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Abstract. Black hole spacetimes that are topological geons in the sense of Sorkin can be
constructed by taking a quotient of a stationary black hole that has a bifurcate Killing horizon.
We discuss the geometric properties of these geon black holes and the Hawking-Unruh effect
on them. We in particular show how correlations in the Hawking-Unruh effect reveal to an
exterior observer features of the geometry that are classically confined to the regions behind the
horizons.

1. Introduction

A geon, short for “gravitational-electromagnetic entity”, was introduced in 1955 by John
Archibald Wheeler [1] as a configuration of the gravitational field, possibly coupled to other
zero-mass fields such as massless neutrinos [2] or the electromagnetic field [3], such that a
distant observer sees the curvature to be concentrated in a central region with persistent large
scale features. The configuration was required to be asymptotically flat [4], allowing the mass to
be defined by what are now known as Arnowitt-Deser-Misner methods. The examples discussed
in [5] indicate that the configuration was also understood to have spatial topology R

3, excluding
black holes. These geons are however believed to be unstable, owing to the tendency of massless
fields either to disperse to infinity or to collapse into a black hole [6].

In 1985, Sorkin [7] generalised Wheeler’s geon into a topological geon by allowing the spatial
topology to be nontrivial, as well as dropping the a priori requirement of persistent large scale
features. The central regions may thus have complicated topology, as illustrated in Figure 1,
and the time evolution of the initial data may lead into singularities and black holes [8, 9].
In particular, topological geons include quotients of stationary black hole spacetimes with a
bifurcate Killing horizon, such that the two exteriors separated by the Killing horizon become
identified [10, 11]. Such geon black holes are an intermediate case between conventional

Σ

Figure 1. A spatial
slice Σ of a topological
geon. The geometry of
Σ is asymptotically Eu-
clidean, but the topology
of Σ does not need to
be R

3, as illustrated by
the handle drawn.
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stationary black holes and dynamical black holes, in the sense that the nonstationary features
are confined behind the horizons.

As the nontrivial spatial topology in a geon black hole is present since arbitrarily early times,
one does not expect an astrophysical star collapse to result into a geon black hole. Instead,
the interest of geon black holes is in their quantum mechanical properties. Because the Killing
horizon now does not separate two causally disconnected exteriors, it is not possible to arrive
at a thermal density matrix for a quantum field by the usual procedure of tracing over the
second exterior. Nevertheless, as we shall discuss, a quantum field on a geon black hole does
exhibit thermality in the standard Hawking temperature, although only for a restricted set of
observations. We shall in particular see how the quantum correlations in the Hawking-Unruh
effect reveal to an exterior observer features of the geometry that are confined to the regions
behind the horizons.

We start by introducing in Section 2 the showcase example, the RP
3 geon, formed as a

quotient of Kruskal. Section 3 discusses a number of generalisations, including geons with
angular momenta and gauge charges. Thermal effects in quantum field theory on geons are
addressed in Section 4. Section 5 concludes by discussing the prospects of computing the entropy
of a geon from a quantum theory of gravity.

2. Showcase example: RP
3 geon

Before the Kruskal-Szekeres extension of the Schwarzschild solution was known, it had been
observed that the time-symmetric initial data for exterior Schwarzschild can be extended into a
time-symmetric wormhole initial data, connecting two asymptotically flat infinities, illustrated
in Figure 2. Misner and Wheeler [5] noted that this wormhole admits an involutive freely-acting
isometry that consists of the radial reflection about the wormhole throat composed with the
antipodal map on the S2 of spherical symmetry. The Z2 quotient of the wormhole by this
isometry, illustrated in Figure 3, is hence a new time-symmetric spherically symmetric initial
data for an Einstein spacetime.

The new time-symmetric initial data has topology RP
3 \ {point}, the omitted point being at

the asymptotically flat infinity [12]. The time evolution is a topological geon spacetime, called
the RP

3 geon [10], and it can be obtained as a Z2 quotient of Kruskal as shown in Figures 4
and 5. A general discussion of quotients of Kruskal can be found in [13].

The RP
3 geon is a black and white hole spacetime, it is spherically symmetric, and it is

time and space orientable. It inherits from Kruskal a black hole singularity and a white hole
singularity, but the quotient has introduced no new singularities. The distinctive feature is that
is has only one exterior region, isometric to exterior Schwarzschild.

As is well known, Kruskal admits a one-parameter group of isometries that coincide with
Schwarzschild time translations in the two exteriors. These isometries do however not induce
globally-defined isometries on the RP

3 geon, because the quotienting map changes the sign of the
corresponding Killing vector, as shown in Figures 6 and 7. As a consequence the geon exterior
has a distinguished surface of constant Schwarzschild time, shown in Figure 5, even though one
needs to probe the geon geometry beyond the exterior to identify this surface. The existence of
this distinguished spacelike surface will turn out significant with the Hawking-Unruh effect in
Section 4.

3. Other geons

3.1. Static

The quotienting of Kruskal into the RP
3 geon generalises immediately to the higher-dimensional

spherically symmetric generalisation of Schwarzschild [14]. As the antipodal map on a sphere
preserves the sphere’s orientation in odd dimensions but reverses the sphere’s orientation in even
dimensions, the geon is space orientable precisely when the spacetime dimension is even.
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throat

Figure 2. Time-symmetric wormhole initial
data for Kruskal manifold, with the radial
dimension drawn vertical and the two-
spheres of spherical symmetry drawn as
horizontal circles. The wormhole connects
two asymptotically flat infinities. It admits a
freely-acting involutive isometry that consists
of the radial reflection about the wormhole
throat composed with the antipodal map on
the S2.

RP2

Topological geon!

Figure 3. Time-symmetric initial data for
the RP

3 geon, obtained as the Z2 quotient of
the wormhole by the freely-acting involutive
isometry. The topology of the wormhole is
S2 × R ≃ S3 \ {2 points} and that of the
quotient is

(
S3 \ {2 points}

)
/Z2 ≃ RP

3 \
{point}, each of the omitted points being at
an asymptotically flat infinity.

η
ξ

Figure 4. Conformal diagram of Kruskal
manifold, with the S2 orbits of spherical
symmetry suppressed and the Kruskal time
and space coordinates (η, ξ) shown. The
wormhole of Figure 2 is the horizontal line
η = 0. The freely-acting involutive isometry
that preserves time orientation and restricts
to that of the wormhole is JK :

(
η, ξ, θ, ϕ

)
7→

(
η,−ξ, P (θ, ϕ)

)
, where P is the S2 antipodal

map.

RP2

Figure 5. Conformal diagram of the RP
3

geon, obtained as the Z2 quotient of Kruskal
by the freely-acting involutive isometry JK .
The suppressed orbits of spherical symmetry
are S2 except on the dashed line where they
are RP

2. The initial data of Figure 3 is shown
as the horizontal line.
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Figure 6. Orbits of Killing time translations
on Kruskal. In the exteriors these isometries
are translations in Schwarzschild time.

Figure 7. Orbits of the local RP
3 geon

isometry inherited from the Killing time
translations on Kruskal. The isometry is not
globally defined because the corresponding
Killing vector has a sign ambiguity in the
black and white hole interiors.

A wider class of generalisations occurs when the sphere is replaced by a (not necessarily
symmetric) Einstein space. In D ≥ 4 spacetime dimensions, the vacuum solution can be written
in Schwarzschild-type coordinates as [15]

ds2 = −∆dt2 +
dr2

∆
+ r2dΩ̄2

D−2 , ∆ = λ̃ −
µ

rD−3
− Λ̃r2, (3.1)

where dΩ̄2
D−2

is the metric on the (D − 2)-dimensional Einstein space MD−2, λ̃ is proportional

to the Ricci scalar of MD−2, Λ̃ is proportional to the cosmological constant and µ is the mass
parameter. Suppose that ∆ has a simple zero at r = r+ > 0 and ∆ > 0 for r > r+. The solution
has then a Kruskal-type extension across a bifurcate Killing horizon at r = r+, separating two
causally disconnected exteriors. If now MD−2 admits a freely-acting involutive isometry, a geon
quotient can be formed just as in Kruskal [11]. For a negative cosmological constant these geons
are asymptotically locally anti-de Sitter.

For D = 3 and a negative cosmological constant, the above Z2 quotient generalises
immediately to the nonrotating Bañados-Teitelboim-Zanelli (BTZ) hole [16]. The BTZ hole
admits however also geon versions that arise as other quotients of anti-de Sitter space, even with
angular momentum [17, 18, 19].

If a spacelike asymptopia at r → ∞ is not assumed, further quotient possibilities arise, for
example by quotienting de Sitter space or Schwarzschild-de Sitter space [20, 21, 22]. We shall
not consider these quotients here.

3.2. Spin

Including spin is delicate. To see the problem, consider the Kerr black hole, shown in Figure 8.
The two exteriors are isometric by an isometry that preserves the global time orientation, but
this isometry inverts the direction of the rotational angle and has hence fixed points in the black
hole region and in the white hole region. Kerr does therefore not admit a geon quotient. A way
to think about this is that if the angular momentum at one infinity is J , the angular momentum
at the opposing infinity is −J .

The generalisation of Kerr(-AdS) to D ≥ 5 dimensions [23, 24, 25, 26] has [(D − 1)/2]
independent angular momenta. Each of these angular momenta has a different sign at the
opposing infinities. This suggests that if the angular momenta are arranged into multiplets,
such that within each multiplet the magnitude is constant but the signs alternate, there might
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−J J

Figure 8. Conformal diagram of Kerr. The
angular momenta at the opposing infinities
are equal in absolute value but opposite in
sign.

−Q Q

Figure 9. Conformal diagram of Reissner-
Nordström. The electric charges at the
opposing infinities are equal in absolute value
but opposite in sign.

exist a geon quotient by a map that suitably permutes the rotation planes within each multiplet.
This turns out to work when D is odd and not equal to 7, but not for other values of D at least
in a way that would be continuously deformable to the nonrotating case [11].

For a negative cosmological constant it is possible to define angular momenta also on a torus,
rather than on a sphere. The geon quotient must then again involve a permutation of angular
momenta with equal magnitude and opposite signs [11].

Finally, the five-dimensional Emparan-Reall black ring [27] has a geon quotient [28], despite
having just one nonvanishing angular momentum.

3.3. U(1) charge

Including the electromagnetic field is also delicate. To see the problem, consider electrically-
charged Reissner-Nordström, shown in Figure 9. Given the global time orientation, Gauss’s law
says that if the charge at one infinity equals Q, the charge at the opposing infinity equals −Q.
While there is an involutive isometry by which to take a geon quotient of the spacetime manifold,
this isometry reverses the sign the field strength tensor, and a quotient is thus not possible with
the usual understanding of the electromagnetic field as a U(1) gauge field [5]. The situation is
the same for the electrically-charged generalisations of (3.1) [15].

There is however a way around this minus sign problem. Maxwell’s theory has a discrete
involutive symmetry that reverses the sign of the field strength tensor as well as the signs of all
charges: charge conjugation. The usual formulation of electromagnetism as a U(1) gauge theory
treats charge conjugation as a global symmetry rather than as a gauge symmetry. However, it
is possible to promote charge conjugation into a gauge symmetry: the gauge group is then no
longer U(1) ≃ SO(2) but O(2) ≃ Z2 ⋉ U(1), where in the semidirect product presentation the
nontrivial element of Z2 acts on U(1) by complex conjugation [29]. The disconnected component
of the enlarged gauge group then reverses the sign of the field strength tensor. A geon quotient is
now possible provided the quotienting map includes a gauge transformation in the disconnected
component of the enlarged gauge group [11]. The geon’s charge is well-defined only up to the
overall sign, but detecting the sign ambiguity would require observations behind the horizons.

Within the magnetically-charged generalisations of (3.1) [15], the options depend on the
(D − 2)-dimensional Einstein space MD−2 [11]. In some cases (including magnetic Reissner-
Nordström in even dimensions) the situation is just as with electric charge. In other cases
(including magnetic Reissner-Nordström in odd dimensions) the field strength tensor is invariant
under the relevant involutive isometry and the usual U(1) formulation of Maxwell’s theory
suffices. Further options arise if the spacetime has both electric and magnetic charge [11].
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3.4. SU(n) charge

Black holes with a non-Abelian gauge field also admit a geon quotient. For generic static,
spherically symmetric SU(n) black holes with n > 2 [30, 31, 32] this requires enlarging the
gauge group to Z2 ⋉ SU(n), where the nontrivial element of Z2 acts on SU(n) by complex
conjugation and the quotienting map includes a a gauge transformation in the disconnected
component [33, 34]. By contrast, static SU(2) black holes with spherical [35, 36, 37, 38, 39, 40, 41]
or axial [42, 43] symmetry admit a geon quotient without enlarging the gauge group [11, 33, 34].

4. Quantum field theory

The geon black holes that we have discussed are genuine black and white holes, and the exterior
region is isometric to that in an ordinary stationary black hole with a bifurcate Killing horizon.
Does the geon also have a Hawking temperature, and if so, in what sense?

4.1. Real scalar field on the RP
3 geon

As the prototype, consider a real scalar field on the RP
3 geon.

Recall first the usual setting for a quantised scalar field on Kruskal. There is a distinguished
vacuum state |0K〉, the Hartle-Hawking-Israel (HHI) vacuum [44, 45], which is the unique regular
state that is invariant under all the continuous isometries [46]. |0K〉 does not coincide with the
Boulware vacuum state |0K,B〉 [47], which static observers in the exteriors see as a no-particle
state. Instead, we have the expansion [44, 45]

|0K〉 =
∑

ij...

fij... a
†
R,ia

†
L,i

︸ ︷︷ ︸

corr

a†R, ja
†
L, j

︸ ︷︷ ︸

corr

· · · |0K,B〉 , (4.1)

where a†R,i and a†L,i are creation operators of particles seen by the static observers in respectively
the right exterior R and the left exterior L, and i stands for the quantum numbers labelling these
particles. The creation operators occur in correlated pairs, with one particle in each exterior,
as shown in Figure 10. From the properties of the expansion coefficients fij... it follows that
measurements in (say) R see the pure state |0K〉 as a Planckian density matrix, in a temperature
that at asymptotically large radii equals the Hawking temperature

TH =
1

8πM
, (4.2)

where M is the mass, and at finite radii is corrected by the gravitational redshift factor.
To summarise, observers in an exterior region of Kruskal see the HHI vacuum |0K〉 as a

thermal equilibrium state in the Hawking temperature (4.2).
Consider now a scalar field on the RP

3 geon. By the quotient from Kruskal, the HHI vacuum
|0K〉 induces on the geon a vacuum state |0G〉, which we call the geon vacuum. Again, |0G〉
does not coincide with the geon’s Boulware state |0G,B〉, which static observers in the exterior
see as a no-particle state. Instead, |0G〉 can be expanded as in (4.1), with creation operators of
exterior particles acting on |0G,B〉, and these creation operators come again in correlated pairs,
as illustrated in Figure 11. For generic observations in the exterior region, the geon vacuum
state does hence not appear as a mixed state, let alone a thermal one.

However, the correlated particle pairs in the geon exterior have a special structure: if one
particle is localised at asymptotically late times, then the correlated particle is localised at
asymptotically early times, and vice versa. Here, “early” and “late” are defined with respect to
the distinguished constant Schwarzschild time hypersurface shown in Figure 5. This means that
|0G〉 appears as a mixed state when probed by observers at asymptotically late (or early) times,
and this mixed state is again Planckian in the Hawking temperature (4.2) [48].
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R

correlation

L

Figure 10. A correlated pair of exterior
particles in the expansion (4.1) of the Kruskal
HHI vacuum |0K〉 as excitations on the
Boulware vacuum. The two particles are in
the opposite exteriors. From the invariance of
|0K〉 under Killing time translations it follows
that if the particle in R is localised in the far
future, the correlated particle in L is localised
in the far past, and vice versa, regardless the
precise sense of the localisation.

correlation

Figure 11. A correlated pair of exterior
particles in the expansion of the RP

3 geon
HHI vacuum |0G〉 as excitations on the
Boulware vacuum. Both particles are in
the one and only exterior. If one particle
is localised in the far future, the correlated
particle is localised in the far past, and vice
versa.

−Q RL Q

Figure 12. A correlated pair of exterior
particles in the expansion of the electrically-
charged Reissner-Nordström HHI vacuum as
excitations on the Boulware vacuum. The two
particles have opposite charge.

±Q

Figure 13. A correlated pair of exterior
particles in the expansion of the electrically-
charged Reissner-Nordström geon HHI vac-
uum as excitations on the Boulware vacuum.
The two particles have the same charge.
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To summarise, observers in the geon exterior see the geon vacuum |0G〉 as thermal in the
Hawking temperature (4.2) at asymptotically late (or early) times. At intermediate times the
non-thermal correlations in |0G〉 can be observed by local measurements.

4.2. Generalisations

When the scalar field is replaced by a fermion field, a new issue arises in the choice of the spin
structure [49]. As Kruskal has only one spin structure, there is only one HHI vacuum on Kruskal.
The RP

3 geon has however two spin structures, and each of them inherits a HHI vacuum from
that on Kruskal. Observations made at asymptotically late (or early) exterior times see each of
these vacua as a thermal state in the usual Hawking temperature, and are in particular unable
to distinguish the two vacua. The vacua, and their spin structures, can however be distinguished
by observations of the non-thermal correlations at intermediate times.

When the geon has a gauge field, a new issue arises from its coupling to the quantised
matter field. For concreteness, consider a complex scalar field on electrically-charged Reissner-
Nordström [50, 51]. The HHI vacua on the two-exterior hole and on the geon again contain
exterior particles in correlated pairs as shown in Figures 12 and 13, and the sense of thermality
is as in the uncoupled case but with an appropriate chemical potential term [52]. However, while
on the two-exterior hole the correlated pairs consist of particles with opposite charge, on the
geon the pairs consist of particles with the same charge. This is a direct consequence of the
charge conjugation that appears in the quotienting map. A geon exterior observer can hence
infer from the non-thermal correlations at intermediate times that charges on the spacetime are
not globally defined, even though this phenomenon only arises from the geometry of the geon’s
gauge bundle behind the horizons.

When the geon has anti-de Sitter asymptotics, the geometry induces a state for a quantum
field that lives on the geon’s conformal boundary, via gauge-gravity correspondence [53, 54].
The boundary state exhibits thermality for appropriately restricted observations, and the
non-thermal correlations in this state bear an imprint of the geometry behind the geon’s
horizons [16, 55, 56, 57].

5. Concluding remarks: geon entropy?

We have seen that a geon black hole, formed as a Z2 quotient of a stationary black hole with
a bifurcate Killing horizon, has a Hartle-Hawking-Israel vacuum that appears thermal in the
usual Hawking temperature at asymptotically late (and early) times. Does the geon have also
an entropy?

For a late time exterior observer, laws of classical black hole mechanics do not distinguish
between a geon, a conventional eternal black hole with a bifurcate Killing horizon, or indeed a
black hole formed in a star collapse. Combining the laws of classical black hole mechanics with
the late time Hawking temperature, the late time observer will hence conclude that the geon
has the usual Bekenstein-Hawking entropy.

Could the geon entropy be obtained directly from a quantum theory of gravity? If the theory
is formulated in a way that allows focussing on the quantum spacetime in the distant future,
state-counting computations for the geon should proceed essentially as for the hole with two
exteriors. This is in particular the case in loop quantum gravity, where the counting of black
hole microstates is expressly set up on the future horizon [58, 59, 60, 61]. By contrast, it is not
clear whether Euclidean path-integral methods allow a localisation at late times. While the geon
has a regular Euclidean-signature section, a näıve application of Euclidean path-integral methods
to this section yields for the entropy a result that is only half of the late time Bekenstein-Hawking
entropy [48, 62].

It would be of interest to develop a geon entropy computation within the gauge-gravity
correspondence. Case studies [16, 55, 56, 57] suggest that an appropriate formalism for this
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could be late time entanglement entropy in the boundary field theory. The challenge would be
to give a concrete implementation in which the gauge theory side of the correspondence is well
understood.
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