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In canonical quantum gravity asymptotically trivial diffeomorphisms not deformable to the idendity can act nontrivially 

on the quantum state space. We show that for many 3-manifolds, the inequivalent diffeomorphisms comprise coverings in 

SU(2) of crystallographic groups. When the diffeomorphism Rzn associated with 2a-rotation is nontrivial, state vectors can 

have half-integral angular momentum; we list all 3-manifolds with R,, trivial. 

In classical gravity, two metrics are physically equiv- 
alent if they differ only by a diffeomorphism. Within 
the canonical framework of quantum gravity, however, 
state vectors need be invariant only under diffeomor- 

phisms (hereafter, “diffeos”) that are continuously 
deformable to the identity [l-4] and which, for 

asymptotically flat spacetimes, are trivial at infinity. 
Remarkably, because the diffeo associated with a 2n- 
rotation, although trivial at infinity, is not in general 
deformable to the identity [1,2], states with half-in- 
tegral angular momentum can arise in quantum gravity. 
More generally, if D, is the group of asymptotically 
trivial diffeos of a manifold M, the group G E rru(D~) 
of inequivalent diffeos is a symmetry group acting on 
states associated with M. 

In the geometrodynamics picture of a topological 
structure as a particle - a “geon” - G is an internal 
symmetry group: a group whose elements commute 
with but do not include the external symmetries (rota- 
tions and translations) and (as long as the topology is 
fixed) with time evolution. We use the term geon to 
mean a prime factor of the manifold, a region of non- 
trivial topology which cannot be subdivided by a 
sphere into two disjoint regions, each with nontrivial 

topology . *I The space 81, of state vectors correspond- 
ing to a single geon consists, in the Schrodinger repre- 
sentation, of wave functions with support on metrics 

1 Research supported in part by the National Science Founda- 

tion. 
*l Footnote, see next column. 
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on a fixed prime manifold, M. 5X, can be decomposed 
into irreducible subspace under the action of G, and 
the irreducible representations of G may be regarded 
as the possible particle multiplets associated with a 
gluon [2,5]. Every prime 3-manifold N can be obtain- 
ed from a solid polyhedron by identifying faces [6]. 
The corresponding noncompact space M = ~~ #N is 
obtained by removing a polyhedron from R3 and sim- 
ilarly identifying faces of the boundary of the hole. 
We will see that at least for prime manifolds known to 

arise in classical relativity, the symmetry group G is 
often isomorphic to the covering group in SIJ(2) of 
the polyhedron’s symmetry group. 

In Yang-Mills quantum theory, the state space is 
similarly invariant only under gauge transformations 
that are deformable to the identity [7,8] and which 
are trivial at infinity. There, however, the classes of in- 
equivalent gauge transformations form an abelian 
group isomorphic to the additive integers 2, and so the 
group has only one-dimensional representations, each 

*l On non-orientable manifolds with handles, there is an am- 

biguity in stating what the prime factors of a manifold are, 

because one can convert an orientable handle into a non- 
orientable one by sliding one end of it through a non- 

orientable prime factor. Here, however, one can resolve the 

ambiguity by using “geon” to refer to a prime factor metri- 
cally separated from all other prime factors. (Note that 

handles are here regarded as single geons, corresponding to 

the physical assumption that prime factors will be micro- 

scopic - that in particular, the ends of a handle will have 

small separation.) 
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fixed by a single angle 0 : g, $ = eine J/, where gn is a 
gauge transformation of winding number n [n is the 
winding number ofg, regarded as a map from S3 = 
(euclidean space with a point at infinity) to the gauge 
group]. In gravity, because the corresponding group G 
is in general not abelian, its irreducible representations 
are in general not all one dimensional. Isham [3,4] re- 
gards the possible ‘V-states” of gravity as the characters 
of G; as in the Yang-Mills case, however, all irreducible 
representations can be built from a set of states of the 
form Xi$, where J/ is a wave function centered about 
a particular 3-geometry (M, [g] ), where the Xi are in- 
equivalent diffeos of G and XiJI(g) = $(xiIg); and 

where [g] is an equivalence class of metrics with [g] 
= [g’] * g’ = xg for some diffeo X deformable to the 
identity * *. 

Symmety) groups of compact spaces. Compact 
3manifolds can be decomposed into a direct sum*” of 
prime factors and (to within standard conjectures of 

toPologY) *4 all prime orientable 3-manifolds are one 

of the following types [lo] : (i) Spherical spaces. These 
are manifolds of the form S3/H, where H is a finite sub- 
group of SO(4) acting freely on S3. (ii) S1 X S2 (a 
“handle”). (iii) K(II, l)‘s, manifolds of the form R3/II 

where II is a group of homeomorphisms acting freely 
on R3. Prime non-orientable manifolds are either Sr 
X, S2 (twisted handle), S 1 X P2 (P2 the projective plane) 
K(II, I)‘s, or manifolds whose orientable double cover- 
ing is not prime. 

All geodesically complete manifolds M admitting 
asymptotically flat 3-metrics with a single asymptotic 
region have the form of a compact manifold with a 
point (the point i. “at infinity”) removed: M = N\ 

{io} = R3 #N. In classical relativity it may be that the 
K(II, 1)‘s do not occur in asymptotically flat vacuum 

‘z More recent work by Isham [9] also recognizes the general 

irreducible representations. 
*3 If A and B are manifolds, the direct sum A #B is obtained 

by removing a ball from each manifold and then identify- 

ing the spherical boundaries. In two dimensions, for exam- 

ple (where a ball is a disk), the direct sum of a plane and 

two tori is a plane with two handles on it. 

*4 One needs the Poincare conjecture to know that the sphere 

is the only compact, simply-connected 3-manifold, and the 

Smale conjecture (whose proof is claimed by Hatcher) to 
know that the only groups of homeomorphisms H acting 

freely on S3 are isomorphic to subgroups of SO(4). 

spacetimes *s but all the remaining manifolds do, and 
these are completely classified, since the finite sub- 

groups of SO(4) are well known. We will first consider 

the symmetry groups of compact spaces N and then 
turn to the more interesting case of the manifolds M 
= R3 #N which can arise as asymptotically flat spaces 
whose symmetry groups can be regarded as internal 
symmetries of geons. 

There is a standard conjecture 1131 that for spheri- 
cal spaces, the homotopy groups of the diffeos are the 
homotopy groups of the isometries, and for most 
spherical spaces, this has been proved (in many cases 
quite recently [14,15]) for the group no(D). Now the 
isometries of S3/H are those elementsg of SO(4) for 
which the image of an orbit of H is another orbit of H, 
and this is true precisely whengHg-l = H, when g is in 
the normalizer N(H) of H. The conjecture is then 

xc,(D) = no [NW/HI, (1) 

where “N(H)/H” appears instead of “N(H)” because 
any h E H acts as the identity on S3/H. 

We list below (in table 1) the spherical spaces [16] 
and their symmetry groups no(D), assuming them to 
be given by eq. (1). Those for which (1) has not been 
proved are marked by a dagger. The first set of groups 
listed are also subgroups of SU(2). Here T*, 0* and I* 

denote the covering groups in SU(2) of the tetrahedral, 
octahedral and icosahedral subgroups of SO(3). Sim- 

ilarly, for each m > 2, Di is the covering group in 
SU(2) of the dihedral group of order 2nz, the symmetry 
group in SO(3) of the m sided prism. These spaces are 
obtained [17] by identifying faces of polyhedra and 
the names of the spaces refer to these polyhedra. 

For the handle N = S’ X S2, no(D) = Z X Z, X Z2 

[ 181; for the nonorientable handle S’ 5 S 3 [ 191 and 

for S’ X P2, no(D) = Z2 X Z2. Finally, for the K(II, 1)‘s 
.rru(D) is known when the space is “sufficiently large” 
[ 161 (which for these spaces is equivalent to requiring 
that the first homology group be infinite). Then no(D) 
= Out(H), the outer automorphisms of the group II. 

*’ Shoen and Yau [ 1 l] claim that if on R3 #N, there is initial 

data satisfying the vacuum constraint equations (or the con- 

straint equations with matter satisfying a local energy condi- 

tion) then N admits a metric with positive scalar curvature; 

Gromov and Lawson [ 121 claim that the K(H, 1)‘s have no 

metrics with positive scalar curvature. (However, D. Brill 

now claims a counterexample to the Schoen and Yau asser- 
tion when matter is present.) 

32.5 
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Table 1 
Compact spherical spaces: N = S3/H, where H c SO(4). 

13 January 1983 

H Name of space no(D) 

T* octahedral space 
O* truncated cube space 
I* dodecahedral space 
D m prism manifolds 

Hx Zp 

zp 

D'2k. (2'n+ 1) 

T'8,3k 
D'XZp,T'XZp 

(H is any one of the groups listed above and Zp a cyclic 
group of relatively prime order) 

lens spaces L(p ,q) 

prism manifolds 

z2 t 
I 

1[  
P3, (permutation group of 3 objects), m=2 
Z2,m~>3 

no [D(S3/H)] x Z2 

Z2, ifq 2 ~± 1 mod p, otherwise, lro(D) is 
Z2, ifq ~ -+I modp 
Z4, ifq 2 - = - l m o d p a n d q ~ ± l  modp 
Z 2 X Z2,ifq2=-I modp andq ~=±1 modp 

Z 2 X Z 2 

Z2 t 

Z 2 X Z2, Z 2 

Symmetry groups of  prime, asymptotically fiat 
spaces. The corresponding open manifolds, M, obtained 

by removing a point from S3/H, can be more pictur- 
esquely described as the result of  removing from R 3 
the same polyhedron and then identifying the bounda- 
ries of  the resulting hole. The symmetry group G = 
n0(DM) (where D M is the group of  diffeos of  M that 
are trivial at infinity) is in general the symmetry  group 
of  the polyhedron - or its covering group in SU(2). 
Representative diffeos in each class can be described 
as follows. Let R(00h ) be a rotat ion of  R 3 that corre- 
sponds to a polyhedral symmetry and M the manifold 
constructed by identifying faces of  the polyhedron cut 
from R 3. Then an associated asymptotical ly trivial 
homeomorphism of  M can be written in the form 
R [0(X) h] ,  where 0(0) = 00,0(oo) = 0 and X, 0 ~< X <oo, 
is a scalar that labels concentric polyhedra. 

Rotations,  in contrast,  have the form exp(q~),  
where the vector field ~ generates a rotational subgroup 
of  the symmetry  group at spatial infinity. The 2rr-rota- 
tion, however, is trivial at infinity, and so, as mention- 
ed previously belongs to the internal symmetry group 
G. When the 2zr-rotation is a nonzero element of  G (so 
that a 2rr-twist near infinity cannot be untwisted by 
communicating it to the interior),  the space of  state 
vectors $ satisfying the momentum constraint includes 

states of  half-integral angular momentum [1,2].  In the 
cases we have calculated, the internal symmetry group 
G is then the covering group in SU(2) to a crystallo- 
graphic symmetry group and G may be said to mix in- 
ternal and external symmetries. (When the 21r-rotation 
is deformable to the identi ty,  the internal and external 
symmetry groups have only the identi ty element in 
common.) 

To find the symmetry groups for these non-com- 
pact spaces, we use the fact that a diffeo trivial at in- 
finity for the non-compact space M is equivalent to a 
diffeo that fixes a point i 0 and a frame in the compac- 
tiffed N = M tO {i0}. We will give an explicit example 
of  the computat ion and then list the groups G obtain- 
ed in this way. Let D N be the group of  diffeos of  N, 
and let D M be the group of  diffeos of  M that are the 
identi ty at infinity. Denote by e 0 a frame (triad) at i0, 

by X a diffeo of  DN, and by xe 0 the frame at X(io) ob- 
tained by dragging e 0 to i. Finally let E be the bundle 
of  right handed frames o f  N. Then D N can be given 
the structure of  a bundle over E N with fiber isomorphic 
to D M as follows. 

Define a pro jec t ionp:  D N ~ N b y P 0 0  = (x(i0),  
×eo). That is, a diffeo X is in the fiber over (i, e) i f x  

takes (i0, e0) to (i, e). Two diffeos over (i, e) are relat- 
ed by  a diffeo that fixes (i, e) and thus the fibers are 
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isomorphic to D,. The homotopy exact sequence for 
fiber bundles [20] has the form *6 

. ..+rrl(DN)%rl(E)~ G%r,(D,)+ 1. 

For N = S3/H, rrl(N! = H and o(nI(E)) = 2 o(H), 
where “o(H)” means the order of (number of elements 

in) H. Exactness implies o [G] = o [rrO(D~ 1. o(Im /3) 

and o[nl(E)] = o(Im cu)*o(Im /3). Hence 

o [G] = 2 o [nO( o(H)/o(Im a). (2) 

Consider now the case H = I*, the 120 element cover- 

ing group to the icosahedral group. It is not difficult 
to verify that (Y has nontrivial image, so o(Im cr) > 2; 

and from table 1, o [no( = 1. Then (2) implies 

o(G) < 120. But for the dodecahedral space, N = S3/I*, 

every symmetry of the dodecahedron gives rise to a 
nontrivial element of rro(DEn): the diffeos described 
in the first paragraph of this section act nontrivially on 
rrl(M) = I*. Finally, the rotation R,, is nontrivial in G 

and its composition with each of the polyhedral diffeos 
is a distinct element of G. Because the diffeos enumer- 
ated thus far form a 120 element group isomorphic to 
I*, I* C G; and (2) then implies that I* = G. In this 
way we obtain G for the spherical spaces in table 2. 

*6 The extension of the exact sequence to no(fiber) + no 

(bundle) + 1 holds when, as here, the fiber and bundle 

spaces are topological groups and the base space is connect- 

ed. 

Table 2 

Symmetry groups G for manifolds M = R3 #N, N prime. 

For the handle and twisted handle, G is given, for 
example, in [19] ; in both cases the diffeos are a 2rr- 

twist between two spheres surrounding a single end and 
an exchange of the ends. (The additional Z, for S1 X 
S2 in the compact case comes from the reflection 0 + 
-8, where 1’3 parametrizes the St, but this is not trivial 
at infinity and so is not in G). Because no K(II, 1) has 

finite fundamental group, R2, is not trivial [1,21] and 
{ R2, , I} is a Z2 subgroup of G. Modulo R,, , G is iso- 
morphic to the group of orientation preserving auto- 
morphisms of II [22] when K(II, 1) is sufficient large: 

G/Z, =Aut+(II). 

Severalgeons. The symmetry group G for the con- 
nected sum M = R3 #Nl # . . . #NP ofp prime factors, 

although not simply the direct product of the internal 
symmetry groups of each price factor, is easily describ- 
ed. The additional diffeos are generated by interchanges 
of identical factors and by slides [2 l] - diffeos that 
move a prime factor or one end of a handle around a 

nontrivial loop of the surrounding manifold *‘. To each 
prime factor Nj (or each end of a handle) and each 

class of loops in M \ Nj corresponds a slide; and the sub- 

*’ Let B be a ball containing a prime factor N of M and let 

C(e), 0 Q e < 2n be a curve in M > B that is not homotopic 
to zero. Let Tr and Tz be concentric tori (or Klein bottles) 

enclosing both C and N. Then a slide is the identity outside 

Tz and inside Tr , while between Tt and T2 points move 

along circles “parallel” to the tori by an angle that increases 

from 0 to 2n as one moves inward from T2 to Tt 

N 

L(p,q) 
octahedral space 

truncated cube space 

dodecahedral space 

prism manifolds S3/DG 

S3/T; .sk> S3/D;/c(2,+t) 

S3/(H x Zp) 

s’xs~,s’xs~,s’xP~ 

K(n. 1) 

G 

same as no(DN) of table 1 

0* 
0* 

I* 

o;,m=2 

D,,, m > 4, even 

D2,,,, m odd 

? 

7 

z2xz2 

G/Z2 2 Aut+(D) if K(n, 1) is 
“sufficiently large” 

R2lT - 1 ?“) 

yes 
no 

no 

no 

R2,= 1 - m is odd 

no, yes 

same as for S3/H 

yes 

tl0 

a) When N is not prime, R,, = 1 if and only If R2n= 1 for each prime factor. 
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group d generated by slides commutes with the sym- 

metry group of each prime factor. For example, if N, 

and N2 are not handles, $ for M = R3 #N, #N, is just 
the free group generated by slides of N, about loops 
of N2 and vice-versa: d = nl(N2) *7rl(N1) =nl(M). 
(For p handles the group G is analyzed by Laudenbach 
[19] .) The subgroup of G generated by interchanges is 
the direct product of the permutation groups for the 
sets of identical prime factors (permutations do not, 
however, commute with symmetry groups of individual 
factors or with slides). 

We are indebted to J. Arnold, J. Rubinstein, R. 
Sorkin, and J. Wagner for helpful discussions and to 
Rubinstein and C. Hodgson for communicating their 
results to us prior to publication. 
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