<~wi wit.hout, special restrictions, the metric ~JU a hypersurfacc 1 = 0 is IlcJt 

eiiGrely arbitrary, just as in electromagnetism one cannot8 have arbitrary vector 
fields E a11d B9 but’ only fields subject to the initial value equations v .E = 0 = 
Y .B. The a~~alogous Einstein equations are R,,” - j &“R = 0, which do ilot 
contail any second time derivatives of the metric. These e(iuations are usually 
lvrittwl it) a form independent8 of the choice of coorclinat,w out,side the init ial 
spawlikc hypersurface (7,1: 

Hew all IwtaGons are three dimensional; ‘R is t,he scalar curvature of the spa(aial 
m&Cc g,,, , and Kii is the second fundamental form ( 27) whose eigenvalues aw 
t’he three principal curvatures of the initial surfaw as measwed out into the 
J-space in which it is imbedded. Icor our purposes it is sufhcient to know t,hat 1)~ 
an appropriate choice of coordinates outside the initial surfaw c g,,= = - &“j OIM. 
has A; 1 = -J idgzj,‘J!. Thus we define an i~lsta~~tatl~~o~~sly static solutiotl as OIM. 
possessing a hypersurface t = 0 on which Z~i.~ = 0. This cllal,a(!teri~at,i(~tl i> 
geometrical ( coordinate independent), but by interpreting ~~j as the twrnlal 
derivaGve of the metric as above, we see that, it implies the existence of a VI) 
ordinattt system in which the mapping t - -t, .I:’ + x’ is an isometry. Ttl~w 
~(,(j~~/~~~~,f~.s~~~~~.s is just another name for the study of the ti~l~(~-syniI~l~~tri(! ijlitial 
va11w problem (S-10). In this case the initial \-alw e(illatiotw ( 1,) and (2) IYY~IW 
to tlw sitiglc c(~uatiot~ 

As ill t,llc case of more general initial data, it is known t 11 j t,hat to at1.v %mct,ric 
satisfying FI(t. (:S), there corresponds a solutjion of the full Hnstein equatiwls. 
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The analogue of Eq. (3) in electromagnetism is V-E = 0, with the under- 
standing that the other initial value equation, V. B = 0, is satisfied through the 
choice B = 0. This does not coincide with the theory of electrostatics, which is 
a specialization to solutions of v .E = 0 of the form E = -v+. An analogy to 
this condition can also be formulated in general relativity, namely, the spe- 
cialization of gij to the form (8) 

dl’ = x4(dxz + dy’ + dz*) . (l-4) 

This condition can be chosen on the basis of a canonical formulation of general 
relativity (Is), For a particular (arbitrary) way of defining canonical coordinates 
and moments for the gravitational field, it corresponds to the vanishing of all 
the canonical variables (“wave modes”). It is in this sense analogous to E = 
-V$ which corresponds to the vanishing of the transverse components of E 
which are canonical coordinates in electromagnetic theory. This analogy is not 
compelling since, in the gravitational case, static solutions will not result from 
these assumptions on the initial conditions, and a different choice of canonical 
variables might lead to inequivalent results. 

The initial value metric I shall construct in this paper satisfies both Eqs. (3) 
and (4), and is a generalization of the initial conditions of the Schwarzschild 
metric to many bodies in a manlier first suggested by Einstein and Rosen (I??). 
The discussion is given in the framework of Wheeler’s (14) “geometrody- 
namics,” so we can look for singularity free solutions of Eq. (3) wit,hout postu- 
lating a source term on the left hand side. The Schwarzschild solution is treated 
in this manlier in Section II. 

II. SCHWARZSCHILD INITIAL VALUE METRIC 

With the assumption of Eq. (1.4) that the the metric is conformally flat, the 
instantaneously static initial value equation (1.3) reduces to 

If, further, we assume spherical symmetry, then the solution is 

x = 1 + (7?2/2r), (2.2) 

where m is an arbitrary constant, and the boundary condition x -+ 1 as r -+ KJ 
was imposed to give an asymptotically flat metric. (Note r2 = x2 + y2 + z’.) 
As a solution of Eq. (2.1)7 the function (2.2) is singular at 7’ = 0. However, we 
shall now see that the metric 

d12 = [1 + ( wL/2y)]4(dx2 + dy2 + dz’) 

is not singular considered as a geometry satisfying ‘R = 0. 

(2.3) 
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FIG. 2. A sketch of a two-dimensional section through the initial spacelike hypersurface 
of a space-time containing Einstein-Rosen “bridges,” shown imbedded in a higher dimen- 
sional flat space in order to suggest the topology and curvature. Note the symmetry cor- 
responding to reflection in a horizontal plane in the imbedding space. 

example, we can go on from the initial data Kif = 0 and gij from Eq. (2.3) to 
the full solution of the Einstein equations. When written as 

ds’ = -[1 - (~~‘279]~[1 + (~2/27.)]-~dt~ + dZ2 (2.7) 

this Schwarzschild metric appears static, but go0 become infinite at the Schwarz- 
schild radius Y = 7~2/2. Since the initial data were nonsingular, this singularity 
must be spurious. It results from the singular choice of coordinates necessary 
to make the metric look static. Kruskal (15) and l?ronsdal (16) have given 
complete representations of the four-dimensional geometry resulting from these 
initial data. One finds that the sphere in which one has reflection symmetry 
shrinks from its initial proper circumference 47r7r~ down to a point in a proper 
time rot. Thus even the Schwarzschild solution is not static when discussed 
geometrically as a solution of the source-free Einstein equations. 

III. EINSTEIN-ROSEN BRIDGES-ANALYSIS 

The logical order in which to present the Riemann manifold suggested by Fig. 
2 would be to construct first a differentiable manifold of the appropriate topology 
and then present on it a metric satisfying the differential equations ‘R = 0. I 
shall not follow this order, since it would be impractical to solve a differential 
equation on such a manifold unless the construction of the manifold were con- 
veniently related to properties of the differential equation. After the construc- 
tion is complete I will make a formal presentation of the results in Section IV- 
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As a rough sketch, my procedure is first to assume the conformally flat metric 
of Eq. (1.4). The initial value equation ‘R = 0 then becomes the Laplace 
equation V2x = 0. This equation is to be solved under appropriate boundar> 
condiCons which give the reflection symmetry bebeen upper and lower branchw 
of the manifold sketched in Fig. 2. But a solution somewhat similar to this is 
already kuown ( f 71, for the geometry corresponding (by EC{. ( 1.4) j to tl~(* 
SfJhlt~iOI~ 

of L”x = 0 is easily seen to correspond to Fig. 3 ~vheu the points cL are ~~11 
separated. (The space is clearly asymptotically flat as 1 x 1 + zc . Sear at~y 
pole Ci of x, say cl , all terms in x except CX~ 1 x - cI I---’ can he regarded as f.xJll~ 

staut, so in this neighborhood the geometry is the same as near P = 0 in tlw 
Schwarzschild solution, Section II and Fig. 1. When the C~ are ~~11 separaM 
the region where comparison to Schwarzschild is reasonable iucludes I* = HI 
aud hence includes the entire “flange” shown iu Fig. 3 correspouding to each 
pole of x.) The problem now is how to modify this geometry so the top alld hot- 
tom parts of I’ig. 3 are identical. I attack this problem by attempting t,o makes 
‘*flallgP 110. I ,” i.c., the region of small 1 x - cl 1 , look like the top, which clearly 
nwa~~s adding t’o x a fw more poles located war c, c i.(x., 011 t#he lwttom shwt I 
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corresponding to c2 , c3 , + . . C~ on the top sheet. It turns out that strengths and 
locations of these poles in order to make the top and bottom sheets of ‘(flange 
no. 1” identical are determined by the formulas of spherical inversion images from 
electrostatics (18). This is only a beginning, however, for we must establish 
also symmetry at “flange no. 2,” where not only images of the poles cl , c3 , cJ , . . . 
c,~ must be added: but also images of the new poles previously added near c1 . 
Doing this, however destroys the symmetry at ‘(flange no. 1,” which we restore 
with new images. This process of bouncing back and forth, adding images of 
images of images, in fact converges and leads to the geometry of Fig. 2 after we 
identify all the flanges. Thus in the function x corresponding to Fig. 2 there are 
not only the basic poles at ci corresponding to each “bridge,” but also image 
poles corresponding to the possibility of approaching each bridge not only by a 
direct path from x = CO, but also after a long detour threading through several 
bridges first. 

The key to the construction of the 3.space sketched in Fig. 2 is the reflection 
operation J discussed in Section II. We begin with a space whose points are 
labeled x = (x, y, z) and draw N nonintersecting spheres 1 x - ck 1 =ak where 
1 x 1’ = x2 + y2 + z2. Then we look for a metric on this space which is invariant 
under reflection in each of these spheres. For definiteness consider the sphere 
1 x 1 = a. The reflection operation .J is defined by 

x + .Jx = xa2/j x I2 (3.1) 

The requirement that a metric 

dt = x4(x) d.z’dx+ (3.2) 

be invariant under J is that this aa??lt? metric dl’ should also be given by 

This requirement can thus be written 

4x1 = x (3.3) 
where .J is defined to operate on a function by the rule 

J[f](x) = uj x ~-lj(xu*/~ x j2). (3.4) 

Note that both as a linear operator (3.4) and as a mapping (3.1), J satisfies 

J2 = I = identity. (3.5) 

Since we are assuming a conformally flat metric (3.2), the differential equation 
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‘R = 0 reduces to the simple form V’x = 0 with a flat V’ (Eq. (2.1) ). But Ulen 
we have the known result from electrostatics that Vy = 0 implies V’J[,f] = 0. 
We will need only two special applications: 

l’he second of these may be stated as follows: 

We can no\%- construct the function x, and hence the metric. BTe make uw ol 
inversion operators Jk(k = 1, 2, . N) for each of the spheres marked out it1 
the coordinates x. Since x + 1 as 1 x 1 -+ CC as a boundary condition, D-P we 
that by inversion symmetry in the kth sphere, x must also contain a term 
Jk[l] = a,,/ 1 x - C~ 1. But then, by inversion in the /th sphere, thew mlwt) 
also be a term JlJk[l]. If 1 = k this term is already accounted for since it is 
just the constant Jh’[l] = 1[1] = 1. Wherwise it is a new pole inside tlw /t,h 
sphere. After u illversions we have a pole Ji,Jz2 JiYb[l] iti the sphew i, 
Thus we are led t)o consider the series 

\vhere the sum extends over all series of indices (if< = 1, 2, . . NJ of all fiti+ 
1cwgt11s tz = 1, 2, . subject to the restriction 

ik+, # ik 

will satisfy the Laplace equation, since it is a series of poles, and we see that, it 
is invariant under all the reflections as a consequence of 

LEMMA 2. 

The proof of this lemma proceeds by inspecting the series which stand on each 
side of Eq. (3.9). A typical term Ji1Ji2 . . . .Jiz in the series for S on th(> right 
is found on the left as Jk(Ji2Ji3 . . . Jin) in case i: = A.? and as 
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in case iI # k. (Recall Jk2 = 1.) This also accounts for all terms in Jk8 since 
again a term’s first factor must either by Jh or not. 

Actually the formal symmetry (3.9) of the operator S does not solve our problem 
unless x defined in Eq. (3.8) actually exists and satisfies the Laplace equation. 
The existence of x means here the convergence of the series in Eq. (3.8), while 
uniform convergence will allow us to differentiate term by term to verify the 
Laplace equation. The simplest convergence criterion is obtained by recalling 
from electrostatics that a finite amount of each positive and negative charge 
distributed in any way leads to a well defined potential. More specifically, let 
x (q a/r a) be a sum of poles and let R be a region bounded away from the singu- 
larities (ra = 1 x - pa 1 = O), so that in R we have ri 2 p > 0 for all i. Then 
we have 

so absolute and uniform convergence of z ( qk/rk) in R follows from the absolute 
convergence of x q; . Using this convergence criteria the next lemma shows 
that x exists provided the spheres defining the inversion operators Jk are not to 
close to each other. 

LEMMA 3. The series S[l] converges to a functim x which is analyttc and satisjies 
Lapla.ce’s equation in an open regum R including all points not interior to any 
sphere, provided (N - 1) a/d < I. Here a = max ak and d is the minimum euclidean 
distance from the center of any of the N spheres to a point in any other sphere. 

The assertions of the lemma follow from uniform convergence in R, and by our 
previous remarks, then, from the convergence of the series of pole strengths in 
S[l] together with the absence of poles near R. Let us examine a typical term 
Jin JL1 - . . JiI[l] in S[l]. Here JiI[lJ = Q/I x - cil 1 is (cf. Eq. (3.6)) a pole 
of strength uiI located at the center of sphere iI . Then by Lemma 1, Ji2JiI[l] is a 
pole inside sphere iz of strength ai2aiI/diIi2 where diIi2 is the distance from the 
pole in iI to the center of i2 . Similarly JiSJinmI . . . JiI[l] is a pole in sphere 
in whose strength is oiI > 0 (from JiI) times a factor (u/d) > 0 for each of the 
(n - 1) subsequent factors Jk . We may estimate it as 

(strength Jim . . . JiJll) 5 ((a/d)%-‘a) 

where a and d are defined in the statement of the lemma. Now iI is any of the 
N spheres, and ik is any of the (N - 1) spheres distinct from ikeI , so there are 
N( N - 1) nP1 terms of the type Ji* . . . JiI (cf. Eq. (3.7)). The total pole 
strength of all terms in S[l] is less than 
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which converges when (N - 1 )cz/d < 1. Thus t,he convergence of the series fog 
x is assured. To verify that the singularities of x do not lie arbitrarily close to 
t#he surfaces of the spheres 1 x - ck 1 = & we note that .11.j2 fk is not ouly 
a pole in sphere 1, but it is the image of a pole in sphere 2. Hence it’ lies inside 
t.he image of sphere 2 in sphere 1, and is therefore bounded away from the surfaw 
of sphere 1, since t,he spheres, and therefore their images, do not intersectj. SW 
Fig. 4. 

F’or our purposes of defining a metric by l&q. (3 2,), analyticity of x is Ilot a 
sufficient regularity condition. It is also necessary to require that, XC x j > 0. 
Since every term of the series S[l] is positive, we can state 

~Jmm~ 4. In the ?,egion R qj’ il,ewrHa 3, x satisjie.s 

The construction of the metric corresponding to Icig. 2 and satisfying ‘R = 0 
is now complete. The metric is defined by Eq. (,3.2) in terms of x as given iI1 
Eq. (3.8). The regularity of this matric in a region R corresponding to slightly 
more than the top half of Fig. 2 is established. Reflection symmetry suggests 
that there must be an identical lower half, smoothly matched on. The lwst 
section shows precisely how this is true. Kate that if we accept the met,ric just 
giveu in the largest domain where x(x) is regular, a picture very different from 
Fig. 2 arises. Each pole in x corresponds (of Section II ) to a distinct asymptoti-- 
tally flat region, and there are infinitely many distiuct’ poles in X. The domail) of 
regularit’y of x is precisely the universal cowrillg of t,lw manifold of I:ig. 2. 

FIG. 4. Three spheres we represented by circles labeled A, X, and l The first images 
of the spheres are shown. Thus the most complicated pole in tlw series of F:c~. (3.i) whietk 

is shown here is JxJ. [l]. 
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IV. EINSTEIN-ROSEN BRIDGES-TOPOLOGY 

Let Ex3 be a three-dimensional, topologically euclidean manifold; a typical 
point of Ex3 will be designated x in contrast to the typical point y of another 
topologically euclidean 3-manifold EY3 which enters the discussion. Let x’(x) 
be three functions which can be used as standard coordinates on Ex3. JVe xvi11 
frequently regard this set of coordinate values as a column matrix (vector) 
x(r) = {x’(r), x*(x), x3(x)}. Similarly, on Ey3 we choose a set of standard co- 
ordinates y(y) . Using these coordinates we draw in each space a set of Ar corre- 
sponding spheres of radii ak with centers at ck . Then (to correspond to the upper 
and lower sheets in Fig. 2) we define the subsets 

consisting of the points outside all the spheres. We have included in C? also the 
points on the surface of the spheres. The manifold which Fig. 2 is to indicate 
will be called M, a typical point of M is called .z. As a point set, A4 is defined by 

M = {z 1 either z = zr C 0 or z = y C L], (4.2) 
i.e., AI consists of 0 and L taken together. To give A4 the structure of a differ- 
entiable manifold’ it is necessary that each point z of M lie in the interior of at 
least one coordinate patch in a system of overlapping coordinate systems which 
cover ill. If .z is not on the boundary of 0, then this demand is satisfied by using 
the coordinates x(z) = x(x) in case z = x was in U (the interior of u) , or 
y(2) = y(y) in case .z = y was in L. 

The only remaining case is to assume z is on the boundary of 7? and hence, 
let us say, on the surface of sphere no. 1. The definition of a coordinate patch 
around such a boundary point is the crucial step in defining M as a differentiable 
manifold, since u and L have no significant relationship to each other before 
this is done. Define a new set of coordinates y(z) = y(x) for points CC c 0 on or 
near sphere no. 1 by 

Y(X) = JlXCXl (4.3) 

where J1 is the inversion in sphere no. 1 defined (assuming cl = 0) by Eq. (3.1). 
Note that this equation implies that 1 y(x) - cl 1 5 al ; since 1 x(x) - cl 1 2 al ; 
further, when z lies on sphere 1 one has y(r) = x(x). These relations allow us to 
identify the points x in u near sphere 1 with points y in Ey3 which are inside 
or on sphere lu (hence not in L) by 

y = zc when y(y) = y(x). 

1 See ref. f.4, p. 555, or ref. 19. 

(4.4) 
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The regularity of these new coordinate functions g’(x ) in the interior, C-, of C’ 
where we have already picked one set of regular coordinates, x’(x), is detw 
mined by the regularity of the coordinate transformations .I/‘(:?) and .r’( /), i.e.! 
of y = JIx and x = &‘y = JIy. But JIx is an analytic function of its argument8s 
x = {xi! except at x = cI , so we may consider y(.r ) as analytic coordinat,rs (III 
C*. Xow consider y(z) as coordinates defined over a region of ~11 including lwt 
only I, where yt 2) = y(y) but a neighborhood of sphere 1 in CY (where y(z I = 
y( :r ) as given in Eq. (4.3) 1. Of the two conditions ( 19) which a set of functiolw 

y( z ) must sa&fy in order to be a coordinate system, we have verified one, t~anwly, 
that t#hey are related regularly to any other coordinate system where the patcahw 
overlap. The other requirement8 on y( 2) is that y( 2 1 map the points .z iI1 t’lle 
y( 2,) coordiliate patch in a one t,o one way onto aI1 fqw/l set of the euclideali 
:<-spare of the column matrices y. The dificulty in achieving this is that we \vish 
to i~wl\&~ the points of sphere I ! which are on t,he /WWK/W~ of 7: as Z’H/VY~(II, 
poiilt,s d t,lle y( 2’) coordinat8e patch. A4s defined here, y( z j satisfies this co~~ditio~~ 
if its dom:Lijl of definition (coordinate patchI is taken to itkclude, ill additions to 
I,. t,how poilltS of ZY satisfying 

U’ - 6 < ~ y(x) - Cl 1 5 aI I 4..i 1 

for some 6 > 0. Then, according to (4.4) the set Lc of all corresponding matmricw 

y( 2 ) call be thought of as consisting of L ( in 15’,! ) modified by reducing t,he 
radius of sphere 1 by c, and this is an open set of lTY”, as is I,. The preceding 
sentence is precisely true only if all the points .r of J?.~’ which satisfy (4.,5 ) also 
below+ t,o 7>, i.e., if y(x) cannot be in the .I1 image of any other sphere. If the 
spheres iutJwsect this is impossible to achieve; we assume no intersections atld 
then take E wfIiciently small. 

(Yearly the definition of the y(z) coordinat)es can be similarly &etlded 
(using y = .fkx) to include e neighborhoods (4.5) of all the other sphews it) C>. 
l:or snfEGntly small c! these neighborhoods do llot overlap alld it is u~lambiguous 
which JA to take in defining y( :r,). The structure of X as an analytic manifold 
is t,hell defi~wd by the two coordinate pat,ches, x( 2 j on 7;, and y( 2) 011 I. plus 
the c ~wighborhoods of spheres in CY (i.e.. y( 2) on the region A’ of Lemnlas I< 
and -l 1. .In analytic Riemannian metric on ~11 is defined by t,akitlg 

d12 = x4(y) (d& + d,l$ + djy;j2 ) c 4.+ 1 

on the yc 2 ) poordinat’e patch, and 

dZ’ = x4(x’) C’dx,’ + dx2’ + d~:~‘) c 4Ak ) 

on the x(\z) coordinate patch, where x as a function of three real variables is 

defined by Eq. (3.8). According to Lemma 3, x (and hence c/j’) is analytic: 
according t,o 1,emma 4, x is never zero, so dl’ always has the proper (elliptic’) 
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signature. Further, since x satisfies the flat space Laplace equation, it follows 
from Eq. (2.1) that dl’ has vanishing scalar curvature R. The final statement we 
need is that, where the coordinate patches overlap, Eqs. (4.6) do not give in- 
consistent definitions of dl’, i.e., the right hand sides must be related by the co- 
ordinate transformation law y’(xJ). This coordinate transformation is y = Jkx, 
choosing the appropriate Jk in each comlected overlap region. Substituting this 
transformation law in Eqs. (4.6) yields as the consistency requirement just Eq. 
(3.3). That is, x must have those symmetries which were established in Lemma 2. 

V. DISCUSSION 

Two questions will be discussed here: some special cases and possible generali- 
zations of the result stated in the previous section, and the question of associating 
a conserved “intrinsic mass” parameter with the topological feat,ures of this 
manifold. 

One special case of the solution of the initial value problem given in Section 
IV is of course the Schwarzschild initial values discussed in Section II. Another 
special case, where there are only two Einstein-Rosen bridges, has been ob- 
tained previously (20) by other methods. If the two spheres which define the 
solution mentioned above have the same radius, ul = uz , then the solution may 
be interpreted (20) as a “wormhole” rather than as a pair of identical Einstein- 
Rosen bridges. The methods of the present paper do not seem to allow a “worm- 
hole” interpretation of the solution unless a plane of reflection symmetry is 
introduced; it does not appear sufI%ent merely to make the radii of the spheres 
equal in pairs, a2* = u2n+l . 

The idea of using strange topologies was introduced by Wheeler (21) in order 
to allow for charged objects without introducing a charge density, or a charged 
field, into the theory. A manifold of the type shown in Fig. 3 has been given 
(I?), where the flux of electric field through each “neck” is arbitrary. However, 
I had not been able to find any manifolds resembling Fig. 2 which satisfied the 
equations of geometrostatics including an electric field, namely,’ 

(5.lg) 

&,$ = 0. (5.le) 

This problem has been solved by Lindquist (22) who presents solutions of Eqs. 

2 In these initial value equations we have set B = 0 so that we might continue to as- 
sume K<j = 0. The notations are all three dimensional, &g is a vector dens2y in the 3.mani- 
fold so the metric does not appear in Eq. (5.le). Heaviside (rationalized) electromagnetic 
units are used, and we set c = 1 = 16~-,~? where 7 is the Newtonian gravitational constant. 
Cf. ref. (19) and ref. (7). 
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(5.1) with the topology of Einstein-Rosen bridges’ as in Fig. 2. In the neutral 
case again, I have found solutions (9) which have the appearance of Fig. :{ on a 
small scale, but on a larger scale (where the “flanges” go unnoticed) have the 
appearance of a spherical universe instead of an asymptotically flat space. A1~~ 
analogous modification of the solution given in the present paper would give a 
closed universe satisfying the empty-space Einstein equations, but I have llot 
succeeded in finding such a solution. In auy case solutious of the empty-space 
initial value problem, Eq. (1.3), are known to exist in closed spaces (,$) whew 
the effective matter density is supplied by “gravitons” ( gravitational waves j 
rather t,han by “topologicons” (Einstein-Rosen bridges, etc. 1. 

To what, extent will the “bridges” in Fig. 2 maintain their identity as the 
met,ric evolves in time? Assume the time dependent solution is obtained under 
the coordinate conditions4 go’ = -1, goi = 0. Evidently the same comput8ations 
are involved in obtaining the solution using spatial coordinates x(2+) ~war a 
point Z+ = x in U as using the coordinates Y(L) near the corresponding poilit 
[x(2+) = y(,~-)], L = u in L. The coordinate conditions gU,U = -&, aw pw 
served by time independent, coordinate transformations of the type y = JAx, so 
all the symmetries of the initial conditions are preserved in the t,ime develop.. 
merit. In particular the preferred spheres in terms of which the initial condit8ions 
were defined have a geometrical significance for the dynamic 4.space as the set 
of points invariant under the symmetry z * JA-z. Thus the “bridges” do remains 
recognizable, and the time trajectory of the “neck” can eveu be located. 

Since the “bridges” can be identified, the next question is whether they have 
any simple properties by which they can be characterized. In the charged case 
(22) t’he charge of each bridge is a ITell defined constant of the motion ( t.$) ; 
in t#he present, neutral case the most natural thing to look for is some sort of 
“intrinsic mass” parameter. This quantity is most easily found for met,rics of 
the t#ype indicated by Fig. 3. There one may introduce on any “flange” a set of 
coordinate iu which the metric component’s approach t,he flat rect,au~ula~ 

3 Xote tll:lt Einstein and Rosen (f8) proposed ctlanging tile sign of the gravitational 
const,:int, i.e. of the right hand side of Eq. (5.lg) in order to avoid t,he excessively higIl 
coulon~b self-energies which result from the small gravitational (topologiral) rutoff. This 
would llave a disastrous effect on the equations of motion as is apparent from the f:Lvt, 
that, tlie Papapetron solution (23) where Newtonian attraction and coulomb repulsion are 
exactly balanced by taking VL~ = ek would nn longer be stat,ic with the Einst,ein--Rosen 
chalice of sign. The self-energy of physical particles in any case must fertainly inv~~lve 
(~uantun) efyects. Cf. ref. 14, Eq. (244), and ref. 12. 

,’ It is known that in these coordinates the metric t,ensor components will develop a 
singularitv within a finit’e proper time (24). This could be merely a singularity of the c*,)- 
ordinate system (25) but in many cases it turns out to be a real geometrical singularity as 
in the ,S<~l~w:trzschild solution (R. W. Lindquist, private ~~~~~~~~~~~nirati~)~~) or the Fri(4)tl:kn 
c~~sn~ol~~gi(*:tl models, 
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metric, gij - I&, in the infinite regions out on the flange. Then, using any 
standard surface integral formula for total energy, one defines the “intrinsic 
mass” of flange k as the apparent total mass of the systems as viewed from the 
asymptotic reaches of flange k. For instance, take (26) 

(5.2) 

where the integral is over an arbitrarily large sphere in an asymptotically ret- 

tangular coordinate system for flange k chosen (Lorentz transformations) so 
that the corresponding integrals for total momentum vanish. Because of the 
topological peculiarities, the time independence of an integral like (5.2) does 
not follow by converting it to a volume integral of a pseudotensor it and appiy- 
ing a conservation law tFr N = 0. However a direct computation (26) of the time 
derivative of (5.2) using the field equations only in the asymptotic region shows 
that ?‘% is in fact a constant. one might attempt to extend this argument to the 
case of Fig. 2 as follows: Since the metric given in Section IV is analytic, one 
can in principle analytically continue it from any small neighborhood to the 
entire covering space consisting of all the regular points of the fmlctions x de- 
fined in Section III. This is then a manifold with infinitely many flanges (one 
for each pole in x), and a constant of the motion ma is associat’ed with each. 
The ma corresponding to poles inside sphere hi (of Fig. 4) would theu be char- 
acteristic properties of sphere I?. This argument fails when one remembers that 
all the poles in x are images of each other under the symmetries Jil.Ji2 . . . J;n of 
the metric; consequently all the ma are equal and must be interpreted as the total 
mass of the interacting system. 

RECEIVED: December 26, 1962 
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