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Abstract. We develop and apply a fully covariant 1+ 3 electromagnetic analogy for gravity.
The free gravitational field is covariantly characterized by the Weyl gravito-electric and gravito-
magnetic spatial tensor fields, whose dynamical equations are the Bianchi identities. Using a
covariant generalization of spatial vector algebra and calculus to spatial tensor fields, we exhibit
the covariant analogy between the tensor Bianchi equations and the vector Maxwell equations.
We identify gravitational source terms, couplings and potentials with and without electromagnetic
analogues. The nonlinear vacuum Bianchi equations are shown to be invariant under covariant
spatial duality rotation of the gravito-electric and gravito-magnetic tensor fields. We construct
the super-energy density and super-Poynting vector of the gravitational field as naturalU(1)
group invariants, and derive their super-energy conservation equation. A covariant approach to
gravito-electric/magnetic monopoles is also presented.

PACS numbers: 0430, 0420, 1130, 1130F, 1115T

1. Introduction

There is a surprisingly rich and detailed correspondence between electromagnetism and
general relativity, uncovered in a series of fundamental papers by Bel [1], Penrose [2] and
others [3–9] (see [9, 10] for more references), and further developed recently (see, e.g., [11–
19]). This correspondence is reflected in the Maxwell-like form of the gravitational field
tensor (the Weyl tensor), the super-energy–momentum tensor (the Bel–Robinson tensor) and
the dynamical equations (the Bianchi identities). Another form of the correspondence arises
in the search for geons (localized, non-singular, topological solutions of Einstein’s field
equations with mass and angular momentum): in the known (approximate) solutions, the
geometry of the electromagnetic geon is identical to that of the gravitational geon [20, 21].

Here we pursue the ‘electromagnetic’ properties of gravity in areas which have already
proved useful for extensions of electromagnetism to non-Abelian gauge theories and
string theory. Our emphasis is on a 1+ 3 covariant, physically transparent, and non-
perturbative approach, with the gravito-electric and gravito-magnetic spatial tensor fields as
the fundamental physical variables. Using an improved covariant formalism, including a
covariant generalization to spatial tensors of spatial vector algebra and calculus, we show
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in detailed and transparent form the correspondence between the electric/magnetic parts of
the gravitational field and of the Maxwell field. We identify gravitational source terms,
couplings and potentials with and without electromagnetic analogues, thus providing further
physical insight into the role of the kinematic quantities shear, vorticity and 4-acceleration.

In the vacuum case, we show that the nonlinear (non-perturbative) Bianchi equations
for the gravito-electric and gravito-magnetic fields are invariant under covariant spatial
duality rotations, in exact analogy with the source-free Maxwell equations for the electric
and magnetic fields. The analogy is, of course, limited by the fact that the Maxwell
field propagates on a given spacetime, whereas the gravitational field itself generates the
spacetime. The electromagnetic vectors fully characterize a Maxwell solution, and duality
maps Maxwell solutions into Maxwell solutions. The gravito-electric/magnetic tensors
are not sufficient to characterize covariantly a solution of Einstein’s equations—one also
needs the kinematic quantities which are subject to the Ricci identities [9]. Duality is
an invariance only of the Bianchi identities, and not the Ricci identities, so that it does
not map Einstein solutions into Einstein solutions. Nevertheless, the covariant gravito-
electric/magnetic duality reveals important properties of the gravitational field.

The covariant 1+ 3 duality has not, to our knowledge, been given before. Although
duality invariance follows implicitly from Penrose’s spinor formalism [2, 22], this is in
terms of the four-dimensional Weyl spinor, rather than its 1+3 electric and magnetic tensor
parts. Four-dimensional covariant tensor approaches to the electromagnetic analogy have
been developed (see e.g. [12]), and non-covariant linearized Maxwell-type equations are
well established, both in terms of gravito-electromagnetic vectors (see e.g. [23, 24]) and
tensors (see e.g. [8]). In [25], a covariant and nonlinear vector approach is developed for
stationary spacetimes. Our approach is fully covariant and non-perturbative, and in addition
it is centred on the gravito-electromagnetic spatial tensor fields, allowing for a more direct
and transparent interpretation based on the Maxwell vector analogy. This approach is a
development of the work by Trümper [5], Hawking [7] and Ellis [9], and is related to
recent work on a covariant approach to gravitational waves [16–19] and to local freedom
in the gravitational field [19]. A shadow of our general duality result arises in linearized
gravitational wave theory, where for vacuum or de Sitter spacetime, there is an interchange
symmetry between the gravito-electric and gravito-magnetic tensors [18].

Duality invariance has important implications in field theory in general. It was
essentially this symmetry of the Abelian theory, and attempts to extend it to include matter,
which led to the Montonen–Olive electromagnetic duality conjecture that there exists a group
transformation mapping electric monopoles into magnetic monopoles within the framework
of a non-Abelian (specificallySU(2)) gauge theory [26]. This conjecture has proved
particularly fruitful, stimulating work onS, T andU dualities in string theory (see e.g.
[27–29]), the extension of the electromagnetic duality to magnetically charged black holes
and nonlinear electrodynamics [31, 32] and leading to the Seiberg–Witten proof of quark
confinement in supersymmetric Yang–Mills theory via monopole condensation [30].

We use the covariant spatial duality to find the gravitational super-energy density and
super-Poynting vector as natural group invariants, and derive a new covariant super-energy
conservation equation. Finally, we discuss gravito-electric/magnetic monopoles, providing
a covariant characterization, in contrast to previous non-covariant treatments [24, 33, 34].
In the linearized case, we show that the Taub-NUT gravito-magnetic monopole given in [33]
is related to the Schwarzschild gravito-electric monopole by a spatial duality rotation and an
interchange of 4-acceleration and vorticity. This provides a covariant form of the relation
previously given in non-covariant approaches [35, 36]. It is well known that the NUT metrics
may be obtained from the Schwarzschild metric via the Ehlers–Geroch transformation [35].
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This transformation is, in fact, the generator ofT -duality in string theory, but it is not
a duality transformation in the sense described here, since it maps Einstein solutions to
Einstein solutions and thus necessarily involves kinematic and geometric conditions in
addition to a duality rotation. Furthermore, the Ehlers–Geroch transformation requires the
existence of a Killing vector field, whereas the general duality that we present does not
require any spacetime symmetry.

2. Covariant spatial vector and tensor calculus

To elaborate the electromagnetic properties of the free gravitational field in general relativity,
we first present the required covariant formalism, which is based on [37], a streamlined and
extended version of the Ehlers–Ellis 1+ 3 formalism [9]. Then we give the covariant form
of the Maxwell spatial duality in a general curved spacetime. In the following section we
extend the treatment to the gravitational field.

Given a congruence of observers with 4-velocity fieldua, thenhab = gab+uaub projects
into the local rest spaces, wheregab is the spacetime metric†. The spatially projected part
of a vector is

V〈a〉 = habVb,
and the spatially projected, symmetric and trace-free part of a rank-2 tensor is

A〈ab〉 = h(achb)dAcd − 1
3hcdA

cdhab.

The spatial alternating tensor is

εabc = ηabcdud = ε[abc],

whereηabcd = η[abcd] is the spacetime alternating tensor. Any spatial rank-2 tensor has the
covariant irreducible decomposition

Aab = 1
3hcdA

cdhab + A〈ab〉 + εabcAc,
where

Aa = 1
2εabcA

[bc]

is the vector that is the spatial dual to the skew part. Thus the skew part of a spatial tensor
is vectorial, and the irreducibly tensor part is symmetric. In the 1+ 3 covariant approach
[9, 19], all physical and geometric variables split into scalars, spatial vectors or spatial
tensors that satisfyAab = A〈ab〉. From now on, all rank-2 spatial tensors will be assumed
to satisfy this condition.

The covariant spatial vector product is

[V,W ]a = εabcV bWc,

and the covariant generalization to spatial tensors is

[A,B]a = εabcAbdBcd,
which is the vector that is spatially dual to the covariant tensor commutator.

The covariant time derivative is

Ȧa···b··· = uc∇cAa···b···,
† We follow the notation and conventions of [9, 37]. (Square) round brackets enclosing indices denote (anti-)
symmetrization, while angled brackets denote the spatially projected, symmetric and trace-free part;a, b, . . . are
spacetime indices.
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and the covariant spatial derivative is

DaA
b···

c··· = haphbq · · ·hcr · · · ∇pAq···r···.
Then the covariant spatial divergence and curl of vectors and rank-2 tensors are defined by
[19, 37]:

divV = DaVa, curlVa = εabcDbV c, (1)

(divA)a = DbAab, curlAab = εcd(aDcAb)
d , (2)

where curlAab is trace free ifAab = A(ab). The tensor curl and divergence are related by

εabcD
bAd

c = curlAad + 1
2εadcDbA

bc.

The kinematics of theua-congruence are described by the expansion2 = Daua, the
shearσab = D〈aub〉, the vorticityωa = − 1

2 curlua and the 4-acceleratioṅua = u̇〈a〉.
The above operators obey the covariant identities

(Daf )
· = Daḟ − 1

32Daf + u̇aḟ − σabDbf − [ω,Df ]a + uau̇bDbf, (3)

curl Daf = −2ḟ ωa, (4)

Da[V,W ]a = Wa curlVa − V a curlWa, (5)

Da[A,B]a = Bab curlAab − Aab curlBab, (6)

together with far more complicated identities [19, 37]. In the case where spacetime is
almost spatially isotropic and homogeneous, i.e. a linearized perturbation of a Friedmann–
Lemâıtre–Robertson–Walker (FLRW) background, some of the main further identities take
the linearized form [38, 39](

DaVa
)· ≈ DaV̇a −HDaVa, (7)(

DbAab
)· ≈ DbȦab −HDbAab, (8)

(curlVa)
· ≈ curl V̇a −H curlVa, (9)

(curlAab)
· ≈ curl Ȧab −H curlAab, (10)

Da curlVa ≈ 0, (11)

Db curlAab ≈ 1
2 curl

(
DbAab

)
, (12)

curl curlVa ≈ −D2Va + Da

(
DbVb

)+ 2
3

(
ρ − 3H 2

)
Va, (13)

curl curlAab ≈ −D2Aab + 3
2D〈aDcAb〉c +

(
ρ − 3H 2

)
Aab, (14)

whereH is the background Hubble rate,ρ is the background energy density and D2 = DaDa

is the covariant Laplacian.
The electric and magnetic fields measured byua observers are defined via the Maxwell

tensorFab by

Ea = Fabub = E〈a〉, Ha = 1
2εabcF

bc ≡ ∗Fabub = H〈a〉, (15)

where∗ denotes the dual. These spatial physically measurable vectors are equivalent to the
spacetime Maxwell tensor, since

Fab = 2u[aEb] + εabcHc. (16)

Maxwell’s equations∇[aFbc] = 0 and∇bFab = Ja are given in 1+3 covariant form for
Ea andHa by Ellis [40]. In the streamlined formalism, these equations take the simplified
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form

DaEa = −2ωaHa + %, (17)

DaHa = 2ωaEa, (18)

Ė〈a〉 − curlHa = − 2
32Ea + σabEb − [ω,E]a + [u̇, H ]a − ja, (19)

Ḣ〈a〉 + curlEa = − 2
32Ha + σabHb − [ω,H ]a − [u̇, E]a, (20)

where% = −Jaua is the electric charge density andja = J〈a〉 is the electric current. In flat
spacetime, relative to an inertial congruence (2 = u̇a = ωa = σab = 0), these equations
take their familiar non-covariant form.

Introducing the complex electromagnetic spatial vector fieldIa = Ea+ iHa, we see that
in the source-free case (Ja = 0) Maxwell’s equations become

DaIa = 2iωaIa, (21)

İ〈a〉 + i curl Ia = − 2
32Ia + σabIb − [ω, I ]a − i[ u̇, I ]a. (22)

It follows that the source-free Maxwell equations in an arbitrary curved spacetime, relative
to an arbitrary congruence of observers, are invariant under the covariant global spatial
duality rotationIa → eiφIa, whereφ is constant. The energy density and Poynting vector

U = 1
2I

a Īa = 1
2

(
EaE

a +HaHa
)
, (23)

Pa = 1

2i
[Ī, I ]a = [E,H ]a, (24)

are natural group invariants. Their invariance also follows from the duality invariance of
the energy–momentum tensor [22, 40]

Ma
b = 1

2

(
FacF

bc + ∗Fac∗Fbc
)
, (25)

sinceU = Mabu
aub and Pa = −M〈a〉bub. Using the identity (5), and the propagation

equations (19) and (20), we find a covariant energy conservation equation:

U̇ + DaPa = − 4
32U − 2u̇aPa + σab

(
EaEb +HaHb

)
. (26)

This reduces in flat spacetime for inertial observers to the well known form∂tU+div EP = 0.
A further natural group invariant is

πab = −I〈a Īb〉 = −E〈aEb〉 −H〈aHb〉, (27)

which is just the anisotropic electromagnetic pressure [40]. It occurs in the last term of the
conservation equation (26), i.e.−σabπab.

For later comparison with the gravitational case, we conclude this section by considering
the propagation of source-free electromagnetic waves on an FLRW background, assuming
that Ea = 0 = Ha in the background. We linearize and take the curl of equation (19),
evaluating curl curlHa by the identity (13) and equation (18). We eliminate curlĖa by
linearizing equation (20), taking its time derivative, and using identity (9). The result is the
wave equation

�2Ha ≡ −Ḧa + D2Ha ≈ 5HḢa +
(
2H 2+ 1

3ρ − p
)
Ha, (28)

where p is the background pressure, and we used the FLRW field equation 3Ḣ =
−3H 2− 1

2(ρ + 3p). A similar wave equation may be derived forEa.
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3. The Bianchi identities and nonlinear duality

The Maxwell analogy in general relativity is based on the correspondenceCabcd ↔ Fab,
where the Weyl tensorCabcd is the free gravitational field (see [19]). For a givenua, it
splits irreducibly and covariantly into

Eab = Cacbducud = E〈ab〉, Hab = ∗Cacbducud = H〈ab〉, (29)

which are called its ‘electric’ and ‘magnetic’ parts by analogy with the Maxwell
decomposition (15). These gravito-electric/magnetic spatial tensors are in principle
physically measurable in the frames of comoving observers, and together they are equivalent
to the spacetime Weyl tensor, since [37]

Cab
cd = 4

{
u[au

[c + h[a
[c
}
Eb]

d] + 2εabeu
[cHd]e + 2u[aHb]eε

cde. (30)

This is the gravito-electromagnetic version of the expression (16). The electromagnetic
interpretation ofEab andHab is reinforced by the fact that these fields covariantly (and
gauge-invariantly) describe gravitational waves on an FLRW background (including the
special case of a flat vacuum background) [7, 38].

In the 1+ 3 covariant approach to general relativity [9], the fundamental quantities are
not the metric (which in itself does not provide a covariant description), but the kinematic
quantities of the fluid, its energy densityρ and pressurep, and the gravito-electric/magnetic
tensors. The fundamental equations governing these quantities are the Bianchi identities and
the Ricci identities forua, with Einstein’s equations incorporated via the algebraic definition
of the Ricci tensorRab in terms of the energy–momentum tensorTab. We assume that the
source of the gravitational field is a perfect fluid (the generalization to imperfect fluids is
straightforward). The Bianchi identities are

∇dCabcd = ∇[a
(−Rb]c + 1

6Rgb]c
)
, (31)

whereR = Raa andRab = Tab− 1
2Tc

cgab. The contraction of (31) implies the conservation
equations. The trace-free part of (31) gives the gravitational equivalents of the Maxwell
equations (17)–(20), via a covariant 1+ 3 decomposition [5, 9]. In our notation, these take
the simplified form:

DbEab = −3ωbHab + 1
3Daρ + [σ,H ]a, (32)

DbHab = 3ωbEab + (ρ + p)ωa − [σ,E]a, (33)

Ė〈ab〉 − curlHab = −2Eab + 3σc〈aEb〉c − ωcεcd(aEb)d + 2u̇cεcd(aHb)
d − 1

2(ρ + p)σab,
(34)

Ḣ〈ab〉 + curlEab = −2Hab + 3σc〈aHb〉c − ωcεcd(aHb)d − 2u̇cεcd(aEb)
d . (35)

These are the fully nonlinear equations in covariant form, and the analogy with the Maxwell
equations (17)–(20) is made strikingly apparent in our formalism.

Vorticity couples to the fields to produce source terms in both cases, but gravity has
additional sources from atensor coupling of the shearto the field. The analogue of the
charge density% as a source for the electric field, is the energy density spatial gradient Daρ

as a source for the gravito-electric field. Since Daρ covariantly describes inhomogeneity in
the fluid, this is consistent with the fact that the gravito-electric field is the generalization
of the Newtonian tidal tensor [9].

There is no magnetic charge source forHa, but the gravito-magnetic fieldHab has the
source(ρ+p)ωa. Sinceρ+p is the relativistic inertial mass–energy density [9],(ρ+p)ωa is
the ‘angular momentum density’, which we identify as a gravito-magnetic ‘charge’ density.
Note, however, that angular momentum density does not always generate a gravito-magnetic
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field. The G̈odel solution [9] provides a counter-example, whereHab = 0 and the non-zero
angular momentum density is exactly balanced by the vorticity/gravito-electric coupling in
equation (33), withσab = 0.

For both electromagnetism and gravity, the propagation of the fields is determined by the
spatial curls, together with a coupling of the expansion, shear, vorticity and acceleration to
the fields. The analogue of the electric currentja is the gravito-electric ‘current’(ρ+p)σab,
which is the ‘density of the rate-of-distortion energy’ of the fluid. There is no magnetic
current in either case.

If the Maxwell field is source-free, i.e.% = 0 = ja, and the gravitational field is
source-free, i.e.ρ = 0 = p, then the similarity of the two sets of equations is even
more apparent, and only the tensor shear coupling in the case of gravity lacks a direct
electromagnetic analogue. (Note that these shear coupling terms govern the possibility of
simultaneous diagonalization of the shear andEab, Hab in tetrad formulations of general
relativity [41, 42].)

To obtain the gravitational analogue of the complex equations (21) and (22), which
lead to the Maxwell duality invariance, we consider the vacuum caseρ = 0 = p. In
general,ua is no longer uniquely defined in vacuum, although in particular cases (such as
stationary spacetimes), there may be a physically unique choice. However, our results hold
for an arbitrary covariant choice ofua, without any special conditions on the congruence.
By analogy with the complex electromagnetic spatial vectorIa, we define the complex
gravito-electromagnetic spatial tensor

Iab = Eab + iHab. (36)

Then equations (32)–(35) reduce to

DbIab = 3iωbIab − i[σ, I ]a, (37)

İ〈ab〉 + i curl Iab = −2Iab + 3σc〈aIb〉c − ωcεcd(aIb)d − 2iu̇cεcd(aIb)d . (38)

Apart from the increased economy, the system is now clearly seen to be invariant under the
globalU(1) transformation:

Iab → eiφIab, (39)

which is precisely the tensor (spin-2) version of the vector symmetry of the source-free
Maxwell equations. We have thus established the existence of the covariant spatial duality
at the level of the physically relevant gravito-electric/magnetic fields, in the general (non-
perturbative, arbitrary observer congruence) vacuum case. (As with electromagnetism,
duality invariance breaks down in the presence of sources.)

A covariant super-energy density and super-Poynting vector arise naturally as invariants
under spatial duality rotation, in direct analogy with the Maxwell invariants of equations (23)
and (24):

U = 1
2I

abĪab = 1
2

(
EabE

ab +HabHab
)
, (40)

Pa = 1

2i
[Ī, I ]a = [E,H ]a ≡ εabcEbdHcd . (41)

This reflects the duality invariance of the Bel–Robinson tensor [1]

Mab
cd = 1

2

(
Caebf C

cedf + ∗Caebf ∗Ccedf
)
, (42)

which is the natural covariant definition of the super-energy–momentum tensor for the free
gravitational field, since [1, 10]

U = Mabcdu
aubucud, (43)

Pa = −M〈a〉bcdubucud. (44)
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The agreement between equations (43) and (40) follows obviously from equation (42)
on using equation (29). However, it is not obvious that equation (44) agrees with our
equation (41) for the super-Poynting vector, and one requires the identity (30) to show the
agreement.

Our expression (40) for the gravitational super-energy density gives a direct and
clear analogy with the electromagnetic energy density (23). Our expression (41) for the
gravitational super-Poynting vector, in terms of the tensor generalization of the vector
product, provides a clearer analogy with the electromagnetic Poynting vector (24). The
analogy is reinforced by the fact thatU andPa obey a super-energy conservation equation,
which is the tensor version of the electromagnetic energy conservation equation (26). To
show this, we need the new covariant identity (6). Using this and the Bianchi propagation
equations (34) and (35), we find that

U̇ + DaPa = −22U − 4u̇aPa + 3σ c〈a
[
Eb〉cEab +Hb〉cHab

]
. (45)

This is the non-perturbative and covariant generalization of Bel’s linearized conservation
equation [1, 10]:∂tU = −div EP .

The last term in the conservation equation (45) contains another natural group invariant

πab = −Ic〈a Īb〉c = −Ec〈aEb〉c −Hc〈aHb〉c, (46)

which we interpret as the anisotropic super-pressure of the gravito-electromagnetic field.
A further covariant quantity that may be naturally constructed from equation (36) is

IabIab =
(
EabE

ab −HabHab
)+ 2iEabH

ab

= 1
8

(
CabcdC

abcd + iCabcd
∗Cabcd

)
(47)

which is not invariant under equation (39). However, it proves very useful in categorizing
spacetimes [44] and vanishes in Petrov type-III and type-N spacetimes [13] (supporting the
existence of gravitational waves in these spacetimes, since the analogous quantities vanish
for purely radiative electromagnetic fields). Further, the electromagnetic analogue of the real
part of equation (47), namelyEaEa −HaHa = − 1

2FabF
ab, is just the Lagrangian density.

The analogue of the imaginary part isEaHa = 1
4Fab

∗Fab whose integral in non-Abelian
gauge theories is proportional to the topological instanton number.

As pointed out in the introduction, duality rotations preserve the Bianchi identities in
vacuum, but not the Ricci identities forua. This is clearly apparent from the spatial tensor
parts of the Ricci identities [9], which in our formalism have the simplified form

Eab = D〈au̇b〉 − σ̇〈ab〉 − 2
32σab − σc〈aσb〉c − ω〈aωb〉 + u̇〈au̇b〉, (48)

Hab = curlσab + D〈aωb〉 + 2u̇〈aωb〉. (49)

In order to preserve the Ricci identities, and map Einstein solutions to Einstein solutions,
one needs to perform kinematic transformations in addition to the duality rotation. An
example is presented in the following section.

The electromagnetic analogy suggests a further interesting interpretation of the kinematic
quantities arising from the Ricci equations (48) and (49)†. In flat spacetime, relative to
inertial observers, the electric and magnetic vectors may be written as

EE = E∇V − ∂t Eα, EH = curl Eα,
whereV is the electric scalar potential andEα is the magnetic vector potential‡. Comparing
now with the Ricci equations (48) and (49), we see that the 4-acceleration is a covariant

† Note that these Ricci equations have the same form in the non-vacuum case.
‡ The covariant form of these potentials isV = uaAa , αa = A〈a〉, whereAa is the 4-potential.
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gravito-electric vector potential and the shear is a covariant gravito-magnetic tensor potential.
The vorticity derivative in (49) has no electromagnetic analogue, and vorticity appears to
be an additional gravito-magnetic vector potential. Furthermore, the gauge freedom in
the electromagnetic potentials does not have a direct gravitational analogue in the Ricci
gravito-potential equations (48) and (49), since the gravito-electric/magnetic potentials are
invariantly defined kinematic quantities. (Note that the Lanczos potential for the Weyl tensor
does have a gauge freedom analogous to that in the Maxwell 4-potential [12].)

The remaining Ricci equations in 1+ 3 covariant form are [19]

2̇+ 1
32

2 = − 1
2(ρ + 3p)+ Dau̇a + u̇au̇a + 2ωaωa − σabσab, (50)

ω̇〈a〉 + 2
32ωa = − 1

2 curl u̇a + σabωb, (51)
2
3Da2 = − curlωa + Dbσab + 2[ω, u̇]a, (52)

Daωa = u̇aωa, (53)

and do not involve the gravito-electromagnetic field.
Finally in this section, we extend the analogy to wave propagation. The magnetic wave

equation (28) has a simple gravito-magnetic analogue. In order to isolate the purely tensor
perturbations of an FLRW background in a covariant (and gauge-invariant) way, one imposes
ωa = 0 [17]. We linearize and take the curl of equation (34), using the linearizations of
equations (35) and (33), and identities (10) and (14). This does not directly produce a wave
equation, since the curl of the shear term in (34) has to be eliminated. (In the Maxwell case
this feature did not arise, since we setja = 0.) The elimination is achieved via the Ricci
equation (49), and we find that

�2Hab ≡ −Ḧab + D2Hab ≈ 7HḢab + 2
(
3H 2− p)Hab, (54)

in agreement with [17, 18], and in striking analogy with the magnetic wave equation (28).
Further discussion of covariant gravitational wave theory may be found in [17–19, 43].

4. Gravitational monopoles

The electromagnetic correspondence we have developed suggests a covariant characteri-
zation of gravito-electric (magnetic)monopoles, as stationary vacuum spacetimes outside
isolated sources, with purely electric (magnetic) free gravitational field, i.e.Hab = 0
(Eab = 0). This is reinforced by the fact that monopoles do not radiate, and gravita-
tional radiation necessarily involves bothEab andHab nonzero (see [16, 18, 19], consistent
with Bel’s criterionPa 6= 0 [1, 10]). Our identification in the previous section of density
inhomogeneity and angular momentum density as sources of, respectively, gravito-electric
and gravito-magnetic fields, suggests that the monopole sources will be, respectively, mass
and angular momentum. However, as pointed out previously, it is possible that non-zero
angular momentum is compatible with a purely gravito-electric field, as illustrated by the
Gödel solution.

The 4-velocity fieldua is not defined by a fluid, but is defined as the normalization of
the stationary Killing vector fieldξa = ξua. As a consequence of Killing’s equations, we
have2 = 0= σab [44], so that

∇bua = εabcωc − u̇aub.
The covariant equations governing non-perturbative monopoles are complicated. Some
simplification arises from the Killing symmetry, which implies

Lξωa = ξω̇a + uaωbDbξ = 0,

LξHab = ξḢab + 2ξωcεcd(aHb)
d − 2ξu(aHb)cu̇

c = 0,
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and a similar equation forEab. Then it follows that

ω̇〈a〉 = 0, (55)

Ḣ〈ab〉 = −2ωcεcd(aHb)
d , (56)

Ė〈ab〉 = −2ωcεcd(aEb)
d . (57)

Now equations (55)–(57), together with the basic monopole conditions, are applied to
the Bianchi equations (32)–(35) and Ricci equations (48)–(53). We obtain:

Gravito-electric and gravito-magnetic monopoles:

Dau̇a = −u̇au̇a − 2ωaω
a, (58)

ω̇〈a〉 = 0, (59)

curl u̇a = 0, (60)

curlωa = −2[u̇, ω]a, (61)

Daωa = u̇aωa. (62)

Gravito-electric monopole:

DbEab = 0, (63)

0= Eabωb, (64)

Ė〈ab〉 = 0, (65)

0= ωcεcd(aEb)d , (66)

curlEab = −2u̇cεcd(aEb)
d , (67)

Eab − D〈au̇b〉 = u̇〈au̇b〉 − ω〈aωb〉, (68)

D〈aωb〉 = −2u̇〈aωb〉. (69)

Gravito-magnetic monopole:

DbHab = 0, (70)

0= Habωb, (71)

Ḣ〈ab〉 = 0, (72)

0= ωcεcd(aHb)d , (73)

curlHab = −2u̇cεcd(aHb)
d , (74)

D〈au̇b〉 = −u̇〈au̇b〉 + ω〈aωb〉, (75)

Hab − D〈aωb〉 = 2u̇〈aωb〉. (76)

Equation (60) implies that there exists an acceleration potential:

u̇a = Da8. (77)

This holds even whenωa 6= 0, despite the identity (4), since8 is invariant underξa, so that
8̇ = 0. Equation (61) shows that curlωa is orthogonal to the vorticity and 4-acceleration:

ωa curlωa = 0= u̇a curlωa.

Schwarzschild spacetime, where alsoωa = 0 (since staticity impliesua is hyper-
surface orthogonal), is clearly a non-perturbative gravito-electric monopole according to
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our covariant definition: it is a static vacuum spacetime satisfyingHab = 0, by virtue of
the Ricci equation (49). Equations (77) and (58) imply

D28+ Da8Da8 = 0. (78)

The solution8 determinesu̇a and Eab, and equation (78) ensures that the monopole
conditions (58)–(69) are identically satisfied.

It is not clear whether there exist consistent non-perturbative gravito-magnetic
monopoles, i.e. spacetimes satisfying the covariant equations (58)–(62) and (70)–(76)†.
However, linearized gravito-magnetic monopoles have been found, for example, the
Demianski–Newman solution [33] (see below). It is also not clear whether there exist
gravito-electric monopoles with angular momentum (i.e.ωa 6= 0).

In the case of linearization about a flat Minkowski spacetime, the right-hand sides of
equations (58)–(76) may all be set to zero. In particular, equation (61) implies that there is
a vorticity potential:

ωa ≈ Da9. (79)

The linearization of equations (68) and (76), together with the scalar potential equations (77)
and (79), then imply that the curls vanish to linear order. Thus the linearized gravito-electric
monopole is covariantly characterized by equations (77), (79) and

D28 ≈ 0, Eab ≈ DaDb8, D〈aDb〉9 ≈ 0, (80)

while for the linearized gravito-magnetic monopole

D29 ≈ 0, Hab ≈ DaDb9, D〈aDb〉8 ≈ 0. (81)

It follows, in particular, that a linearized non-rotating gravito-electric monopole is
mapped to a linearized non-accelerating gravito-magnetic monopole via

Iab → iIab, ωa → u̇a, u̇a →−ωa. (82)

Linearized Schwarzschild spacetime is readily seen to satisfy equation (80) with8 = −M/r,
whereM is the mass andr the area coordinate. Using the spatial duality rotation and
kinematic interchange described by equation (82), this monopole is mapped to a linearized
non-accelerating gravito-magnetic monopole with potential9 = −M/r. In comoving
stationary coordinates, the metric of the linearized magnetic monopole follows fromu̇a = 0
andωa = Da9, using a theorem in [40] (p 24):

ds2 = −dt2+ dr2+ r2
(
dθ2+ sin2 θ dϕ2

)+ 4M cosθ dϕ dt. (83)

This is a Taub-NUT solution withm = 0, ` = −M and linearized iǹ ([44], p 133; see
also [36]). In fact, this is precisely the linearized solution found in [33], so that we have a
covariant characterization of that solution in the framework of gravitational duality. Clearly
the magnetic ‘charge’M is an angular momentum parameter, not a mass parameter, and the
metric in equation (83) describes an isolated source with angular momentum but no mass.

5. Concluding remarks

A covariant 1+ 3 approach, based on [9] and its extension [19, 37], is ideally suited to an
analysis of the free gravitational field that is based on observable physical and geometric
quantities, with a clear and transparent analogy in well established electromagnetic theory.

† In [45] it is shown that non-flat vacuum solutions with purely magnetic Weyl tensor are a very restricted class,
and it is suggested that there may be no such solutions.
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We have used such an approach, including, in particular, the generalization of covariant
spatial vector analysis to spatial tensor analysis, which involves developing a consistent
covariant definition of the tensor curl and its properties. Via this approach, we showed the
remarkably close analogy between the Maxwell equations for the electric/magnetic fields
and the Bianchi identities for the gravito-electric/magnetic fields. Although this analogy
has long been known in general terms, our approach reveals its properties at a physically
transparent level, with a detailed accounting for each physical and geometric quantity. We
found new interpretations of the role of the kinematic quantities—expansion, acceleration,
vorticity and shear—in the source and coupling terms of gravito-electromagnetism. The
trace-free part of the Ricci identities also reveals the role of the kinematic quantities as
gravito-electric/magnetic potentials.

The analogy provides a simple interpretation of the super-energy density and super-
Poynting vector as naturalU(1) invariants, and we derived the exact nonlinear conservation
equation that governs these quantities, and which involves a further natural invariant, i.e.
the anisotropic super-pressure. We also used the analogy to show that a covariant spatial
duality invariance exists in vacuum gravito-electromagnetism, precisely as in source-free
electromagnetism. Duality invariance has been important in some recent developments in
field and string theory, and the gravito-electromagnetic invariance in the form found here
may also facilitate new insights into gravity. A crucial feature in the gravitational case,
arising from its intrinsic nonlinearity, is that the duality invariance does not map Einstein
solutions to Einstein solutions, since the Ricci identities are not invariant. Further work
is needed to investigate whether a simultaneous geometric or kinematic transformation
can be found, so that the Bianchi and Ricci equations are invariant under the combined
transformation.

We showed that in linearized vacuum gravity, there is a simple combined
duality/kinematic transformation that maps the Schwarzschild gravito-electric monopole
to the Demianski–Newman gravito-magnetic monopole. This covariant characterization
of the relation between these linearized solutions was based on our covariant definition of
gravito-monopoles in the general nonlinear theory. Further work is needed on the governing
equations for these monopoles, in particular, to see whether nonlinear gravito-magnetic
monopole solutions may be found. A better understanding of the relation between nonlinear
gravito-electric/magnetic monopoles could, as in field theory, open up new approaches and
insights.
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