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It is shown that there exist solutions of the vacuum Einstein field equations with the property that ex-
terior to the Schwarzschild radius, R=2m, the solution appears to be that of a static spherically symmetric
particle of mass 7 (that is, strictly Schwarzschild), whereas interior to the Schwarzschild radius the topology
remains Euclidean and the solutions have the property of a bundle of gravitational radiation so intense that
the mutual gravitational attraction of the various parts of the bundle prevent the radiation from spreading
beyond the Schwarzschild radius. It is not known whether there exist solutions of this type which remain
nonsingular for all times; however, no singularity can ever be observed exterior to the Schwarzschild radius.
The Cauchy data for one such solution are explicity exhibited.

I. INTRODUCTION

HE rigorous solution for the gravitation field of a
spherically symmetric massive particle in general
relativity, the Schwarzschild solution

ds?=dR2/(1—2m/R)

+ R (d6+sin?9de?) — (1—2m/R)dT> (1.1)

has long stirred interest because of the puzzling singu-
larity which occurs at R=2m, when the solution is
written in terms of the particularly natural set of co-
ordinates adapted to the full symmetry of the solution.
Kruskal! has considerably clarified the situation by
obtaining, by means of a coordinate transformation,
the maximal analytic extension of the Schwarzschild
solution. For our subsequent use it will be convenient
to exhibit the Kruskal solution in slightly different co-
ordinates than that of the original paper. Thus, if we
perform the coordinate transformation

r=2m~+2(2m) 12 (R—2m)'/?

X exp[ (R—2m)/4mcosh(T/4m), (1.2)
1= 2(2m) 2 (R—2m)'1?
X expl (R—2m)/4m Jsinh (T/4m) ,
the metric of Eq. (1.1) takes the form
ds?=2m exp{—[(R(r,t)—2m)/2m]}
X (dr—di)/ R (1) + Re(r,0) (d62+sin0dg?) ,  (1.3)

where the function, R(7,t) is obtained by inverting the
relation

(r—2m)2— 2=8m (R— 2m)exp[ (R—2m)/2m].

The Kruskal metric, Eq. (1.3), exhibits no singu-
larity at R=2m. However, other anomalies appear in
its stead. For example, the space-like surface /=0 no
longer has Euclidean topology. As the coordinate 7 varies
from 4+ o to — o, the Schwarzschild luminosity dis-
tance, R, varies from 4 « to a minimal value of 2m
(attained when r=2m), and then back to + «. The
surface t=0, as well as the immediately neighboring
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1 M. D. Kruskal, Phys. Rev. 119, 1743 (1960).

space-like hypersurfaces, are seen to have a double-
sheet topology connected by a spherical “worm-hole.”
Another anomaly of the Kruskal metric is that the true
singularity at R=0 cannot occur on the space-like sur-
face t=0, or on the surfaces in its immediate neighbor-
hood. This singularity is seen to occur at a finite
temporal distance from the {=0 surface. It is therefore
not a singularity of the sort one customarily would
associate with a source of the field. The “‘source” of the
gravitational field would appear to be the ‘‘worm-hole.”

Of particular interest to us is the appearance of the
formerly singular surface R=2m. From Eq. (1.4), we
find that in our present system of coordinates this
surface satisfies the equation

(r—2m)*—p=0 (1.5)
which we recognize to be the equation of a light cone.
This surface may be characterized in a unique invariant
fashion as the only null orbit of the four parameter
Lie group which the Schwarzschild solution admits.

Although the Kruskal metric is the unique analytic
continuation of the Schwarzschild solution across
R=2m, the fact that the latter surface is null indicates
that we may drop the requirement of analyticity and
obtain valid solutions of the vacuum field equations.
(The nonanalytic behavior of the metric across a null
surface could be interpreted physically as a pulse of
gravitational radiation traveling along the null cone.)
We can now pose the following two questions: (1) Must
the spatial topology of all those solutions which co-
incide with the Schwarzschild solution for R>2m, be
non-Euclidean, or is it possible to find a source-free
(nonanalytic) extension of Schwarzschild which has
Euclidean topology? (2) Are there (nonanalytic) con-
tinuations of the Schwarzschild solution across R=2m
which are nonsingular for all times, either with or
without Euclidean topology?

In this paper we shall treat only the first question.
We shall show that there exist solutions of the vacuum
Einstein field equations such that the initial space-like
hypersurface has Euclidean topology and such that for
R>2m the solution is strictly Schwarzschild. That the
nonanalytic behavior of the metric is always confined
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to the interior of the sphere R=2m, may be given the
physical interpretation that the source of the gravita-
tional field is gravitational radiation whose intensity is
so great that the null cones along which the radiation
travels are kept bound to the interior of the sphere by
the mutual gravitational attraction. Hence, the title of
this paper. (The term geon was originally introduced by
Wheeler? to characterize a bundle of electromagnetic radi-
ation so intense that the mutual gravitational attraction
kept the system bound. We believe that the present
usage is a legitimate extension of the term.)

II. JUMP CONDITIONS ON CAUCHY DATA

Papapetrou and Treder® have shown that it is admis-
sible to consider solutions of the Einstein field equations
for which the metrics are of class C° provided the dis-
continuities in the derivatives of the metric satisfy
certain conditions across characteristic surfaces which
assure that there are no surface sources introduced by
the discontinuities. Since it is our intention to exhibit the
Cauchy data which determine a solution of the desired
type, we shall now develop an equivelant set of jump
conditions purely in terms of the Cauchy data them-
selves. We shall at this point employ the notation of
Bruhat-Choquet.*

The constraint equations for the vacuum field equa-
tions may be written

V;(Pii—giiP)=0,
R+P;Pi—P#=0,

(2.1)
(2.2)

where V; denotes covariant differentiation with respect
to the spatial metric g;;, B denotes the scalar curvature
of the spatial metric, and the second fundamental form
of the initial surface P;; is defined by

Pii=3] g% 2(80gi;— Vigo;— Vigoi) 5 (2.3)

and Latin indices are raised and lowered by means of
the spatial metric. The fundamental theorem* which we
shall appeal to is that for every set of Cauchy data on
the initial surface (¢=0), which satisfies the constraint
equations (2.1) and (2.2), there exists a solution of the
vacuum Einstein field equations in a finite four-
dimensional neighborhood of the initial surface. The
solution is unique up to coordinate transformations
which preserve both the Cauchy data and the equation
of the initial surface. For the nonanalytic Cauchy prob-
lem, the solution at a finite temporal distance from the
initial surface is determined exclusively by the portion
of the data in the relativistic past of the point under
consideration. It is this latter statement which assures
us that if at =0 we assign the Cauchy data appropriate
to the Schwarzschild solution in the region R>2m,

2 J. A. Wheeler, Phys. Rev. 97, 511 (1955).

3 A. Papapetrou and H. Treder, Math. Nachr. 23, 371 (1962).

4Y. Bruhat, in The Caucky Problem; Gravitation, edited by L.
Witten (John Wiley & Sons, Inc., New York, 1962), p. 130.
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the solution will remain Schwarzschild for R>2m for
all time, 7.

If the metric under consideration is of class C9, the
second fundamental form, P, will in general be of
class C71, that is, there may be finite discontinuities.
Both sets of constraint equations, (2.1) and (2.2), con-
taining as they do second derivatives of the components
of the metric tensor, may have terms of class C—2, that is,
Dirac delta functions. The presence of such singular
terms would correspond to the existence of localized
material sources of the field. We must, therefore, re-
quire that such terms do not occur. The simplest way
of assuring that C—2 terms do not occur is to integrate
the constraint equations across the (two-dimensional)
surface of discontinuity and require that the resulting
expressions vanish. In this fashion, we obtain the jump
conditions

[Pt Ins=n[ P] (2.4)
and

gm"”SEI‘smn] = ”s[Fs] ) (2.5)

where #, is a vector normal to the surface across which
the discontinuity occurs, and the square brackets denote
the jump of the enclosed quantity across the surface.
The C° property of the spatial metric enables us to
introduce the tensor %;; via the relation

Lgil=hujm. (2.6)
If, in addition, we define the tensor %,;,
LPi]=ki, (2.7)
the two jump conditions may be written, respectively,
ksin®=n'ks* (2.8)
and
hannt=honin,. (2.9)

Not all discontinuities are intrinsic, for it is possible to
perform coordinate transformations of class C! which
leave the metric tensor continuous but introduce dis-
continuities in its derivatives. Such a coordinate
transformation must necessarily have the properties

[0°X%/0X0X*]= ainm; (2.10)
and B
[92X0/0X 0 X*|=buyns. @2.11)

We can, in addition, select the transformation such that
on the surface of discontinuity .S,

aXi/9X 1| =5 (2.12)

Employing these relations we find that the tensors ,;
and k;; transform as follows:

h,‘jz /’lij— an;— a;n;

(2.13)
and

]Eijz ku‘*' (g°°)—3/2bnm,~. (2. 14)

It is readily observed that Egs. (2.13) and (2.14) leave
invariant the jump conditions, Eqgs. (2.8) and (2.9),
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This, of course, is an essential requirement, since the
jump conditions assure the absence of material sources,
and it would not be reasonable to be able to introduce
(or remove) material sources by means of C! coordinate
transformations. We may employ Egs. (2.13) and (2.14)
to impose auxiliary conditions on the discontinuities.
Thus, if we take

ai=hisn® (mPnp) '—Lnhoannt(nPn,) 2, (2.15)
we find )
hisn®=0. (2.16)
Similary, selecting & such that
b=—(g") sk mnt (nPn,) ! (2.17)
yields _
ksm*nt=0. (2.18)

Combining these four auxiliary conditions, Egs. (2.16)
and (2.18), with the four jump conditions, Eqs. (2.8)
and (2.9), we obtain

ksnt=Fks=0 (2.19)
and

hint=h,*=0. (2.20)

We thus find that the intrinsic discontinuities can
be made transverse and trace-free exhibiting the two
modes of polarization available to gravitational radi-
ation: the “‘electric mode,” where the transverse compo-
nents of %;; are purely diagonal, and the “magnetic
mode,” where the transverse components of %;; are
purely off-diagonal. The k;; give the rate of change of
these two modes. As the solution propagates in time
off the initial surface, discontinuities in derivatives of
the metric can occur across surfaces which are not null;
however, this can always be transformed away by means
of C' coordinate transformation. Even along null sur-
faces, discontinuities in the longitudinal and time-like
components of the derivative of the metric tensor can
always be transformed away. However, discontinuities
in the transverse, spatial components will be intrinsic
and may be identified physically with the presence of
gravitational radiation.

III. CONSTRUCTION OF THE GEON

In order to exhibit the existence of a solution of the
vacuum gravitational field equations of the type dis-
cussed in the first section, we must construct a solution
of the constraint equations (2.1) and (2.2) on a three-
dimensional, topologically Euclidean surface, such that
for #>2m, it coincides with the Cauchy data for the
Schwarzschild metric, and such that the piecing of this
data to the data for »<2m is consistent with the jump
conditions, Egs. (2.8) and (2.9). To assure that there is
no singularity or cusp at the origin we shall choose the
solution to be strictly flat in the range 0<r<0.1m.

From Egs. (1.3) and (1.4), we find that the Cauchy
data for the Schwarzschild-Kruskal solution on the
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space-like hypersurface £=0 may be given thus:
P;i=0 3.1)
and
gu=2m exp{—[R(r)—2m]/2m}/R(r),
gn=[R()F,
g33=[R(r)J? sin%,
2::=0, s7#1,

(3.2)

where the function R(r) is determined by the inversion
of the expression

r=2m~+2(2m)2(R—2m)'"2 exp[ (R—2m)/4m]. (3.3)

[In the range of variables R>2m (and therefore > 2m)
this inversion is unique although it cannot be expressed
by elementary functions.] For the purpose of piecing
Cauchy data at r=2m, it is important to note that at
R=2m the Kruskal metric as given in Eq. (1.3) has
the properties

3gst/<97] r=2m:O (34)

(3.5)

Since in this paper we are not concerned with the
most general solution of the constraint equations for
the region 0<7<2m, but merely in the existence of a
solution, we shall assume that Eq. (3.1) holds every-
where. This is trivially consistent with the jump con-
ditions, namely, there are no discontinuities in the
second fundamental form. The constraint equations
(2.1) and (2.2) thereby reduce to the single equation

R=0. (3.6)

and
gul rmom=1.

We have at our disposal six functions g;; with which to
satisfy this single equation, and although only three of
these functions may be independent, (in view of the
freedom we have to perform coordinate transformations)
it seems rather evident that there should be a consider-
able number of solutions consistent with the boundary
conditions. Despite this fact the actual construction of
an explicit solution proved to be rather intricate.

For simplicity we shall only consider discontinuities
of the “electric mode” type. That is, in the region
0<7<2m we shall assume that the spatial metric has
the form

de?=A (r)dr*+ B(r)d6>+-C (r)sin20d¢? . 3.7

Furthermore, it is rather clear that for this metric we
can perform a coordinate transformation on the radial
variable in order to obtain Eq. (3.5) everywhere in the
domain 0<7<2m. That is

A=1 for 0<r<2m. (3.8)

As we have already mentioned, we shall require the
metric to be strictly flat in a finite neighborhood of the
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origin. Thus
B(r)=C(r)=r* (3.9)

(We cannot hope to have B=C everywhere for then
the solution would be spherically symmetric in which
case we know that only the analytic Kruskal metric can
occur.® This is essentially due to the fact that gravi-
tational radiation has spin 2, and therefore cannot be
emitted as S waves.)

For the metric of Egs. (3.7) and (3.8), the only jump
condition remaining to be satisfied is the second of
Egs. (2.20). This now reads

0= (1/B)[dB/dr]+ (1/C)[dC/dr]
=[dInBC/dr]. (3.10)

It will therefore be convenient to introduce as new sets
of variables

for 0<r<0.1m.

F=BC, G=B/C. (3.11)

The jump conditions will be satisfied by every solution
of Eq. (3.6) such that F is of class C! and G is of class
C°. (The deviation of the function G from the value 1
measures the deviation from spherical symmetry. For
G<1 the surfaces r=const are oblate spheroids; for
G>1 they are prolate spheroids.)

In terms of the functions F and G, the constraint
equation (3.6) may be written

G?=G*(16F"12G124-SF"?F—2—8F"F-1), (3.12)

where primes denote differentiation with respect to 7.
Assuming for the moment F (r) given, this equation is of
the form

G?=D(Gy). (3.13)

In every domain in which we are assured that D>0,
(for example, F''<0 in our present case) we can always
find a C° solution of Eq. (3.13) which varies over an
arbitrarily narrow range of values about an arbitrarily
chosen initial value. This is easily seen by taking the
square root of Eq. (3.13). We obtain two differential
equations, namely,

G'==xD'", (3.14)

As we reach the upper bound of the imposed interval,
we merely tack on in a continuous fashion the solution
with negative slope, and vice versa. Specifying the initial
value of G, the initial choice of the sign of the slope,
and the upper and lower bounds of permitted variation
of G we obtain a unique solution of Eq. (3.13) in the
class of functions C° which we may call a ‘“zig-zag
solution.” Provided 0<D< o, it is evident that such a
solution can span an arbitrarily large interval. We shall
denote such a solution of Eq. (3.13) by the symbol
Zp*(r;r1,05€1,€2), where the 4+ or — denotes the initial
choice of sign in Eq. (3.14); (r1,0) denotes that at the

5P. G. Bergmann, M. Cahen, and A. B. Komar, J. Math.
Phys. 6, 1 (1965).
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initial point #; the function assumes the value a;e;>0
denotes that the upper bound is a-+€;, and €220 denotes
that the lower bound is a—e;. (We note that either,
but in general not both, of ¢ and ¢; may be taken to
be 0.) If we now define the function

2p(rir1,rea;e)

=Max[Zp (r;r1,2;0,€),Zp (7570,0;0.€) ].  (3.15)

where 7, <73, we obtain a C?solution of Eq. (3.13) whose
upper bound is &, whose lower bound is a— ¢, and which
attains the value « at precisely 7; and 7,.

We are now in a position to exhibit a specific solution
of the constraint Eq. (3.12). In domains in which the
function F has the property F'’<0, it will be convenient
(although not always essential) to employ the “zig-zag
function” of Eq. (3.15), where the symbol D shall here-
after denote the right-hand side of Eq. (3.12). For those
domains where F” >0 we shall explicitly exhibit the form
of the functions F¥ and G which solves the equation. The
solution, which in itself is not very illuminating, is pre-
sented by intervals. The reader may readily confirm
that F is of class C' and G of class C°.

0<r<0.1m.
A=1;G=1; F=+*.

DomainI:

(Note: In this interval the solution is simply Euclidean
flat space.)

Domain II: 0.1m<r<0.3m.

A=1; G=4(3 exp[(10r—m)/m ]
—exp{—[10r—m]/m});
F=%m*10~4(3 exp[ (10r—m)/m]
—exp{—[10r—m]/m})2.
0.3m<r<0.32m.
G=2zp(r;0.3m,0.32m ;0 1;1074) ;

Domain IIT:
A=1;
F=10"*Lam*4-8m? (10r— 3m)+ym?(10r— 3m)?
+8m (10r —3m)3 4 u (107 — 3m)2 (10r— 3.2m)2];
where
a=1(3¢—e2)2~121.35,
B=1(9¢*—e*)~245.69,
¥y=75(3.6)*—75a—108—20(3.6)2~105.7,
6=250a+258—250(3.6)*+100(3.6)5~844.7,
p=—52/200~ —3568.

[Note: u is so chosen to assure that F”(r)<0 on the
entire interval.]

Domain IV: 0.32m<r<m/25
X (—14-9 exp[arccosa 4 )~1.2m.
A=1; G=cos*[arccose™A—In{(257+m)/9m}];
F=(r+m/25).
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Domain V: m/25(—1+9 exp[arccosa™/4]
<r<1.95m.
A=1; G=1; F=(r+m/25).
(Note: The solution in this interval is locally flat, but
if extrapolated to the origin would give rise to a conical

cusp.)
Domain VI: 1.95m<r<1.975m.
A=1(G defined below);
F=10"*[¢m*+9m3(10r—19.5m)
+Am2 (107 —19.5m)2+am (10r—19.5m)%];

where
£=(19.9)%,
n=4(19.9)3
A=8[6(20)4— 6E—75]~—99712,
o=16[8¢+1—8(20)*]~-+497792.
[Note: On the entire interval F"’ (r)<0].
Domain VII: 1.975m<r<2m.
A=1(G defined below);
F=(2m)*.
(Note: On the entire interval we evidently have F'=0.)
Domains VI and VII: 1.95m<r<2m.
G=2p(r;1.95m,2m ;1,107%).
Domain VIIT: 2m<r< .,
A=2m/R(r)exp{—[R(r)—2m]/2m}; G=1,
F=[R("1;

where R(r) is the function defined by the inversion of
Eq. (3.3). (Note: On this interval we are simply speci-
fying the Schwarzschild-Kruskal metric.)

On the entire interval 0<z< « both F and G are
found to be finite, nonvanishing and positive. We can
therefore readily extract the components, B and C, of
the spatial metric which satisfy the correct boundary
and jump conditions:

B=(FG)\2, C=(F/G)". (3.16)

The vanishing of B and C at the origin, as well as their
divergence at = oo, is simply due to the use of polar
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coordinates. The reader may be puzzled by the vanish-
ing of A at r= oo. This is only due to an anomaly of
the Kruskal coordinate system which we could readily
have avoided had we, for example, chosen to present the
Schwarzschild line element in the interval 2m<R< «
in isotropic spherical coordinates.

V. CONCLUSION

We have demonstrated the existence of a solution of
the initial value problem for the vacuum Einstein field
equations which has the property that the initial space-
like hypersurface has Euclidean topology, and such that
exterior to the Schwarzschild radius R> 2m the solution
remains indistinguishable from that of Schwarzschild
for all “times” 7. There is much arbitrariness in our
construction. For example, we never made an effort to
employ ‘“magnetically” polarized gravitational radi-
ation. However, all such solutions appear from the
outside to be stable, spherically symmetric particles of
mass m, although there are no singularities, ‘“‘worm-
holes” or material sources for the gravitational field.
The only “‘source’ seems to be the nonlinear structure of
the theory itself, which permits gravitational radiation
to interact directly with itself and thereby keep itself
bound.

In general, we should expect that as the various
solutions propagate in time off from the initial surface,
singularities will develop at finite temporal distances
from the initial surface (although necessarily at a
luminosity distance less than the Schwarzschild radius).
In this situation we are of course no worse off than we
were with the analytic Kruskal metric. With our vastly
increased degrees of freedom there is even a hope that
for some choice of Cauchy data a solution which re-
mains nonsingular for all times could be found. Should
this eventually prove to be impossible starting from
an initial surface of Euclidean topology, we continue
to have at our disposal the possibility of doctoring at
will of the initial topology interior to the Schwarzschild
radius. None of these latter possibilities have as yet
been investigated.
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