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Abstract: We provide a simple derivation of particle-vortex duality in d = 2 + 1

dimensions. Our starting point is a relativistic form of flux attachment, designed to

transmute the statistics of particles. From this seed, we derive a web of new duali-

ties. These include particle-vortex duality for bosons as well as the recently discovered

counterpart for fermions.
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1. Introduction: A Collection of Dualities

Many quantum field theories in d = 2+1 dimensions enjoy a beautiful property known

as particle-vortex duality. This relates two different theories, with the fundamental

fields of one theory mapped to vortices – or, more precisely, monopole operators –

of the other. The duality has proven to be a powerful tool in a number of different

settings, ranging from condensed matter physics to string theory.

Particle-vortex duality for bosonic systems was established long ago [1, 2]. In the

simplest version, the duality relates the theory of a complex scalar field (the XY model)

S =

∫

d3x |(∂µ − iAµ)φ|
2 − V (φ) (1.1)

to the Abelian-Higgs model

S =

∫

d3x |(∂µ − iaµ)Φ|
2 − Ṽ (Φ) +

1

2π
ǫµνρAµ∂νaρ (1.2)

In the actions above, Aµ is a background gauge field. Its coupling to the currents in

the two theories reveals that the particle density of φ in (1.1) is equated to the flux

density f/2π = da/2π in (1.2). This is the essence of particle-vortex duality.
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More recently, an analogous duality was proposed for fermions. The free Dirac

fermion with action

S =

∫

d3x iψ̄γµ(∂µ − iAµ)ψ (1.3)

is conjectured to be dual to QED3 with a single species of fermion

S =

∫

d3x iΨ̄γµ(∂µ − iaµ)Ψ +
1

4π
ǫµνρAµ∂νaρ (1.4)

This is more subtle, not least because a single Dirac fermion in d = 2 + 1 dimensions

flirts with the parity anomaly. This is avoided in the above theories by changing the

flux quantisation conditions of the gauge field; ultimately, this seems to be sensible

only when the theories are viewed as living on the boundary of a d = 3+1 dimensional

system.

The proposed fermionic particle-vortex duality lies at the heart of a number of inter-

related topics in condensed matter physics. The duality first arose in Son’s suggestion

that the correct description of the half-filled Landau level involves an emergent (“com-

posite”) Dirac fermion [3]. Shortly afterwards, it was realised that the duality plays

an important role in describing the surface states of interacting topological insulators

[4, 5]. These ideas have subsequently been extended in a number of different directions

[6, 7, 8, 9, 10], including a derivation of the duality starting from an array of d = 1+ 1

dimensional wires [11].

Flux Attachment

There is a second, seemingly unrelated, operation that one can perform in d = 2 + 1

dimensions. This is statistical transmutation of particles through flux attachment [12].

Attaching a single quantum of flux to a particle turns a boson into a fermion and vice

versa, while adding two quanta of flux leaves the statistics unchanged. This process

underlies the original concept of composite fermions as emergent particles in the lowest

Landau level [13].

The idea of flux attachment was first applied to non-relativistic particles. However,

there also exist versions of flux attachment for relativistic particles. These take the form

of dualities between bosonic and fermionic field theories, where one side is coupled to a

Chern-Simons interaction to implement the statistical transmutation. See, for example,

[14, 15, 16, 17, 18, 19]. These dualities are sometimes referred to as 3d bosonization

and will be the starting point of the present paper.
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As an aside, we note that there has recently been a revival of this idea in the context

of non-Abelian U(N) gauge theories [20, 21, 22, 23], where the 1/N expansion allows

a number of very impressive checks of the duality [24, 25, 26, 27]. This too leads to

a compelling story for finite N and, ultimately, for the U(1) gauge theories of interest

in this paper. Combining studies of supersymmetric theories [28, 29, 30, 31], RG flows

[32, 33], operator maps [34] and level-rank dualities [35] results in a consistent picture.

These different threads were tied together in a careful analysis by Aharony [23].

Synthesis

In this paper, we will need only the Abelian version of the 3d bosonization duality.

This is the simplest relativistic generalisation of the standard flux attachment story: a

scalar coupled to a U(1) Chern-Simons term at level 1 is equivalent to a fermion. We

will describe this in more detail in Section 2.

From this conjectured bosonization duality, all else follows. This is the topic of Sec-

tion 3. By manipulating the path integral, we derive a web of further dualities. These

include both the bosonic and fermionic versions of particle-vortex dualities presented

above, as well as many more. All these derivations hold at the level of the partition

function, viewed here as a function of background gauge fields (i.e. Aµ in the examples

above). This means that all correlation functions of currents agree on both sides.

Supersymmetry

There is one further ingredient that we would like to add to the mix. This is the su-

persymmetric version of particle-vortex duality, known also as mirror symmetry. First

discovered in [36], there are now many examples which differ in their gauge symmetry,

matter content and amount of supersymmetry; see [37, 38, 39, 40, 41] for a small sam-

ple. Mirror symmetry was applied to the problem of the half-filled Landau level in [42],

although the existence of a pair of Dirac fermions means that the resulting physics is

rather different from the fermionic duality of (1.3) and (1.4).

The power of supersymmetry provides greater control over the strong coupling re-

gions of these theories. This means that one can be much more precise about the

operator map between theories and, in certain cases, one can effectively prove the du-

ality by showing that the monopole operator is indeed a free field [43]. Particularly

pertinent for the present paper are the path integral manipulations developed in [44]

for supersymmetric theories. We will borrow heavily from these ideas.

Since the supersymmetric mirror pairs involve both bosons and fermions, one might

imagine that they can be constructed by combing the bosonic and fermionic dualities
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described in (1.1)-(1.4). However, the way the parity anomaly plays out in the super-

symmetric theories is rather different from the way it works in the purely fermionic

duality of [3, 4, 5]. Instead, following the large N analysis of [32, 33], we suggest that

one should think of mirror symmetry more as a bosonization, with bosonic currents in

one theory mapped to fermionic currents in the other. We discuss this in Section 4.

Note Added: Before submission to the Arxiv, we became aware of [45] which

contains overlap with this paper. Related work is also contained in [46].

2. Bosonisation in d = 2 + 1

We start in this section by describing the relativistic generalisations of flux attachment

that we will need [14, 17, 18, 19, 23].

2.1 Building Blocks

Throughout this paper, we will work with three types of fields: complex scalars φ, two-

component Dirac spinors ψ and Abelian gauge fields. The latter fall into two categories:

background gauge fields, which we will initially denote as Aµ and dynamical gauge fields

aµ. In the condensed matter context, Aµ is usually to be thought of as electromagnetism

while aµ is an emergent gauge field.

All gauge fields, whether background or dynamical, are compact in the sense that the

fluxes are quantised. It will be somewhat easier to discuss this flux quantisation if we

take our spatial slices to be S2, rather than R2, The precise choice of the quantisation

condition will be an important part of the story and we will specify it afresh for each

theory. For now, we recall the standard story of Dirac quantisation: if fundamental

fields have unit charge, then the flux is quantised as

∫

S2

F

2π
∈ Z (2.1)

where F = dA.

We will insist that our partition functions are gauge invariant. Of course, this has to

be the case for the dynamical gauge fields a; however, we will also insist that our parti-

tion functions are gauge invariant for the background gauge field A. This is particularly
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relevant in the presence of Chern-Simons terms1

SCS[A] =
1

4π

∫

d3x ǫµνρAµ∂νAρ (2.2)

This appears in the path integral as eik SCS [A] where the coefficient k is referred to as

the level. If A obeys the standard quantisation condition (2.1) then gauge invariance

requires

k ∈ Z

Since this argument is important, let us remind ourselves of the key elements. We

work on Euclidean spacetime S1 × S2. This allows us to introduce a new ingredient:

large gauge transformations of the form g = eiθ, where θ ∈ [0, 2π) is the coordinate of

the S1. When evaluated on a flux background, the Chern-Simons action shifts under

such a large gauge transformation: ∆SCS[A] = 2π
∫

S2 F/2π. With the usual Dirac

quantisation condition (2.1), we learn that eikSCS [A] is gauge invariant only when k ∈ Z

as advertised.

We also need a coupling between different Abelian gauge fields. This is achieved by

a mixed Chern-Simons term, also known as a “BF coupling”,

SBF [a;A] =
1

2π

∫

d3x ǫµνρaµ∂νAρ (2.3)

The coefficient is chosen so that a flux
∫

F = 2π, has unit charge under a. The same

arguments given above show that, if both f = da and F = dA have canonical normali-

sation (2.1), then the BF-coupling must also come with integer-valued coefficient. Note

that, up to a boundary term, SBF [a;A] = SBF [A; a].

The action for the scalar fields takes the usual form

Sscalar[φ;A] =

∫

d3x |(∂µ − iAµ)φ|
2 + . . . (2.4)

where . . . denote possible potential terms. We will focus our attention on critical

(gapless) theories. That leaves two choices: we could work with a free scalar, or we

could work with a Wilson-Fisher scalar, viewed as adding a φ4 deformation and flowing

to the infra-red while tuning the mass to zero. Both of these possibilities will arise

below.
1For all gauge fields, we only write the Chern-Simons terms explicitly. For dynamical gauge fields,

there is also an implicit Maxwell term 1

g2 fµνf
µν . We neglect this as we are ultimately interested in

the infra-red limit g2 → ∞. Nonetheless, we should remember that in the presence of an ultra-violet

cut-off ΛUV , we keep g2 ≪ ΛUV as this limit is taken.
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The fermion is governed by the Dirac action

Sfermion[ψ;A] =

∫

d3x iψ̄γµ(∂µ − iAµ)ψ + . . . (2.5)

We are interested in gapless fermions which, again, leaves two choices. One of these

is a free fermion. The other is best thought of as introducing an auxiliary field σ and

adding the term σψ̄ψ to the action, tuning the mass to zero. (One can play the same

game to reach the Wilson-Fisher fixed point for the boson.)

If A is taken to obey the standard quantisation condition (2.1) then the partition

function involving the action (2.5) for a single Dirac fermion is not gauge invariant.

This is the parity anomaly [47, 48]. One way to see this is to give the fermion a mass

mψ̄ψ . Integrating them out then results in the Chern-Simons term

1

2
sign(m)SCS[A]

But, as described above, Chern-Simons terms are only gauge invariant with integer

coefficients.

Alternatively, we can see the lack of gauge invariance directly when m = 0. Consider

the background in which we insert a single unit of flux (2.1) through a spatial S2. The

Dirac fermion has a single, complex zero mode, χ. This means that the monopole has

two ground states,

|0〉 and χ†|0〉 (2.6)

Because ψ has charge 1, the charge of these two states must differ by +1. But, by CT

symmetry the magnitude of the charge should be the same for the two states. The net

result is that we have a simple example of charge fractionalisation and the states have

charge Q = ±1
2
. This means that, in the presence of an odd number of background

fluxes, the gauge charge is not integer valued. This is in contradiction with our original

Dirac quantisation condition which assumed unit fundamental charge. Something has

to break. That something is gauge invariance.

The upshot of these arguments is that we must amend the action (2.5) in some way

in order to preserve gauge invariance. There are (at least) two remedies. The first

is to retain the quantisation condition (2.1) but include a compensating half-integer

Chern-Simons action SCS[A]. The second is to change the quantisation condition (2.1).

Both remedies will appear in different places below.
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2.2 Attaching Flux to Scalars

With these building blocks in place, we can now describe the simple dual from which

all else follows. We consider a scalar coupled to a dynamical gauge field a with unit

Chern-Simons coefficient. This, in turn, is coupled to a background field A. The full

partition function takes the form

Zscalar+flux[A] =

∫

DφDa exp
(

iSscalar[φ; a] + iSCS[a] + iSBF [a;A]
)

(2.7)

Here the path integral over gauge fields implicitly includes the relevant gauge fixing

terms. Both f = da and F = dA are taken to have canonical normalisation (2.1).

If we turn off the background source, so F = 0, then the equation of motion for a0
reads

ρscalar +
f

2π
= 0 (2.8)

where ρscalar is the charge density of φ. Clearly this attaches one unit of flux to each

φ particle. In analogy with the familiar non-relativistic results [12], we should expect

the resulting object to be a fermion.

To see this explicitly, we need to look at the monopole operator [49]. (Once again,

this is simplest if we work on S2 rather than R2.) A single monopole operator has
∫

f = 2π. The constraint (2.8) means that we must excite a single mode of the scalar

in this background. However, the scalar monopole harmonics carry half-integer angular

momentum [52], ensuring that the monopole operator does indeed carry half-integer

spin. The monopole is a fermion.

With this in mind, we define the fermionic path integral

Zfermion[A] =

∫

Dψ exp
(

iSfermion[A]
)

As we explained previously, this is not gauge invariant. To restore gauge invariance, we

dress this partition function by a Chern-Simons term for the background gauge field

with half-integer coefficient, e.g. e−
i
2
SCS [A]. Such a term results in contact interactions

between currents [50].

The proposed duality of [14, 17, 23] is simply to identify the theory (2.7) describing

scalar+flux with the fermionic theory. Their partition functions are conjectured to be

related as

Zfermion[A] e
− i

2
SCS [A] = Zscalar+flux[A] (2.9)
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This is the simplest example of 3d bosonization. We note that it is also an example

of a particle-vortex duality: as we saw above, the free fermion operator maps to the

monopole operator in the interacting theory.

In fact, the formula (2.9) actually describes two different dualities. The difference

between them is hidden in the . . . in (2.4) and (2.5). As we saw above, there are two

choices for the critical scalar and fermion. The results of [20, 21] strongly suggest

that if we take the free fermion as the left-hand side of (2.9) then we should take the

Wilson-Fisher scalar on the right-hand side. Analogously, the critical fermion with

σψ̄ψ coupling corresponds to the free scalar.

The level −1
2
of SCS[A] on the left-hand side of (2.9) is fixed by the Hall conductivity

[22]. To see this, let us first gap the fermion. After integrating it out, we find a Hall

conductivity that is either 0 or -1 depending on the sign of the mass. On the scalar

side, two different things happen depending on the sign of this fermionic mass. For

one sign, the scalar is gapped and integrating out the dynamical gauge field a results

in a Hall conductivity −1; for the other sign, the scalar condenses and the gauge field

a is Higgsed. In this phase, the Hall conductivity vanishes. In both cases, we find

agreement with the fermionic behaviour.

In what follows, we will assume the duality (2.9) and use it to derive many further

dualities. We do this using the kind of techniques first introduced in [44] and further

explored in [51]. First, we breathe life into the background gauge field A, promoting it

to a dynamical gauge field. This, in turn gives rise to a new topological current ⋆F/2π

which is subsequently coupled to a replacement background gauge field through a BF

term. Below we will use this simple but powerful trick many times. We will find that

minor variations on the theme allow us to derive a vast array of different dualities,

including the particle-vortex dualities described in the introduction.

2.3 Attaching Flux to Fermions

We start with a simple example. As described above, we promote the background

gauge field A in (2.9) to a dynamical field and couple it to a new background gauge

field which we denote as C. The left-hand side of (2.9) becomes

Zfermion+flux[C] =

∫

DψDA exp
(

iSfermion[ψ;A]−
i

2
SCS[A]− iSBF [A;C]

)

(2.10)

This describes a fermion coupled to a background flux. To get a feel for the resulting

physics, we can again look at Gauss’ law, arising as the equation of motion for A0.
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Setting dC = 0, this reads

ρfermion −
1

2

F

2π
= 0 (2.11)

In the background of a single monopole,
∫

F = 2π, we must have Qfermion = 1
2
. We’ve

already seen that this is the charge of the state χ†|0〉 arising from quantising the zero

mode (2.6). The other state |0〉 does not satisfy Gauss’ law (2.11) and is not part of

the physical Hilbert space. Moreover, the zero mode χ is known to be a singlet under

rotation symmetry [43]. This means that the monopole operator is a boson and we

might expect (2.10) to be dual to a scalar theory.

Let us now see what becomes of the right-hand side of (2.9) under this operation.

The partition function is
∫

DA Zscalar+flux[A] exp
(

− iSBF [A;C]
)

The newly promoted gauge field A appears linearly in the action and can be integrated

out. Its equation of motion is simply da = dC. In the absence of any holonomy, we set

a = C to get
∫

Dφ exp
(

iSscalar[φ;C] + iSCS[C]
)

= Zscalar[C] e
iSCS [C]

This, of course, must be equal to the left-hand side (2.10). The end result is that,

starting from (2.9), we can derive a new duality in which attaching fluxes to fermions

gives rise to a bosonic theory

Zfermion+flux[C] = Zscalar[C] e
iSCS [C] (2.12)

A duality of this kind first appeared in [18] (see also [19]) and has arisen more recently

as a special case of non-Abelian dualities in [23].

One can check that repeating this procedure by gauging C in (2.12) and adding a

new background gauge field through a BF coupling takes us back to the duality (2.9).

Time-Reversal Duals

Before we proceed, it will be useful to highlight a generalisation of the dualities (2.9)

and (2.12). These arise from the action of time reversal. This flips the sign of all

Chern-Simons and BF couplings, leaving other terms in the action invariant. (Parity

would also play the same role.) Applying time reversal to the duality (2.9) gives

Zfermion[A] e
+ i

2
SCS [A] = Z̄scalar+flux[A] (2.13)
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where we have defined

Z̄scalar+flux[A] =

∫

DφDa exp
(

iSscalar[φ; a]− iSCS[a]− iSBF [a;A]
)

(2.14)

Similarly, applying time reversal to the duality (2.12) yields

Z̄fermion+flux[C] = Zscalar[C] e
−iSCS [C] (2.15)

where

Z̄fermion+flux[C] =

∫

DψDA exp
(

iSfermion[ψ;A] +
i

2
SCS[A] + iSBF [A;C]

)

(2.16)

We will have use for these versions of the duality shortly.

3. Particle-Vortex Duality

We can now play similar games to derive dualities which map bosons to bosons, and

fermions to fermions. As we will see, these include the familiar particle-vortex dualities.

3.1 Bosons

We start with the duality (2.12). However, before we proceed, we first divide by the

contact interaction so that the duality reads

Zfermion+flux[C] e
−iSCS [C] = Zscalar[C] (3.1)

We now gauge the background field C. For notational reasons, it will prove useful to

recycle some of our old names for gauge fields. We therefore relabel C → a. We couple

this to a new background gauge field which we call A. After gauging the right-hand

side becomes the partition function for scalar QED.

Zscalar−QED[A] =

∫

DφDa exp
(

iSscalar[φ; a] + iSBF [a;A]
)

Now we look at the left-hand side of the duality. After these operations, the partition

function is
∫

Da Zfermion+flux[a] e
−iSCS [a]+iSBF [a;A]. Written out in full using (2.10) (and

changing the names of integration variables), this reads

∫

DψDãDa exp
(

iSfermion[ψ; ã]−
i

2
SCS[ã]− iSBF [ã; a]− iSCS[a] + iSBF [a;A]

)
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The next step is to integrate out the gauge field a. Its equation of motion requires

(in the absence of holonomy) a = A − ã. Substituting back in, and collecting various

terms, we find the resulting partition function2

∫

DψDã exp
(

iSfermion[ψ; ã] +
i

2
SCS[ã]− iSBF [ã;A] + iSCS[A]

)

(3.2)

Something rather nice has happened: we recognise the first three terms as the time

reversed partition function Z̄fermion+flux defined in (2.16). We can replace this by using

the time reversed duality (2.15). Happily, the resulting contact interaction cancels the

final term in (3.2). We’re left simply with the scalar partition function Zscalar[A].

We learn that applying the duality twice, once in its original form (2.12), and once

in its time reversed avatar (2.15), we relate two scalar partition functions

Zscalar−QED[A] = Zscalar[A]

This, of course, is the original particle-vortex duality [1, 2], relating the XY model (1.1)

(on the right) to the Abelian Higgs model (1.2) (on the left). Following through the

fate of the . . . in the original scalar action, we see that the scalar should either be free

on both sides, or tuned to the Wilson-Fisher fixed point on both sides.

We highlight that the derivation assumes the absence of holonomies in the gauge

field when integrating out a. This means that the duality may be modified on S2×S1,

or indeed in flat space in the presence of Wilson lines.

3.2 Fermions

We can repeat the above derivation for the fermions. This time we start with the

duality (2.9), but only after dividing through by the contact interaction on both sides,

Zfermion[C] = Zscalar+flux[C] e
+ i

2
SCS [C] (3.3)

Now we have a problem. As we explained previously, if the background gauge field C

obeys the canonical quantisation condition (2.1), then neither side of this equation is

gauge invariant.

A fix for this was suggested in [3, 4, 5]: we simply require the more stringent quan-

tisation condition that fluxes must be even
∫

dC

2π
∈ 2Z (3.4)

Restricted to such backgrounds, there is no anomaly.
2This action also appears in a recent proposal for a particle-vortex symmetric description of the

superconductor-insulator transition [53].
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The restriction (3.4) is certainly allowed for background gauge fields which are under

our control. However, the next step is to promote C to a dynamical field and here

the condition (3.4) is far from innocuous. A more systematic treatment of this can be

found in [45, 54].

Let us look at what becomes of the two sides of the duality (3.3). The left-hand side

is simply QED3, with a single flavour of fermion. Changing the name of integration

variables, the partition function is

ZQED[A] =

∫

DψDa exp
(

iSfermion[ψ; a] +
i

2
SBF [a;A]

)

(3.5)

where the final term is the coupling to a background field A. The partition function is

gauge invariant only if dA also obeys the quantisation condition (3.4).

Meanwhile, the calculation on the right-hand side follows closely the derivation of

bosonic particle-vortex duality above. Only factors of 2 are different but since these

factors are important, let us spell out the steps here. The partition function on the

right-hand side reads
∫

DφDãDa exp
(

iSscalar[φ; ã] + iSCS[ã] + iSBF [ã; a] +
i

2
SCS[a] +

i

2
SBF [a;A]

)

Integrating out a results in the equation of motion da = −(dA + 2dã). Substituting

this back into the action and collecting terms, we find that
∫

DψDã exp
(

iSscalar[φ; ã]− iSCS[ã]− iSBF [ã;A]−
i

2
SCS[A]

)

As previously, we recognise the first three terms as the time reversed partition function

Z̄scalar+flux[A] defined in (2.14). We replace this using the time reversed duality (2.13).

The upshot of this argument is that (3.3) implies the relationship between single flavour

QED3, defined in (3.5), and a free fermion

ZQED[A] = Zfermion[A] (3.6)

This is precisely the particle-vortex duality for fermions proposed in [3, 4, 5], equating

the partition functions for (1.3) and (1.4).

It is instructive to look at the quantum numbers of monopole operators in QED3 on

S2. (See, for example, [43, 55] for the necessary facts about monopole operators.) In

the background of a monopole with flux
∫

da = 2πn, the Dirac equation has 2|n| zero

modes, transforming in the spin (|n| − 1)/2 representation of the SU(2)rot rotational

symmetry. For the n = 2 monopole, the resulting states are |0〉, χ†
a|0〉 and χ†

1χ
†
2|0〉;

these have charge Q = −1, 0,+1 and spin 0, 1
2
, 0 respectively. The Gauss law constraint

projects us onto the Q = 0 states. We learn that the monopole has spin 1
2
, as it should.
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The equality of partition functions (3.6), and the corresponding equality of current

correlators, provides strong evidence that QED3 is indeed equivalent to a free Dirac

cone. We stress that, on dynamical grounds, this is surprising. With an even number

Nf of fermionic flavours there is no parity anomaly and QED3 can be quantised with

the usual flux condition (2.1). Here the theory is expected to flow to a critical point

when Nf > N⋆, some critical number of flavours thought to be N⋆ ≈ 4. In contrast, for

Nf < N⋆, the theory confines, and generates a gap spontaneously breaking the flavour

symmetry. Based on this evidence, one might have thought that when Nf = 1, the

theory again confines and generates a gap, this time breaking time reversal invariance.

However, the result (3.6) — and, indeed, the arguments of [4, 5] — suggest that the

theory does not confine. Presumably this is because the channel for time reversal

breaking is somewhat weaker than flavour symmetry breaking [56].

3.3 Self-Dual Theories

It is straightforward to derive many further dualities by taking variations on this theme.

Here we describe the self-dual theories.

A familiar story from the study of supersymmetric mirror symmetry is that when we

couple two flavours of matter to a single U(1) gauge field, the resulting theory is self-

dual. This is known to hold for N = 4 [36] and N = 2 [40, 41] supersymmetric theories,

which correspond to sigma-models with target space T ⋆CP1 and CP1 respectively. In

this section, we describe the non-supersymmetric analogs of these self-dual theories.

Self-Dual Fermions

A proposal for a self-dual fermionic theory was offered recently in [57] by realising

the theory on the surface of a topological insulator. Our derivation begins by putting

together our original dual theory (2.9) with its time reversed partner (2.13),

Zfermion[A1]Zfermion[A2] = Zscalar−flux[A1]Z̄scalar−flux[A2] e
+ i

2
SCS [A1]−

i
2
SCS [A2] (3.7)

We write the background gauge fields as

A1 = a+ C and A2 = a− C

We then promote a to a dynamical gauge field, introducing a new background field A

in the process. The left-hand-side of the duality becomes

ZQED[Nf=2][A;C] =

∫

Da Zfermion[a + C]Zfermion[a− C] e+iSBF [a;A]
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The claim of [57] is that this theory is actually self-dual in the sense that the physics

is invariant under exchanging the two background fields A and C. This is not obvious

from the expression above. Indeed, C is the background field for the Cartan element of

an SU(2) flavour symmetry, rotating the two fermions. There is no obvious matching

SU(2) symmetry associated to A.

We can use the duality (3.7) to help us. The right-hand side of (3.7) becomes
∫

DaDφ1Dã1Dφ2Dã2 exp
(

iSscalar[φ1; ã1] + iSscalar[φ2; ã2] + iSCS[ã1]− iSCS[ã2]

+ iSBF [ã1 − ã2; a] + iSBF [ã1 + ã2;C] + iSBF [a;A+ C]
)

Once again, this doesn’t look symmetric under interchange of A and C. However now

we can integrate out a. The equation of motion tells us that dã1 − dã2 + dA+ dC = 0.

We will redefine c± = ã1± ã2 so that the constraint reads dc− = −(dA+ dC) which we

subsequently use to eliminate c−. The kinetic terms for φ depend only on the symmetric

combination A+C. Meanwhile, something rather nice happens to the remaining Chern-

Simons and BF terms; they rearrange themselves so that they depend only on the

combination A− C. We’re left with
∫

Dφ1Dφ2Dc+ exp
(

iS[φ1, φ2, c+;A+ C]−
i

2
SBF [c+;A− C]

)

We see that the first term is invariant under the exchange A ↔ C while the second

term picks up a minus sign. This, however, is easily dealt with if we simultaneously

apply a time reversal transformation.

Since this scalar theory is dual to QED with 2 flavours, we learn that this too must

be self-dual under the interchange of A↔ C, together with time reversal

ZQED[Nf=2][A;C] = Z̄QED[Nf=2][C;A]

in agreement with the proposal of [57].

Self-Dual Bosons

It is a simple matter to repeat the steps above to derive the self-duality of U(1) gauge

field coupled to two scalars. Starting from the duality (3.1), we find

ZQED[Ns=2][A;C] =

∫

Da Zscalar[a + C]Zscalar[a− C]eiSBF [a;A]

=

∫

Da Zfermion+flux[a + C] Z̄fermion+flux[a− C] eiSBF [a;A−2C]

=

∫

Dψ1Dψ2Dc+ exp
(

iS̃[ψ1, ψ2, c+;A− 2C]−
i

4
SBF [c+;A+ 2C]

)
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where S̃[ψ1, ψ2, c+;A− 2C] is what becomes of the kinetic terms after we integrate out

a and impose the resulting constraint c− = A− 2C. Importantly, this term is invariant

under parity/time-reversal. We see that once again the partition function admits a

symmetry under the exchange: A ↔ −2C together with time reversal. We have the

self-duality

ZQED[Ns=2][A;C] = Z̄QED[Ns=2][−2C;−
1

2
A]

This duality was previously studied in [58]. Moreover, we learn something new: com-

paring the equations in this section, we see that QED with two fermions is actually the

same theory as QED coupled to two scalars!

3.4 A Vortex-Vortex Duality

To finish, we describe one final duality in which monopole operators are mapped to

monopole operators. This duality was previously described in [23] for U(N) theories;

here we derive the U(1) version.

We again start with (2.12), but this time change the Chern-Simons level for the

background field on both sides to,

Zscalar[C] e
2iSCS [C] = Zfermion+flux[C] e

iSSC [C]

After promoting C to a dynamical gauge field (which we rename as a), the left hand

side becomes
∫

Da Zscalar[a] exp
(

2iSCS[a] + iSBF [a;A]
)

Meanwhile, the right-hand-side is
∫

DaDC Zfermi[a] exp
(

−
i

2
SCS[a]− iSBF [a;C] + iSCS[C] + iSBF [C;A]

)

=

∫

Da Zfermi[a] exp
(

−
3i

2
SCS[a] + iSBF [a;A]− SCS[A]

)

where, to get to the second line, we integrate out C and substitute in its equation of

motion C = a − A. The end result is that a scalar coupled to a Chern-Simons gauge

field at level 2 is equivalent to a fermion coupled to a Chern-Simons gauge field at level

−3
2
. This duality was previously reported in [23].

Let us check that the quantum numbers of operators agree on both sides. On the

scalar side, Gauss’ law requires ρscalar = −f/π. In the background of a single monopole,

we must turn on two scalar modes. As we saw above, the lowest excited state of the

scalar has spin 1
2
. Since these are bosons, we pick out the symmetric part so turning

on two such modes endows the monopole with spin 1.
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Meanwhile, on the fermionic side the Gauss’ law tells us that ρfermi = 3f/4π. The

single monopole must have charge 3/2. The zero mode (2.6) can account for charge 1
2

and leaves the monopole with spin 0. But, in addition, we must also turn on an excited

mode. The first excited mode has spin 1. Thus, once again, the monopole operator has

spin 1.

4. Discussion

Above, we have focused exclusively on non-supersymmetric dualities. One may wonder

if we can combine these to derive mirror symmetry [36] or Seiberg-like dualities [28] of

supersymmetric theories. Unfortunately we do not, at present, have enough handle on

the operator map needed to include features like Yukawa couplings on both sides.

Instead, we could ask the reverse question: starting from a supersymmetric mirror

pair, how does it decompose under RG flow if a relevant, supersymmetry breaking

operator is added? For the supersymmetric bosonization duality, this question was

answered in the large N limit in [32, 33]. Here our interest is in Abelian theories and

we do not have control of the RG flow. Nonetheless, we will make some suggestions.

For theories with N = 4 supersymmetry, the simplest mirror pair is [36]

Free Hypermultiplet = U(1) + Charged Hypermultiplet

Here a single hypermultiplet contains two complex scalars and two Dirac fermions. The

U(1) gauge field is part of a vector multiplet which also contains three real scalars and

two Dirac fermions. It can be shown that, starting from this seed mirror pair, one can

generate all further N = 4 Abelian mirrors using path integral manipulations of the

kind employed above [44].

One can break the supersymmetry down to N = 2 by giving masses to half of the

fields in the hypermultiplet and integrating them out. Flowing from the simple N = 4

duality above, one finds the N = 2 duality involving a half-integer Chern-Simons

coupling [40, 41]

Free Chiral Multiplet = U(1)1/2 + Charged Chiral Multiplet

Now the relevant N = 2 multiplets are a chiral multiplet, which consists of a single

complex scalar and a single Dirac fermion, and a vector multiplet containing the U(1)

gauge field, a single real scalar, and a single Dirac fermion.
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Now we wish to deform the theory further by adding mass to either the free boson

or free fermion. The resulting RG flow breaks all supersymmetry and is, correspond-

ingly, difficult to study. One might imagine that the end point of integrating out the

fermions on both sides is the standard bosonic particle-vortex duality (1.1) and (1.2).

However, the end point of integrating out scalars on both sides cannot be the fermionic

counterpart (1.3) and (1.4) because the anomaly structure is different. Something else

must happen.

Flows of a very similar kind were studied in a very impressive analysis of large N

theories in [32, 33]. There one finds that the bosonic currents on one side of the duality

are related to the fermionic currents on the other side. Further, gapping out the boson

on one side ultimately results in a gap for fermion on the other side. We suggest that

this structure survives to the Abelian theories considered here: the end points of RG

flows from the N = 2 mirror are not the particle-vortex dualities described in the

introduction: instead they are the two bosonization dualities (2.9) and (2.12).

The results of Section 3, as well as our speculations above, fit a general pattern which

suggests that a good slogan for the content of this paper might be: “particle-vortex

duality = bosonization2 ”.

Our techniques open the door for the construction of many more Abelian dual pairs.

In the supersymmetric context, one can use N copies of the basic pair and gauge r

of the background fields to derive mirror pairs in which U(1)r with N matter fields

is dual to U(1)N−r with N matter fields [36, 44, 41]. The same steps can easily be

repeated in the non-supersymmetric context to generate generalizations of our story

with multiple Abelian gauge groups, with the self-dual theories of Section 3.3 the first

in the sequence.

More challenging is the extension of our techniques to non-Abelian theories. The 3d

bosonization dualities have a simple non-Abelian generalization. Indeed, in the large N

limit the evidence for this duality is overwhelming. It would be very interesting to see

if one can manipulate the partition functions for these non-Abelian duals in a similar

way to their Abelian cousins.
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