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§ 1. Introduction

The steady progress of physics requires for its theoretical formulation a
mathematics that gets continually more advanced. This is only natural and
to be expected. What, however, was not expected by the scientific workers
of the last century was the particular form that the line of advancement of
the mathematics would take, namely, it was expected that the mathemat-
ics would get more and more complicated, but would rest on a permanent
basis of axioms and definitions, while actually the modem physical develop-
ments have required a mathematics that continually shifts its foundations
and gets more abstract. Non-euclidean geometry and non-commutative al-
gebra, which were at one time considered to be purely fictions of the mind
and pastimes for logical thinkers, have now been found to be very necessary
for the description of general facts of the physical world. It seems likely that
this process of increasing abstraction will continue in the future and that
advance in physics is to be associated with a continual modification and gen-
eralisation of the axioms at the base of the mathematics rather than with a
logical development of any one mathematical scheme on a fixed foundation.

There are at present fundamental problems in theoretical physics await-
ing solution, e.g., the relativistic formulation of quantum mechanics and the
nature of atomic nuclei (to be followed by more difficult ones such as the
problem of life), the solution of which problems will presumably require a
more drastic revision of our fundamental concepts than any that have gone
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before. Quite likely these changes will be so great that it will be beyond
the power of human intelligence to get the necessary new ideas by direct
attempts to formulate the experimental data in mathematical terms. The
theoretical worker in the future will therefore have to proceed in a more
indirect way. The most powerful method of advance that can be suggested
at present is to employ all the resources of pure mathematics in attempts to
perfect and generalise the mathematical formalism that forms the existing
basis of theoretical physics, and after each success in this direction, to try
to interpret the new mathematical features in terms of physical entities (by
a process like Eddington’s Principle of Identification).

A recent paper by the author 1 may possibly be regarded as a small step
according to this general scheme of advance. The mathematical formalism
at that time involved a serious difficulty through its prediction of negative
kinetic energy values for an electron. It was proposed to get over this diffi-
culty, making use of Fault’s Exclusion Principle which does not allow more
than one electron in any state, by saying that in the physical world almost all
the negative-energy states are already occupied, so that our ordinary elec-
trons of positive energy cannot fall into them. The question then arises to
the physical interpretation of the negative–energy states, which on this view
really exist. We should expect the uniformly filled distribution of negative–
energy states to be completely unobservable to us, but an unoccupied one of
these states, being something exceptional, should make its presence felt as
a kind of hole. It was shown that one of these holes would appear to us as
a particle with a positive energy and a positive charge and it was suggested
that this particle should be identified with a proton. Subsequent investiga-
tions, however, have shown that this particle necessarily has the same mass
as an electron 2 and also that, if it collides with an electron, the two will
have a chance of annihilating one another much too great to be consistent
with the known stability of matter. 3

It thus appears that we must abandon the identification of the holes
with protons and must find some other interpretation for them. Following
Oppenheimer, 4 we can assume that in the world as we know it, all, and not
merely nearly all, of the negative–energy states for electrons are occupied. A
hole, if there were one, would be a new kind of particle, unknown to exper-
imental physics, having the same mass and opposite charge to an electron.

1Proc. Roy. Soc.,’ A, vol. 126, p. 360 (1930).
2H. Weyl,’ Gruppentheorie and Quantenmechanik,’ 2nd ed. p. 234 (1931).
3I. Tamm,’ Z. Physik,’ vol. 62, p. 545 (1930);’ J. B. Oppenheimer, ’ Phys. Rev.,’ vol.

35, p. 939 (1930); P. Dirac, ’ Proc. Camb. Philos. Soc.,’ vol. 26, p. 361 (1930).
4J. R. Oppenheimer,’ Phys. Rev.,’ vol. 35, p. 562 (1930).
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We may call such a particle an anti–electron. We should not expect to find
any of them in nature, on account of their rapid rate of recombination with
electrons, but if they could be produced experimentally in high vacuum they
would be quite stable and amenable to observation. An encounter between
two hard γ–rays (of energy at least half a million volts) could lead to the
creation simultaneously of an electron and anti-electron, the probability of
occurrence of this process being of the same order of magnitude as that of
the collision of the two γ–rays on the assumption that they are spheres of
the same size as classical electrons. This probability is negligible, however,
with the intensities of γ–rays at present available.

The protons on the above view are quite unconnected with electrons.
Presumably the protons will have their own negative–energy states, all of
which normally are occupied, an unoccupied one appearing as an anti–
proton. Theory at present is quite unable to suggest a reason why there
should be any differences between electrons and protons.

The object of the present paper is to put forward a new idea which is in
many respects comparable with this one about negative energies. It will be
concerned essentially, not with electrons and protons, but with the reason
for the existence of a smallest electric charge. This smallest charge is known
to exist experimentally and to have the value e given approximately by5

hc/e2 = 137. (1)

The theory of this paper, while it looks at first as though it will give a the-
oretical value for e, is found when worked out to give a connection between
the smallest electric charge and the smallest magnetic pole. It shows, in
fact, a symmetry between electricity and magnetism quite foreign to cur-
rent views. It does not, however, force a complete symmetry, analogous
to the fact that the symmetry between electrons and protons is not forced
when we adopt Oppenheimer’s interpretation. Without this symmetry, the
ratio on the left–hand aide of (1) remains, from the theoretical standpoint,
completely undetermined and if we insert the experimental value 137 in our
theory, it introduces quantitative differences between electricity and mag-
netism so large that one can understand why their qualitative similarities
have not been discovered experimentally up to the present.

5h means Planck’s divided by 2π.
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§ 2. Non–integrable Phases for Wave Functions.

We consider a particle whose motion is represented by a wave function ψ

which is a function of x, y, z and t. The precise form of the wave equation
and whether it is relativistic or not, are not important for the present theory.
We express ψ in the form

ψ = Aeiγ , (2)

where A and γ are real functions of x, y, z and t, denoting the amplitude
and phase of the wave function. For a given state of motion of the particle,
ψ will be determined except for an arbitrary constant numerical coefficient,
which must be of modulus unity if we impose the condition that shall be
normalised.

The indeterminacy in ψ then consists in the possible addition of an
arbitrary constant to the phase γ. Thus the value of γ at a particular point
has no physical meaning and only the difference between the values of y at
two different points is of any importance.

This immediately suggests a generalisation of the formalism. We may
assume that γ has no definite value at a particular point, but only a definite
difference in values for any two points. We may go further and assume that
this difference is not definite unless the two points are neighbouring. For
two distant points there will then be a definite phase difference only relative
to some curve joining them and different curves will in general give different
phase differences. The total change in phase when one goes round a closed
curve need not vanish.

Let us examine the conditions necessary for this non–integrability of
phase not to give rise to ambiguity in the applications of the theory. If we
multiply ψ by its conjugate complex φ we get the density function, which has
a direct physical meaning. This density is independent of the phase of the
wave function, so that no trouble will be caused in this connection by any
indeterminacy of phase. There are other more general kinds of applications,
however, which must also be considered. If we take two different wave
functions ψm and ψn we may have to make use of the product φmψn. The
integral ∫

φmψndxdydz

is a number, the square of whose modulus has a physical meaning, namely,
the probability of agreement of the two states. In order that the integral
may have a definite modulus the integrand, although it need not have a
definite phase at each point, must have a definite phase difference between
any two points, whether neighbouring or not. Thus the change in phase in
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φmψn round a closed curve must vanish. This requires that the change in
phase in ψn round a closed curve shall be equal and opposite to that φm and
hence the same as that in ψm. We thus get the general result: The change
in phase of a wave function round any closed curve must be the same for all
the wave functions.

It can easily be seen that this condition, when extended so as to give
the same uncertainty of phase for transformation functions and matrices
representing observables (referring to representations in which x, y and z

are diagonal) as for wave functions, is sufficient to insure that the non–
integrability of phase gives rise to no ambiguity in all applications of the
theory. Whenever a ψn appears, if it is not multiplied into a φm, it will at
any rate be multiplied into something of a similar nature to a φm, which
will result in the uncertainty of phase cancelling out, except for a constant
which does not matter. For example, if ψn is to be transformed to another
representation in which, say, the observables ξ, are diagonal, it must be mul-
tiplied by the transformation function (ξ, xyzt) and integrated with respect
to x, y and z. This transformation function will have the same uncertainty
of phase as a φ, so that the transformed wave function will have its phase
determinate, except for a constant independent of ξ. Again, if we multiply
ψn by a matrix (x′y′z′t|α|x′′y′′z′′t), representing an observable α, the un-
certainty in the phase as concerns the column [specified by x′′, y′′, z′′, t] will
cancel the uncertainty in ψn and the uncertainty as concerns the row will
survive and give the necessary uncertainty in the new wave function αψn.
The superposition principle for wave functions will be discussed a little later
and when this point is settled it will complete the proof that all the general
operations of quantum mechanics can be carried through exactly as though
there were no uncertainty in the phase at all.

The above result that the change in phase round a closed curve must
be the same for all wave functions means that this change in phase must
be something determined by the dynamical system itself (and perhaps also
partly by the representation) and must be independent of which state of the
system is considered. As our dynamical system is merely a simple particle,
it appears that the non–integrability of phase must be connected with the
field of force in which the particle moves.

For the mathematical treatment of the question we express ψ, more
generally than (2), as a product

ψ = ψ1e
iβ , (3)

where ψ1 is any ordinary wave function (i.e., one with a definite phase at
each point) whose modulus is everywhere equal to the modulus of ψ. The
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uncertainty of phase is thus put in the factor eiβ . This requires that β shall
not be a function of x, y, z, t having a definite value at each point, but β
must have definite derivatives

κx =
∂β

∂x
, κy =

∂β

∂y
, κz =

∂β

∂z
, κ0 =

∂β

∂t
,

at each point, which do not in general satisfy the conditions of integrability
∂κx/∂y = ∂κy/∂x, etc. The change in phase round a closed curve will now
be, by Stokes’ theorem, ∫

(κ,ds) =

∫
(curl κ,dS), (4)

where ds (a 4–vector) is an element of arc of the closed curve and dS (a
6–vector) is an element of a two–dimensional surface whose boundary is the
closed curve. The factor ψ1 does not enter at all into this change in phase.

It now becomes clear that the non–integrability of phase is quite con-
sistent with the principle of superposition, or, stated more explicitly, that
if we take two wave functions ψm and ψn both having the same change in
phase round any closed curve, any linear combination of them cmψm+ cnψn
must also have this same change in phase round every closed curve. This is
because ψm and ψn will both be expressible in the form (3) with the same
factor eiβ (i.e., the same κ’s) but different ψ1’s, so that the linear combina-
tion will be expressible in this form with the same eiβ again, and this eiβ

determines the change in phase round any closed curve. We may use the
same factor eiβ in (3) for dealing with all the wave functions of the system,
but we are not obliged to do so, since only curl κ is fixed and we may use
κ’s differing from one another by the gradient of a scalar for treating the
different wave functions.

From (3) we obtain

− ih ∂

∂x
ψ = eiβ

(
−ih ∂

∂x
+ hκx

)
ψ1, (5)

with similar relations for the y, z and t derivatives. It follows that if ψ
satisfies any wave equation, involving the momentum and energy operators
p and W,ψ1 will satisfy the corresponding wave equation in which p and W
have been replaced by p + hκ and W − hκ0 respectively.

Let us assume that ψ satisfies the usual wave equation for a free particle
in the absence of any field. Then ψ1 will satisfy the usual wave equation for a
particle with charge −e moving in an electromagnetic field whose potentials
are

A = hc/e · κ, A0 = −h/e · κ0. (6)
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Thus, since ψ1 is just an ordinary wave function with a definite phase,
our theory reverts to the usual one for the motion of an electron in an
electromagnetic field. This gives a physical meaning to our non–integrability
of phase. We see that we must have the wave function ψ always satisfying
the same wave equation, whether there is a field or not, and the whole effect
of the field when there is one is in making the phase non–integrable.

The components of the 6-vector curl κ appearing in (4) are, apart from
numerical coefficients, equal to the components of the electric and magnetic
fields E and H. They are, written in three-dimensional vector–notation,

curl κ =
e

hc
H, grad κ0 − ∂κ

∂t
=
e

h
E. (7)

The connection between non-integrability of phase and the electromag-
netic field given in this section is not new, being essentially just Weyl’s
Principle of Gauge Invariance in its modern form. 6 It is also contained
in the work of Iwanenko and Fock, 7 who consider a more general kind
of non–integrability based on a general theory of parallel displacement of
half–vectors. The present treatment is given in order to emphasise that
non–integrable phases are perfectly compatible with all the general princi-
ples of quantum mechanics and do not in any way restrict their physical
interpretation.

§ 3. Nodal Singularities.

We have seen in the preceding section how the non–integrable derivatives κ
of the phase of the wave function receive a natural interpretation in terms of
the potentials of the electromagnetic field, as the result of which our theory
becomes mathematically equivalent to the usual one for the motion of an
electron in an electromagnetic field and gives us nothing new. There is,
however, one further fact which must now be taken into account, namely,
that a phase is always undetermined to the extent of an arbitrary integral
multiple of 2π. This requires a reconsideration of the connection between
the κ’s and the potentials and leads to a new physical phenomenon.

The condition for an unambiguous physical interpretation of the theory
was that the change in phase round a closed curve should be the same for all

6H. Weyl,’ Z. Physik,’ vol. 56, p. 330 (1929).
7D. Iwanenko and V. Fock,’ C. R.,’ vol. 188, p. 1470 (1929); V. Fock,’ Z. Physik.’ vol.

57, p. 261 (1929). The more general kind of non-integrability considered by these authors
does not seem to have any physical application.
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wave functions. This change was then interpreted, by equations (4) and (7),
as equal to (apart from numerical factors) the total flax: through the closed
curve of the 6–vector E,H describing the electromagnetic field. Evidently
these conditions must now be relaxed. The change in phase round a closed
curve may be different for different wave functions by arbitrary multiples
of 2π and is thus not sufficiently definite to be interpreted immediately in
terms of the electromagnetic field.

To examine this question, let us consider first a very small closed curve.
Now the wave equation requires the wave function to be continuous (except
in very special circumstances which can be disregarded here) and hence the
change in phase round a small closed curve must be small. Thus this change
cannot now be different by multiples of 2π for different wave functions.
It must have one definite value and may therefore be interpreted without
ambiguity in terms of the flux of the 6–vector E,H through the small closed
curve, which flux must also be small.

There is an exceptional case, however, occurring when the wave function
vanishes, since then its phase does not have a meaning. As the wave function
is complex, its vanishing will require two conditions, so that in general the
points at which it vanishes will lie along a line. 8 We call such a line a nodal
line. If we now take a wave function having a nodal line passing through
our small closed curve, considerations of continuity will no longer enable
us to infer that the change in phase round the small closed curve must be
small. All we shall be able to say is that the change in phase will be close
to 2πn where n is some integer, positive or negative. This integer will be a
characteristic of the nodal line. Its sign will be associated with a direction
encircling the nodal line, which in turn may be associated with a direction
along the nodal line.

The difference between the change in phase round the small closed curve
and the nearest 2πn must now be the same as the change in phase round the
closed curve for a wave function with no nodal line through it. It is therefore
this difference that must be interpreted in terms of the flux of the 6–vector
E,H through the closed curve. For a closed curve in three–dimensional
space, only magnetic flux will come into play and hence we obtain for the
change in phase round the small closed curve

2πn+ e/hc ·
∫

(H,dS).

8We are here considering, for simplicity in explanation, that the wave function is in
three dimensions. The passage to four dimensions makes no essential change in the theory.
The nodal lines then become two–dimensional nodal surfaces, which can be encircled by
curves in the same way as lines are in three dimensions.
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We can now treat a large closed curve by dividing it up into a network
of small closed curves lying in a surface whose boundary is the large closed
curve. The total change in phase round the large closed curve will equal the
sum of all the changes round the small closed curves and will therefore be

2π
∑

n+ e/hc ·
∫

(H,dS), (8)

the integration being taken over the surface and the summation over all
nodal lines that pass through it, the proper sign being given to each term
in the sum. This expression consists of two parts, a part e/hc · ∫ (H,dS)
which must be the same for all wave functions and a part 2π

∑
n which may

be different for different wave functions.
Expression (8) applied to any surface is equal to the change in phase

round the boundary of the surface. Hence expression (8) applied to a closed
surface must vanish. It follows that

∑
n, summed for all nodal lines crossing

a closed surface, must be the same for all wave functions and must equal
−e/2πhc times the total magnetic flux crossing the surface.

If
∑
n does not vanish, some nodal lines must have end points inside

the closed surface, since a nodal line without such end point must cross the
surface twice (at least) and will contribute equal and opposite amounts to∑
n at the two points of crossing. The value of

∑
n for the closed surface

will thus equal the sum of the values of n for all nodal lines having end
points inside the surface. This sum must be the same for all wave functions.
Since this result applies to any closed surface, it follows that the end points
of nodal lines must be the same for all wave functions. These end points
are then points of singularity in the electromagnetic field. The total flux
of magnetic field crossing a small closed surface surrounding one of these
points is

4πµ = 2πnhc/e,

where n is the characteristic of the nodal line that ends there, or the sum of
the characteristics of all nodal lines ending there when there is more than
one. Thus at the end point there will be a magnetic pole of strength

µ =
1

2
nhc/e.

Our theory thus allows isolated magnetic poles, but the strength of such
poles must be quantised, the quantum µ0 being connected with the electronic
charge e by

hc/eµ0 = 2. (9)
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This equation is to be compared with (1). The theory also requires a quan-
tisation of electric charge, since any charged particle moving in the field of a
pole of strength µ0 must have for its charge some integral multiple (positive
or negative) of e, in order that wave functions describing the motion may
exist.

§ 4. Electron in Field of One–Quantum Pole.

The wave functions discussed in the preceding section, having nodal lines
ending on magnetic poles, are quite proper and amenable to analytic treat-
ment by methods parallel to the usual ones of quantum mechanics. It will
perhaps help the reader to realise this if a simple example is discussed more
explicitly.

Let us consider the motion of an electron in the magnetic field of a
one–quantum pole when there is no electric field present. We take polar
co–ordinates τ, θ, φ, with the magnetic pole as origin. Every wave function
must now have a nodal line radiating out from the origin.

We express our wave function ψ in the form (3), where β is some non–
integrable phase having derivatives κ that are connected with the known
electromagnetic field by equations (6). It will not, however, be possible to
obtain κ’s satisfying these equations all round the magnetic pole. There
must be some singular line radiating out from the pole along which these
equations are not satisfied, but this line may be chosen arbitrarily. We may
choose it to be the same as the nodal line for the wave function under con-
sideration, which would result in ψ1 being continuous. This choice, however,
would mean different κ’s for different wave functions (the difference between
any two being, of course, the four–dimensional gradient of a scalar, except
on the singular lines). This would perhaps be inconvenient and is not really
necessary. We may express all our wave functions in the form (3) with the
same eiβ , and then those wave functions whose nodal lines do not coincide
with the singular line for the κ’s will correspond to ψ1’s having a certain kind
of discontinuity on this singular line, namely, a discontinuity just cancelling
with the discontinuity in eiβ here to give a continuous product.

The magnetic field H, lies along the radial direction and is of magnitude
µ0/τ

2, which by (9) equals 1/2hc/eτ
2. Hence, from equations (7), curl κ is

radial and of magnitude 1/2τ2. It may now easily be verified that a solution
of the whole of equations (7) is

κ0 = 0, κτ = κθ = 0, κφ = 1/2τ · tan
1

2
θ, (10)
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where κτ , κθ, κφ, are the components of κ referred to the polar co–ordinates.
This solution is valid at all points except along the line θ = π, where κφ,
become infinite in such a way that

∫
(κ,ds) round a small curve encircling

this line is 2π. We may refer all our wave functions to this set of κ’s.
Let us consider a stationary state of the electron with energy W. Written

non- relativistically, the wave equation is

−h2/2m · 52ψ = Wψ.

If we apply the rule expressed by equation (5), we get as the wave equation
for ψ1

− h2/2m ·
{
52 + i(κ,5) + i(5, κ)− κ2

}
ψ1 = Wψ1. (11)

The values (10) for the κ’s give

(κ,5) = (5, κ) = κφ
1

τ sin θ

∂

∂φ
=

1

4τ2
sec2 1

2
θ
∂

∂φ

κ2 = κ2
φ =

1

4τ2
tan2 1

2
θ,

so that equation (11) becomes

− h2

2m

{
52 +

i

2τ2
sec2 1

2
θ
∂

∂φ
− 1

4τ2
tan2 1

2
θ

}
ψ1 = Wψ1.

We now suppose ψ1 to be of the form of a function f of τ only multiplied
by a function 8 of 6 and φ only, i.e.,

ψ1 = f(τ)S(θφ).

This requires {
d2

dτ2
+

2

τ

d

dτ
− λ

τ2

}
f = −2mW

h2
f, (12)

{
1

sin θ

∂

∂θ
sin θ

∂

∂θ
+

1

sin2 θ

∂2

∂φ2
+

1

2
i sec2 1

2
θ
∂

∂φ

−1

4
tan2 1

2
θ

}
S = −λS, (13)

where λ is a number.
From equation (12) it is evident that there can be no stable states for

which the electron is bound to the magnetic pole, because the operator on
the left–hand side contains no constant with the dimensions of a length.
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This result is what one would expect from analogy with the classical theory.
Equation (13) determines the dependence of the wave function on angle. It
may be considered as a generalisation of the ordinary equation for spherical
harmonies.

The lowest eigenvalue of (13) is λ = 1/2, corresponding to which there
are two independent wave functions

Sa = cos
1

2
θ, Sb = sin

1

2
θeiφ,

as may easily be verified by direct substitution. The nodal line for Sa is
θ = π, that for Sb, is θ = 0. It should be observed that Sa is continuous
everywhere, while Sb, is discontinuous for θ = π, its phase changing by 2π
when one goes round a small curve encircling the line θ = π. This is just
what is necessary in order that both Sa and Sb, when multiplied by the eiβ

factor, may give continuous wave functions ψ. The two ψ’s that we get in
this way are both on the same footing and the difference in behaviour of Sa
and Sb, is due to our having chosen κ’s with a singularity at θ = π.

The general eigenvalue of (13) is λ = n2 + 2n+ 1
2 . The general solution

of this wave equation has been worked out by I. Tamm. 9

§ 5. Conclusion.

Elementary classical theory allows us to formulate equations of motion for
an electron in the field produced by an arbitrary distribution of electric
charges and magnetic poles. If we wish to put the equations of motion in
the Hamiltonian form, however, we have to introduce the electromagnetic
potentials, and this is possible only when there are no isolated magnetic
poles. Quantum mechanics, as it is usually established, is derived from the
Hamiltonian form of the classical theory and therefore is applicable only
when there are no isolated magnetic poles.

The object of the present paper is to show that quantum mechanics
does not really preclude the existence of isolated magnetic poles. On the
contrary, the present formalism of quantum mechanics, when developed nat-
urally without the imposition of arbitrary restrictions, leads inevitably to
wave equations whose only physical interpretation is the motion of an elec-
tron in the field of a single pole. This new development requires no change
whatever in the formalism when expressed in terms of abstract symbols

9Appearing probably in ‘Z. Physik.’
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denoting states and observables, but is merely a generalisation of the pos-
sibilities of representation of these abstract symbols by wave functions and
matrices. Under these circumstances one would be surprised if Nature had
made no use of it.

The theory leads to a connection, namely, equation (9), between the
quantum of magnetic pole and the electronic charge. It is rather disap-
pointing to find this reciprocity between electricity and magnetism, instead
of a purely electronic quantum condition, such as (1). However, there ap-
pears to be no possibility of modifying the theory, as it contains no arbitrary
features, so presumably the explanation of (1) will require some entirely new
idea.

The theoretical reciprocity between electricity and magnetism is perfect.
Instead of discussing the motion of an electron in the field of a fixed magnetic
pole, as we did in § 4, we could equally well consider the motion of a pole
in the field of fixed charge. This would require the introduction of the
electromagnetic potentials B satisfying

E = curl B, H =
1

c

∂B

∂t
+ grad B0,

to be used instead of the A’s in equations (6). The theory would now
run quite parallel and would lead to the same condition (9) connecting the
smallest pole with the smallest charge.

There remains to be discussed the question of why isolated magnetic
poles are not observed. The experimental result (1) shows that there must
be some cause of dissimilarity between electricity and magnetism (possible
connected with the cause of dissimilarity between electrons and protons) as
the result of which we have, not µ0 = e, but µ0 = 137/2 · e. This means
that the attractive force between two one–quantum poles of opposite sign is
(137/2)2 = 46921

4 times that between electron and proton. This very large
force may perhaps account for why poles of opposite sign have never yet
been separated.
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