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Abstract

The Brill-Hartle gravitational geon construct as a spherical shell of small amplitude,
high frequency gravitational waves is reviewed and critically analyzed. The Regge—Wheeler
formalism is used to represent the most general gravitational wave perturbation of the
spherical background as a superposition of tensor spherical harmonics and an attempt is
made to build a non-singular solution to meet the requirements of a gravitational geon.
High—frequency waves are seen to be a necessary condition for the geon and the field
equations are decomposed accordingly. It is shown that this leads to the impossibility of
forming a spherical gravitational geon. The spherical shell in the proposed Brill-Hartle
geon does not meet the regularity conditions required for a non-singular source and hence
cannot be regarded as an adequate geon construct. Since it is the high frequency attribute
which is the essential cause of the geon non-viability, it is argued that a geon with less
symmetry is an unlikely prospect. The broader implications of the result are discussed
with particular reference to the problem of gravitational energy.
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1 Introduction

Almost forty years ago, the geon concept was introduced [1]: zero rest mass field concentrations
held together for long periods of time by their gravitational attraction. Such constructs were
motivated by studies of the motion of bodies in general relativity. More recent interest arises
from the study of the entropy of radiation [2] and from the analogy between electromagnetic
geons and quark stars [3]. Electromagnetic, neutrino and mixed type geons were studied [1],
[4]-[9] and it was suggested that it should be possible to construct a geon from gravitational
waves [10]. Brill and Hartle [11] (henceforth referred to as BH) attempted the construction
of a gravitational geon model in detail. Later papers ([12, 13] — see also [14]) assumed the
correctness of the BH model. In their approach, BH considered a strongly curved static or
quasi-static “background geometry” vy,, on top of which a small ripple A, resided, satisfying a
linear wave equation. The wave frequency was assumed to be so high as to create a sufficiently
large effective energy density which served as the source of the background 7,,, taken to be
spherically symmetric on a time average. For their analysis, they took the Regge—Wheeler [10]
(henceforth referred to as RW) decomposition of hy,, in a spherical background in terms of
waves characterized by the usual quantum numbers [, m related to the angular momentum
operators, and by the frequency w. They claimed to have found a solution with a flat—space
spherical interior, a Schwarzschild exterior and a thin shell separation meant to be created
by high frequency gravitational waves. With the mass M identified from the exterior metric,
there would follow an unambiguous realization of the gravitational geon as described above.

To be complete, however, two conditions must be satisfied. Firstly, the gravitational geon
must be a non—singular solution of the Einstein equations in vacuum. Any singularities present
would indicate the presence of non-gravitational sources 7, compactified into points, curves
or surfaces, negating the desired non—singular purely field structure. Secondly, the consistency
of the solution must be demonstrated, namely that the background v, is consistent with the
time-averaged effective density constructed from h,, as source in the region of non-vanishing
h,.. Regarding the first condition, it is straightforward to show that the junction conditions
for regularity are not satisfied by the BH solution and hence as it stands, cannot be taken
as singularity—free. With the first condition violated, there is no basis for proceeding with a
consideration of the second.

One might reasonably argue that while the given structure is inadequate as it stands, an
expansion of the shell region into one of finite extent would reveal a well-posed geon solution
with both regularity and consistency. Our analysis is sufficiently general to include this and
other geometries in which the gravitational field decays sufficiently rapidly at spatial infinity,
and to consider also the possibility of geons “leaking” radiation to the exterior. Both even and
odd high frequency modes in the RW formalism were analyzed in conjunction with a static and
a time—dependent spherically symmetric background metric 7,,. It was found that the Einstein
equations forced the elimination of the waves in all cases and hence a spherical gravitational



geon cannot exist. While a more general case was not yet analyzed, it would be unexpected
that such a geon could be found when the most primitive case is excluded. Moreover, the key
factor which leads to the non—existence of the spherical geon is not the spatial symmetry but
rather the high frequency. This fortifies the expectation that the result is general.

A concise description of this work was published in [15]. The present paper provides details
of the calculations and an expanded study of the gravitational geon problem. In Sec. 2, we
review the basic mathematical formalism for the construction of gravitational geons. This is
used in Sec. 3 to analyze the proposed BH solution. In Sec. 4, we attempt the construction of
a non—singular solution for a general gravitational geon with spherical symmetry and demon-
strate that the Einstein equations do not permit the realization of the geon. We conclude with
a discussion of the results and their potential ramifications in Sec. 5.

2 Gravitational geons
We consider the spacetime metric given by !

Juv = Vv + h;w ) (21)

where we assume that g,, is asymptotically flat, that v,, is a static, spherically symmetric,
asymptotically flat metric and h,, are small perturbations (|h,,| << 1) representing gravita-
tional waves. In a system of Schwarzschild-like coordinates {z*} = {t,r, 0, ¢}, the background
metric is given by

(Y ) = diag (—e”,e>‘,r2,r2 sin? 0) , (2.2)
where
A= A(r), v=uv(r) (2.3)
and
huy = hu(t, 7,0, ). (2.4)

Following BH, we represent the most general gravitational wave perturbation b, of the spher-
ical background as a superposition of tensor spherical harmonics:

Hoo 1 TR0 .
huy = Z Z /dwhg;”“’)(r, 0,p)e“t + c.c. (2.5)

=0 m=-1 |

'The metric signature is — + ++. We use units in which G = ¢ = 1. Greek indices run from 0 to 3 and
Latin indices run from 1 to 3 (apart from Appendix B, where they assume the values 0, 2 and 3). A comma and
a semicolon denote, respectively, ordinary and covariant differentiation with respect to the background metric.
The Ricci tensor is given by Ry, =T, —T'h, . + 5,00, — T4, T7,.



This is justified by the fact that the dynamics of the gravitational waves in the present context
are governed by the linearized Einstein equations around the background v,, and therefore
a superposition principle holds. Due to linearity, we can restrict ourselves to a study of the
evolution of the single tensor spherical modes. For ease of comparison with the BH paper, we
will use the RW set of tensor spherical harmonics ([10], [16]-[18]; see [19] for a review and for
relations with other sets of tensor spherical harmonics). An “even mode” (also called “polar
mode” by other authors [20]) in the RW formalism is factorized as the product of functions
dependent only on time, radius, and angles respectively. The angular part is determined by
the numbers [ and m related to the usual scalar spherical harmonics. The even modes have
the form

—e“Ho(r) Hi(r) 0 0
Hi(r)  eH(r) 0 0
h{EVEM (t,7,0, ¢) = 0 0 VK (1) 0 Y™ cos(wt), (2.6)
0 0 0 72K (r)sin® 0

where Y'™(0, ) are the usual spherical harmonics 2. These modes have parity (—)!. The “odd
modes” (in the RW terminology — also called “axial modes”) are given by

0 0 —ho(r)(sin@)™" dY'™ /3¢ ho(r)sind dY'™ /30

d 0 0 —hi(r)(sin®) ™' 8Y" /8o hy(r)sinf dY'™ /00
hE‘?J ) (t,r,8,0) = cos(wt)
Sym Sym 0 0
Sym Sym 0 0
(2.7)

and have parity (—)'*'. We will consider the case of odd and even modes separately.

A gravitational geon is defined as a bounded configuration of gravitational waves whose
gravity is sufficiently strong to keep them confined. It is required that no matter or fields other
than the gravitational field be present. Although one may consider the possibility of strong
gravitational waves, and the definition of gravitational geon allows for this possibility, in this
paper we will restrict ourselves to the case in which the amplitude of gravitational waves is

?Strictly speaking, the radial functions in Egs. (2.6) and (2.7) depend on w, [ and m and should be labelled
accordingly. However, this would result in a cumbersome notation that is preferably avoided.



small. This permits us to apply the linearized Einstein theory to the propagation of each single
wave in the background created by the average action of all the waves composing the geon.
Furthermore, it is required that the configuration represented by the metric v,, be stable
over a time scale much larger than the typical period of its gravitational wave constituents,
and that the gravitational field becomes asymptotically flat at spatial infinity. Gravitational
geons were introduced on the basis of the analogy with electromagnetic and neutrino geons
in the RW paper and were studied in greater detail by BH. Wheeler’s method of building
an electromagnetic geon was to replace the details of the electromagnetic field by the time
average of the components of the electromagnetic stress energy tensor. Upon averaging over
many modes of oscillation of the electromagnetic field, one obtains a stress-energy tensor,
and as a consequence, a gravitational field and metric which are spherically symmetric. Any
given mode of oscillation is taken to propagate in the spherically symmetric gravitational field
created by the rest of the radiation. The attempt to build a geon resembles the construction,
in other fields of physics, of a system with many (almost) identical components, each of which
introduces a negligible perturbation in the dynamics of the whole system and has an evolution
governed by the averaged action of all the other components. An example of such a system
in Newtonian theory is a galaxy described by the potential created by the mass distribution
of many stars (here we neglect dark matter, and the fact that a potential-density pair usually
describes only a single component of a galaxy, and is adequate only for certain types of galaxies
[22]). Each star gives a very small contribution to this potential and its orbit is determined by
the global galactic potential.
Consistent with this idea, it is required that

Yur = <QW> . (2-8)

Oh 0?h
hu) = ‘“’> = 2 Y=0 2.9
) <3az°‘ <3az°‘3:1:5> ’ (2.9)
where () denotes an average over a time that is much longer than the typical gravitational
wave wavelength A (“Brill-Hartle average”). A mathematically rigourous treatment of this
concept is contained in the paper by MacCallum and Taub [23]. This idea has proved very

valuable and the averaging process has been used by many authors after BH, and is well defined
only if it is assumed that the typical wavelength A 3 is much smaller than the space and time

We also have

3The term “typical gravitational wavelength” X\ may be source of confusion to some readers. Since we
are decomposing the general wave form into an infinite set of Regge—Wheeler modes, one may think that A
represents the wavelength of each mode, and that Eq. (2.10) is only valid if the geon was composed of one and
only one mode. However, when one is analyzing a general wave form, it is justifiable to assign a single parameter
describing the scale of variation of the wave form. In the present context, A is the scale over which the wave
form varies. Equation (2.10) is easily derived from Eq. (2.23) if one keeps in mind that hu, o ~ €/ etc. (see
[24]) and that )\ represents the scale of variation of k.



scale of variation L of the background metric 7,, (high frequency approximation) [21]:

A <<1 (2.10)
€= — . .
L
This assumption provides us with a smallness parameter ¢ to be used as an expansion pa-
rameter. Following [21], we measure times and lengths in units of L so that A = ¢. We have
also

B = O(e), (2.11)
o= o(1), (212)
0] <%i;’;”> =0(1), (2.13)

O*hu 1
In our notation, O(1)=0(e®). Equation (2.11) is derived in [21, 24, 25]. It is to be noted
that, in the most general case of high frequency gravitational waves on a curved spacetime,
two smallness parameters are involved: the dimensionless amplitude of the waves and the ratio
A/L. These two parameters coincide in the specific case under consideration, in which the only
source of the background curvature are the gravitational waves. One can conceive of situations
in which more than one parameter arises from the high frequency approximation, and these
cases have been considered in the literature (see e.g. [26]). However, in these situations,
gravitational waves are not the only source of curvature. When gravitational waves are the
only source of curvature, as in the gravitational geon, these multiple parameters reduce to the
single parameter €. Equation (2.13) implies that the quantum numbers [ and m are of order
O(1/e).
The Ricci tensor can be expanded in the form [11, 21]

Ras(9) = RE)(v) + BY (v, h) + BY (1, B) + - - -, (2.15)

where ([11, 21] and references therein)

1

1 T
foﬁ) b V7" (PpriaB + hapior — hraipp = hrgiap) (2.16)

2 1 hpT; T
foﬁ) - 2 [Tﬁ horia + BT (hrpiap + hapipr — Rraige = Prgiap)
hiT

‘|‘h,3T;p (hTOt;P - hpoz;r) N <hPT?P N 7) (hfa;ﬁ + hTﬁ;a o hO‘IB?T) ’ (2'17)



and h = h%,. The term Rg)ﬁ) (7) is the Ricci tensor of the background metric v,,, whereas

R((xlﬁ) and R((fﬁ) are, respectively, the parts of the Ricci tensor linear and quadratic in A, and
their derivatives. In the absence of high frequency waves (or on a flat background), h,, and
their derivatives are all of order O(¢). In this case the superscripts on the expansion terms of
Eq. (2.15) also indicate its order in powers of e. However, in the high frequency approximation
it is clear that RE}V) contains terms of order O(1/¢) and O(1) as well as O(e) [21]. Similarly,

REEV) is comprised of terms of order O(1), O(¢), etc. Solving the vacuum field equations

Ry (9)=0 (2.18)

consistently to any order of approximation requires that we set each order in the expansion
parameter € equal to zero. We express Eqgs. (2.16) and (2.17) as

RE}V) (v,h) = RE}V) [6_1] + RE}V) [60] +oe (2.19)
R®) (1,h) = BD [] + D [+, (2.20)

where Rgf,) [€"] denotes the term of order O(€™) in Rgf,) The first order approximation is thus
RY [ =0. (2.21)

The second order approximation requires that terms of order O(1) be set equal to zero. The
field equations to this order are

R®) (1) +RY [€] + BD [] =0. (2.22)
Performing the Brill-Hartle average on Eq. (2.22), one obtains
RO (v) = — (B2 []) - (2.23)
Note that from Eq. (2.9)
(B2 ]) = (m2 <)) = =0 (224

and hence
(RE) (v,m)) =0. (2.25)

In Eq. (2.23) the part of the Ricci tensor quadratic in h,, and their derivatives has been
taken to the right hand side and is seen as an effective source term due to the gravitational
waves. It is important to note that Eq. (2.23) has the potential to lead to the description of a



gravitational geon only by virtue of the high frequency approximation. Under the assumption
that gravitational waves are weak but not of high frequency, Eqgs. (2.12)—(2.14) would not

hold and the two terms in Eq. (2.23) would have different orders. R((fﬁ) = O(€?) could never

balance R((xoﬁ)('y) = O(1) in this equation. This would prevent a prior:i the construction of a
gravitational geon. This point can be understood physically by noting that the effective energy
density associated with gravitational waves with amplitude A << 1 and frequency w is roughly
proportional to (hw)Z. This quantity can be of order unity only if w ~ 1/h >> 1. Therefore, it
is clear that the high frequency approximation is a necessary condition for geon construction
in the present context.

We shall designate as the “geon problem”, the problem of finding a solution (7., k)
to the Einstein equations (2.21), (2.22) and (2.23) with the above mentioned properties and
satisfying the boundary conditions describing asymptotic flatness *

hy — 0 as P — +00 . (2.26)

3 The BH analysis

To the authors’ knowledge the only explicit attempt at gravitational geon construction was
that of BH. In this Section we review their pioneering approach to the problem and critically
analyze their work.

We follow BH in expressing the gravitational wave perturbations in terms of RW tensor
spherical harmonics. For the sake of simplicity, as done by BH, we restrict ourselves to the case
of odd modes with zero angular momentum along the z—axis (i.e. m = 0). The last assumption
eliminates the ¢—dependence from the h,, functions and considerably simplifies the Einstein
equations. This can be seen from Eq. (2.7) and from the well-known form of the spherical
harmonics that we present in Eqs. (3.4), (3.5) below. Thus, the metric perturbations are ®°

B (t,7,0) = R, (r) O1(0) et (3.1)
where
Rou(r) = ho(r) (6383 + 8%62) + ha(r) (6262 + 82 6%) (3.2)
day® /214 1\/? dP!(cos 8
©'(9) = sin b - < 4—; > sin @ %. (3.3)

*In principle one can impose that gravitational waves are confined to (and therefore the h,, have support
in) a ball or a spherical shell. However, the less restrictive condition (2.26) is sufficient for our purposes.

®For ease of comparison with the BH paper, we use a complex exponential to describe the time—dependence
of the metric perturbations in Eq. (3.1). This notation is adequate as long as linear quantities in h,, and their
derivatives are considered, but clearly it is incorrect when the part of the Ricci tensor quadratic in h,, and
their derivatives enters the discussion. For future reference, we use a function cos(wt) instead of a complex
exponential in Egs. (2.6), (2.7) and in our calculations of Sec. 4.



Here we use the expression of the spherical harmonics
Ym0, p) = C'™e™? P'™(cos 0) (m>0), (3.4)

Y'"(6,¢) = (-1)" (Y'")" (m<0), (3:5)

with the normalization constants [19]

20+ 1 (l—m)!]l/Z

om = (-1 [ 4 (I+m)!

(3.6)
2
which guarantee that [ dQ rYlm CA (,o)‘ = 1. Here * denotes complex conjugation and P'™(z)
4n
are the associated Legendre polynomials (which can be expressed in terms of the Legendre

polynomials P!(z)). Using the relation P'°(z) = P!(z) we obtain

1/2
Y9 = <2l4j, 1) P'(cos¥) , (3.7)

from which Eq. (3.3) follows ©.

One can now insert the form (3.1)—(3.3) of the metric perturbations into the Einstein equa-
tions (2.18), obtaining equations for the unknown functions ho(r) and hq(r). Simultaneously
solving Eqgs. (2.21) and (2.23) for a pair (Y., by ) then provides a solution to the geon problem.

The correct order of magnitude of the various terms in the Einstein equations is determined
by Egs. (2.11)—(2.14). The correct order of magnitude decomposition of the Einstein equations
is absent in [11]. While the high frequency approximation was assumed in [11], it was not
incorporated into the calculations. As a result, the authors did not obtain the two different
orders O(1/€) and O(1) in the Einstein equations, using a parameter ¢ arising from the high
frequency approximation. This is evident from the fact that their final equations (10a)—(10c)
and (14) contain terms of different orders in the high frequency limit. In the remaining part
of this Section we will show how the BH results can be reproduced and we will comment on
their proposed geon model.

The BH equations can only be reproduced in the absence of high frequency waves. In terms
of a parameter ¢ related to the weakness of the gravitational waves, Eqgs. (2.11)—(2.14) must

®Note a misprint in the second of the equations (8) in [11], corresponding to our Eq. (3.2). Also to be
noted is an inconsistency in the notation therein: the form (3.1)-(3.3) for the metric perturbations is assumed
n [11], but the number m in the definition of the function ®'™ corresponding to our @' is retained. This is
inappropriate since it is clear from Eqs. (8) and (9) in [11] that the intention was to set m = 0. Otherwise, the
function '™ would depend on both 6 and ¢, which is not the case, and the Einstein equations would be much
more complicated.



be replaced by

N N LA -
O(h/_/,y) =0 < 3$o‘ > =0 (W) = O(G) a, ﬁ = 0,...,3 . (38)

As a consequence of these equations, the Ricci tensor has the form given by Eq. (2.15), where
Rﬁﬁ)(y) =0(1), RE}V) = O(e) and REEV) = O (€?). To order O(1) the Einstein equations give the
well-known equations for a spherically symmetric, static background (see e.g. [25], p. 300) with
vanishing energy—momentum tensor. As far as the order O(¢) is concerned, only the (0, 3),
(1, 3) and (2, 3) components of the Ricci tensor give nontrivial results. These components are

-2 / / / !
1 e . 2 XN v h . 2v
e o (X 2) B
1
+ 52 (hos,22 — hos2 cot 8) , (3.9)
1 eV [ : 2h03 e X DU 7 |
Ry =5 ("13—”33+ T) (35 )
1
+ﬁ (h13,22 — h1z 2 cot §) (3.10)
R(l) _ e_A h/ 2h/ / ! h13,2 7 7
23 =~ 5 |P1s2 - 13c0t0—|—h13()\—l/)c0t0—|—T(1/—)\)
o {; "103,2
—e hos cot § — 5 , (3.11)

where a dot and a prime denote differentiation with respect to ¢ and r, respectively. We now
insert the form of the metric perturbations (3.1)-(3.3) into the Einstein equations (2.21) and
use the following property of the function ©' (see Appendix A):

d*e! de!

5 —cot0%+l(l+1)®’:0. (3.12)

After some manipulations we find 7

. ) U7 h! er 2/

"Our Eq. (3.13) differs from Eq. (10c) of BH in the sign of the first term. Equation (3.14) differs from the
BH Eq. (10a) in the sign of the second term in the first bracket, while Eq. (3.15) agrees with Eq. (10b) of
BH. Note misprints in the BH Eq. (11) corresponding to our Eq. (3.16). One of the coeflicients of @ in our
Eq. (3.20) differs by a factor 1/2 from the corresponding one in BH Eq. (14). The sign of the right hand side
of our Eq. (3.19) is opposite to that in the corresponding BH equation.



Y
iwe™” <h6 — %> + hq lm —wle V4 S <)\’ v - g)l =0, (3.14)
7

r2 r r
. —v Y / hl ! 1
iwe Yhy+ e [h1+7(y —)\)] =0. (3.15)

Following BH we can now use Eq. (3.15) to eliminate ko from Eq. (3.14), obtaining the second
order differential equation for hq(r):

2 1 1 A 2
R + B %(;/-X) ] + hy [— W = X)V 4+ = N) =1+ 1)?—2+w2eA—V+T—l =0.

o 2 2 2
(3.16)
We introduce the variable ) and the Regge—Wheeler coordinate 7. defined by
hy = reX2Q (3.17)
dr, = P2 dp (3.18)
In terms of these quantities we have
1 d(rQ)
ho= - — —— 3.19
0 w  dr, ( )
and®
d2Q 2 3 v—2A l(l + 1) v
a2 + |w? + > (v = XN)e — e Q=0. (3.20)

This Schrodinger—like equation lends itself to the analogy with the dynamics of waves propa-
gating in an effective potential [1, 10, 11].
At this point BH proceed with the specification of the background metric

1/9 if r<a
e = , (3.21)
1—-2M/r if r>a
1 if r<a
et = , (3.22)
(1—2M/r)? if r>a

® An equation similar to Eq. (3.20) can be derived for the even modes with m = 0 [29].
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where a = 9M /4 and M is the geon mass. This vacuum solution for the background metric
implies that the effective energy density due to the gravitational waves vanishes for » # a.
Since the effective energy is positive semi-definite, Eqs. (3.21), (3.22) imply that

hyw=0 for r#a. (3.23)

Conversely, if the condition (3.23) is satisfied, the Birkhoff theorem guarantees that the metric
is Minkowskian for » < a and the Schwarzschild metric for » > a.

Therefore, in the BH model, gravitational waves are confined to a spherical shell, the
thickness of which is exactly zero. Apparently, BH meant to build a geon model in which the
gravitational waves are trapped in a spherical shell which has a nonvanishing thickness which is
much smaller than its radius. However, their equations do not allow for this possibility. To be
complete, we examine the viability of a geon with gravitational waves confined to a shell whose
thickness is exactly zero. It is easy to see that such a model is physically meaningless and
that the geon problem becomes mathematically ill-defined in this case. In fact, the solutions
of the radial equations (3.13)—(3.16) cannot be ordinary functions but must be sought in some
space of distributions. In Eq. (3.16), the coeflicients proportional to v’ — A’ and »" — )" are not
ordinary functions and have a mathematical meaning only if they are regarded as distributions.
The first of these two quantities can be expressed as

-1
Y~ X = 4Mr=2 <1 - ﬁ) bn (r —a) , (3.24)
r
where
0 if z<0
Ou(z) = (3.25)
1 if >0

is the Heaviside step function. Clearly, the radial derivative of v’ — X’ can be taken only in
a distributional sense. Therefore the solutions of the Einstein equations are distributions and
their domain is some space of test functions which must be specified in such a way that the
coeflicients and the operations involved in the Einstein equations are well defined. There is
no indication as to the manner in which this functional space should be determined. It seems
almost certain that, if a meaningful and unambigous mathematical formulation of the problem
can be given, the distributional solutions A, cannot be seen as locally integrable functions,
but rather must have properties like a Dirac delta with support on » = a. Furthermore, the
product of distributions is not defined and the Einstein equations involving the part of the
Ricci tensor quadratic in h,, and its derivatives is mathematically meaningless in this case.
This destroys the possibility of exploring one of the essential features of a gravitational geon.
Moreover, if the h,, are allowed to be distributions, the whole meaning of the linearization
around the background 7,,, the condition |k, | << 1, and the estimates of the different orders

11



of magnitude in the Einstein equations, become meaningless. The physical interpretation of a
distributional metric and Riemann tensor is problematic. To appreciate this, one can consider
the much simpler case of a metric which does not satisfy the appropriate junction conditions [27]
on a spacelike or timelike hypersurface (this is the case of the metric y,, given by Egs. (3.21),
(3.22) and the timelike hypersurface r = a — see Appendix B). As suggested by Israel [28], and
as can be seen from the computation of the Einstein tensor for the spherical metric specified
by Egs. (3.21), (3.22), a singular hypersurface § (in the sense [27] that the first, or the second
fundamental form, or both are not continuous at 5) is associated with nonvanishing T,,, a
source of stresses. The definition of a geon, a structure of pure gravitational waves in the
absence of matter, excludes the use of a background metric which does not satisfy the proper
junction conditions. If, in addition, the “perturbations” h,, are allowed to be distributions, the
consideration of junction conditions loses its meaning, but the argument shows that delta—like
sources of stresses are included in the problem. Thus, we exclude the case in which gravitational
waves are confined to a shell, the thickness of which is exactly zero, as physically meaningless,
mathematically ill-defined, and nonviable.

The only possible alternative for a geon model in which gravitational waves are confined to
a spherical shell is the case in which the shell has a nonzero thickness. Apparently, BH meant
to consider such a model, although this contradicts some of their equations. To be specific, let
us consider a shell of radius a and thickness da described by values of the radial coordinate in

the range
da

2 9
where 0 < da << a. In order for the geon to be a distribution of pure gravitational fields
without matter, we must require that the metric tensor satisfies the appropriate junction
conditions [27] at the two timelike hypersurfaces Sy = {(¢,7,0,¢): »=a+ §a/2}. This
guarantees the absence of a real (as opposed to “effective”, i.e. generated by gravitational
wayves) stress—energy tensor T}, representing a matter distribution. In this model, the modified
BH solution would be

a—(%agrga—l— (3.26)

1/9 if r<a-6a/2
& = , (3.27)
1—-2M/r if r>a+ba/2
1 if r<a-éa/2
& = , (3.28)
(1-2M/7r)"! if r>a+da/2
)
hyw =0 if r<a—7a, r>a—|—7a. (3.29)
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The form of the background metric 7,, inside the spherical shell is not given by BH and must
be determined by solving simultaneously the Einstein equations to the two lowest orders for a
pair (Y, hyy) [26]. The proper orders of magnitude did not appear in [11] as a consequence
of neglecting the high frequency approximation, despite the fact that this was introduced at
the beginning of the paper in order to define time averages. This is the reason why there is
only one set of equations in [11] mixing different orders and a complete solution to the geon
problem is not provided. It is actually easy to see that the BH equations cannot be satisfied
by a nontrivial solution, once the correct order of magnitude decomposition of the Einstein
equation is performed. By using Eqs. (2.11)—(2.14) in Eq. (3.15) and discarding the higher
order terms, one obtains

iwe " ho+e M =0, (3.30)

in which the real functions ho(r) and hy(r) are of order O(e?), as can be deduced from Eq. (2.7).
In conjunction with the boundary conditions (2.26), Eq. (3.30) gives

ho=hy=0. (3.31)

It is natural to ask if such a solution based on a spherical shell of nonvanishing thickness is
viable. This question will be answered in the next Section.

4 Resolving the geon problem

In this Section we study the geon problem assuming the high frequency approximation, as
required, and we take into account the orders of magnitude accordingly. In what follows, we
solve the geon problem in the case of a spherically symmetric, static and asymptotically flat
background v,,. Apart from these assumptions and from the boundary conditions (2.26), we
do not restrict ourselves to a spherical shell, nor do we require that the metric perturbations
vanish outside a certain radius. At the end of this Section, the results will be generalized to
Y, being a time-dependent, slowly varying, spherically symmetric background metric. We
consider separately odd and even modes. In addition, we will not restrict ourselves to a
particular value of the number m.

4.1 0Odd modes

The form of an odd RW mode is given by Eq. (2.7). The Ricci tensor is computed using
Eq. (2.16) which, to the dominant order O(1/¢) is simplified to (see Appendix C)

D[ - 1
R[] = 247 (haspr — hro = o) (1)
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For our purposes it is sufficient to consider the Ricci component R45. By taking into account
the high frequency approximation and the orders of magnitude given by Egs. (2.11)—-(2.14), we
find

1
Rgl2) [6_1] =35 (700h02,02 + ’)’11’112,12) . (4.2)
Substitution of Eq. (2.7) into Eqs. (4.2) gives the simple equation
we ™ ho sin(wt) + e A} cos(wt) = 0 . (4.3)

The linear independence of the functions sin(wt) and cos(wt) and the boundary conditions
(2.26) give
ho(r) = hy(r) = 0. (4.4)

These in turn imply that the effective source term — <R((126)> of gravitational waves in Eq. (2.23)
vanishes, leaving us with

R{)(7) =0, (4.5)

which has the Minkowski metric 7, as its only asymptotically flat solution. Therefore, we see
that the geon problem has no solution in terms of odd waves. The difference with respect to
the treatment of the previous Section arises solely from the high frequency approximation. We
now consider the case of even modes.

4.2 Even modes

The form of an even RW tensor spherical harmonic is given by Eq. (2.6). Following the same
process as for the odd waves, the relevant Einstein equations to order O(1/¢) are

R5)11) [6_1] = % (’)’22’122,01 + 7 haz 01 + 72 2ho1 22 + ’)’33’101,33) =0, (4.6)
RS, [6_1] = % (711h11,02 + 7%%hss,00 — 711h01,12> =0, (4.7)
R§11) [6_1] = % (700h00,11 + ’)’22’122,11 + 733h33,11 + 700h11,00 + ’)’22’111,22 + 733h11,33

~29%ho101) = 0, (4.8)

Insertion of Eq. (2.6) into Eqs. (4.6)—(4.8) gives

H 32Ylm 1 32Ylm
. Im 1 _
—2wK'sin(wt)Y*™ + 7 cos(wt) ( 507 T wva 95t ) = 0, (4.9)
. - 3Ylm
[w (Hy + K)sin(wt) + " "H; cos(wt)] 50 = 0, (4.10)
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A 2y Im 2y Im
2 dA—v Im € H2 3 Y ]_ 3 Y
l(H(/’/ +2K" + w?e H2> y'im o 5 ( 57 + 70 g2 cos(wt)
—2we ™ Hj sin(wt) = 0. (4.11)

The linear independence of the functions sin(wt), cos(wt) and the boundary condition (2.26)
give
Ho=H =Hy=K =0. (4.12)

Again, we see that the only possible solution to the Einstein equations to the two lowest orders
is the pair (740, huw) = (9, 0), i.e. the geon problem has no solutions also for the even modes
case, as a consequence of the high frequency approximation.

4.3 The time—dependent and stationary cases

The previous results can be generalized to the case of a time—dependent, spherically symmetric
background metric v, (£,7), under the assumption that its time variation occurs on a scale
much larger than the period of the gravitational waves. In this case the high frequency ap-
proximation and Eqs. (2.11)—(2.14) remain valid. Equation (2.2) still holds, but Eq. (2.3) is
replaced by

A=A, r), v=uv(tr). (4.13)

As a consequence of the fact that the estimate of the orders of magnitude in the Einstein
equations does not change, we find in this case the same equations that we presented above for
the even and odd modes, and the same conclusions apply. If instead, the background metric
Yuv (t,7) is allowed to vary on a time scale comparable to the period of the gravitational
waves, the high frequency approximation does not hold and a gravitational geon cannot be
constructed, as explained in Sec. 2. This remains valid for any time—dependent background
metric v, (t, ) when symmetries are absent, due to the fact that our considerations based on
Eq. (2.23) do not rely on the assumption of spherical symmetry. Apart from this argument, the
realization of a geon with a rapidly varying background metric 7,, is problematic for another
reason: If a spherically symmetric background is allowed to vary harmonically with frequency
2 comparable to the frequency of the gravitational waves, one expects a parametric resonance
[30] for the modes with w = nQ/2, with n = 1,2, --- . The strength of the resonance is a
maximum for n = 1 and decreases rapidly as n increases. In the limit of a static background,
the resonance phenomenon disappears. Accordingly, on the basis of studies of perturbations of
black holes and relativistic stars [20], it is expected that in the case of a stationary axisymmetric
background metric describing a rapidly rotating geon, the resonance phenomenon between the
perturbations and the background metric occurs. In the general case of a time—dependent
and rapidly varying background metric v, (¢,Z) without symmetries, it is not known how
to decompose metric perturbations on a complete set playing the role of the tensor spherical
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harmonics in the spherical case, or even how to define frequencies in the strong curvature
region. However, if such concepts can be given a meaning, it seems reasonable to expect
some kind of resonance phenomena between the background metric and its gravitational wave
perturbations. All these resonance phenomena certainly do not contribute to the realization
of a stable configuration, but rather are associated with instabilities that tend to disrupt the
system.

5 Discussion and conclusion

The results of the previous Section were derived by making use of some particular gauge
conditions that RW imposed in order to set the metric perturbations in the form of Egs. (2.6)
and (2.7). However, it is clear from their very nature that our results are covariant and gauge—
independent, since the solution (.., u) = (7, 0) that we found has an invariant meaning
(for example, the vanishing of the curvature tensor is a covariant concept).

Since a spherically symmetric gravitational geon cannot exist due to the fact that the high
frequency approximation forces the elimination of gravitational waves, one might ask if it is
possible to realize a gravitational geon in a configuration with less symmetry. We do not expect
that such a geon can be constructed when the most primitive case is excluded. The main reason
for this belief is that the key factor which leads to the non—existence of the spherical geon is
not the spatial symmetry but rather the high frequency.

From a mathematical point of view, the main difference between our approach to the
geon problem, as compared to that of BH, consists in our explicit use of the high frequency
approximation. We have already seen in Sec. 2 that this is necessary for the geon problem to
be meaningful. In Sec. 4 it was shown that the same approximation prevents the realization
of a spherically symmetric geon.

An important point in the derivation of our results in Sec. 4 is the generality of our boundary
conditions (2.26). These allow for a variety of geometries: spherical shells with finite thickness
and hy,, # 0 only for » € (Pin, Pout), degenerate shells with r;, = 0 (balls), or more general
unbounded spherical configurations restricted only by the condition (2.26). In his papers on
geons, Wheeler [1, 4, 7, 8] describes electromagnetic and neutrino geons as systems which are
stable on a long time scale, but not absolutely stable, in the sense that they “leak” radiation
to the exterior. The rate of the leaking is negligible, so that a geon is stable for a long time.
However a secular instability is introduced, which seems unavoidable [7]. The BH model of a
spherical shell with h,,,, exactly equal to zero outside a certain radius excludes such a possibility,
and it could be conjectured that this might be the reason why their model is not viable, leaving
a possibility open for the realization of physically more realistic “leaking” geons . However,

®There is inconsistency in [11] at this point: in that paper it is required that h,, (and therefore Q) vanishes
outside the spherical shell. However, the Schrodinger-like equation that is derived there for Q (our Eq. (3.20))

16



this possibility is excluded by our calculations. In fact our boundary conditions (2.26) allow
for this possibility, which in turn is excluded by our results as well.

To provide additional intuitive physical insight, we recall our analogy of Sec. 2 between
gravitational waves composing a geon and stars composing a galaxy. The high frequency
approximation required in the geon case has a parallel in the case of a galaxy; it corresponds
to the requirement that the individual stars have a very high velocity. It is clear that such
stars would escape from the galaxy and would not be trapped by its potential well. A galaxy
cannot be built exclusively from such stars in rapid motion. In other words, the system would
not satisfy the virial theorem and would not be bounded. The difference with the gravitational
geon case is that while one is not obliged to require that stars have a very high velocity when
constructing a galactic model, the high frequency approximation is necessary for a geon and
this, in turn, prevents its realization.

An independent argument to understand the impossibility of a gravitational geon is the
following: it is well known that, in the limit of high frequencies, gravitational waves obey the
geometric optics approximation [21, 24]. Spatially closed lightlike geodesics exist only inside
black holes, which necessitate the existence of singularities. Thus, they are necessarily incon-
sistent with the definition of a geon. The null circular geodesic at » = 3M in the Schwarzschild
geometry is unstable. It is therefore hard to reconcile high frequency gravitational waves with
stable trapped graviton trajectories in the absence of matter.

Traditionally, the geon was conceived as a structure of small-amplitude high—frequency
gravitational waves compactified to the point where one could describe the resulting metric
as the averaged “background” metric induced by the totality of the waves plus a small per-
turbation due to the local wave presence. This is what was analyzed in the present work. It
is natural to consider also waves of “large” amplitude in which case linearization is no longer
possible nor is it meaningful to envisage a splitting of the metric as before. In fact, to assign
a measure to amplitude presupposes a standard for comparison and in the present work, the
background metric served this role. To speak now of large amplitude is to consider waves for
which there is no longer a discernable “background” and hence no standard for comparison
of amplitude measure. This leads to the realm of exact solutions. One might ask whether an
exact wave—like solution of the Einstein equations, singularity—free with localized curvature,
asymptotically flat, could exist. Existing exact wave-like solutions such as the plane waves
of Bondi, Pirani and Robinson or the cylindrical waves of Einstein and Rosen [34] are not
localized and in the second case, are also not singularity—free. While it would appear doubtful
that solutions with the geon-like properties can exist, to our knowledge they are not ruled out.

Implicit in the gravitational geon concept is the assumption that the gravitational field

implies a “leaking” geon, as is stated in [11]. In fact, the function @ has a nonvanishing tail for large values of
the radius, due to the fact that the effective potential barrier is finite. This effect is analogous to the well-known
tunnel effect in quantum mechanics.
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has some particular essential features shared by other fields. Other fields, even in their pure
states, carry energy. Energy has a mass equivalent and all masses gravitate. Thus, given
a sufficient concentration of field energy, one could imagine a gravitated concentration into
a spherical region with the effective mass displayed unambiguously by the coefficient of the
1/ part of the asymptotic static vacuum metric. The gravitational geon concept is built
upon the assumption that the gravitational field itself, even in its pure state, will gravitate
and thus have the potential to behave as other concentrations of matter or fields. Through
the years, various authors such as Isaacson [21] have dwelt upon the similarities between
the gravitational and other fields. For example, Isaacson has attempted to establish that
there is a basis for considering a certain construct of the metric as an energy—momentum
tensor of the gravitational field which is as substantial as a true energy—-momentum tensor.
However, this requires averaging and under the appropriate limits, his construct merges with
the energy—momentum pseudotensor, the shortcomings of which epitomize the gravitational
energy problem. If the gravitational field in its pure form really did have the properties which
those authors have ascribed to it, then it would seem reasonable to expect that a gravitational
geon could, at the very least in principle, be constructed. However, given the present results,
it is worth considering alternative ideas.

Recently, one of the authors [31, 32] introduced a new hypothesis that gravitational energy
is localized in regions of non—vanishing energy—-momentum tensor. The motivation derived
from the fact that the traditional means by which physicists have identified gravitational
energy was through the covariant energy—momentum conservation laws. While those laws
were extrapolated to produce energy—momentum pseudotensors, implying densities and fluxes
even in vacuum, the fact is that the laws themselves are devoid of content in vacuum, producing
the empty identity 0 = 0. Given that there is a plethora of possible pseudotensors and, as their
name implies, they are not really tensors, it was suggested [31] that the root of the ambiguity
lies in the extrapolation of the conservation laws to regions in which they are without actual
content. The hypothesis goes on to propose that the true expression of the gravitational
contribution to energy is confined to regions of non-vanishing 7,,. In a sense this is the
opposite of the Isaacson approach in that rather than being satisfied with a construct which
reduces to the pseudotensor, the new hypothesis suggests that proper localization is realized
when the pseudotensor is removed.

Clearly, the gravitational geon would negate the new hypothesis as it would provide an ex-
ample of a space totally free of true energy-momentum tensor 7, yet exhibit an unambiguous
energy content via its asymptotic metric. While one might propose exact plane gravitational
wave solutions as counter—examples to the hypothesis, it is to be noted that these are un-
bounded fields with questionable relevance to physical situations and more directly, these wave
solutions can be expressed in Kerr—Schild form for which the pseudotensor vanishes in its en-
tirety [33]. The gravitational geon is a direct challenge to the hypothesis and if the geon cannot
exist, the hypothesis has passed another test.
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Appendix A: Derivation of Eq. (3.12)

We start from the Legendre equation

% l(l ~ 2?) dPl(“’)] L1+ 1)PY(2) = 0 (A.1)

and note that

20+ 1\Y? | dPYcosf) [20+1\/? dP!(z)
l _ : _ 2 _
0'(0) = < ypm > sin 6 10 = < ppm > (:13 1) Fra (A.2)
where 2 = cos 0. Using
d .. d
il sin 6 T (A.3)
d? g, d? d
Jpz = Sin GE—COSGE, (A.4)
and the Legendre equation (A.1), we find the relations
de! A+1\V2
7 =l(l+1) < ypm > sinf P'(z), (A.5)
a2et A+ 1N\V2[ y dP!(z)
o = —1(z+1)< = > 2Pl(z) + (27 —1) ) (A.6)

Using Eqgs. (A.5) and (A.2) in Eq. (A.6), Eq. (3.12) follows.

Appendix B: Junction conditions for the BH background metric

We consider the Darmois junction conditions [27] for the BH background metric on the timelike
hypersurface § = {(¢t,7,0,¢): r = a} separating the regions of the spacetime manifold U =

{(trb0): 1 <a),U={(trb,p): r>a). (22) = (2°) = {t,n,0,¢} and {u'},_,,, =
{t,0, ¢} are coordinate systems in U, U and 5, respectively (note that, in this Appendix, Latin
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indices assume the values 0, 2, 3 due to the timelike character of 5). The unit normal to S is
directed along the coordinate basis vector dual to dr and has components

n, =&, M2, (B.1)

The metric components v,, in U and ¥,, in U are given by Egs. (2.2), (3.21) and (3.22).
The first fundamental form of § has components 7;; = ¥;;. The second fundamental form
K,, = n,, of any hypersurface » =constant has components

dz™ §zP 1 /2
= e G g = T

K; (B.2)

in coordinates {ul} Using the Christoffel symbols of a spherically symmetric metric (see e.g.
[25]), we obtain the only nonvanishing components

Vo
Koo = — Ee”_ /2, (B.3)
K22 = re_>‘/2 ) (B4)
Kss =re *2sin%4 . (B.5)

The Darmois conditions [27] require the continuity of the first and second fundamental form
across S. The first condition is trivially satisfied, while the second is violated. In fact, we have
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lim Koo = lim Koo = — —— B.
JHm Koo =07 lim Koo = — 77 (B-6)
lim Ky =a# lim Ky = % , (B.7)
lim K33 = asin? @ £ lim Ks3 = % sin? @ , (B.8)
where the BH relation a = 9M /4 was used.
. . . 1
Appendix C: Dominant order in R&g
The second covariant derivatives appearing in Eq. (2.16) are
hviap = huap — Taghue — Tauhova — g hopa — Topghor — I Roup
—I_I‘g,BI‘g'MhPV + I‘gurgah/w + I‘%urguh/ﬂ - I‘gu,,@haﬂ
_I‘guhaﬂug + I‘gﬁrg’uh/’# + I‘gurgah/’# + I‘gurguh/ﬂ . (C]')
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Symbolically, we express the various quantities in the last equation as follows:

T =79y =0(1), (C.2)
yOh = 0(1), (C.3)
(97)h=0(c), (C-4)
hoh = O(e), (C.5)
T oh = 0(1), (C.6)
(8T)h = O(e) , (C.7)
ITh=0(). (C.8)

By using Egs. (C.2)-(C.8)in (C.1) and then, in conjunction with Eq. (2.16), Eq. (4.1) follows.
The quantity (hag,pr — Pra,8p — Prg,ap) I Eq. (4.1) contains terms of order O(1/¢) as well as
terms of order O(1). We retain only the former ones in the linearized Einstein equations to

order O(1/e¢).
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