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1 IntroductionAlmost forty years ago, the geon concept was introduced [1]: zero rest mass �eld concentrationsheld together for long periods of time by their gravitational attraction. Such constructs weremotivated by studies of the motion of bodies in general relativity. More recent interest arisesfrom the study of the entropy of radiation [2] and from the analogy between electromagneticgeons and quark stars [3]. Electromagnetic, neutrino and mixed type geons were studied [1],[4]{[9] and it was suggested that it should be possible to construct a geon from gravitationalwaves [10]. Brill and Hartle [11] (henceforth referred to as BH) attempted the constructionof a gravitational geon model in detail. Later papers ([12, 13] { see also [14]) assumed thecorrectness of the BH model. In their approach, BH considered a strongly curved static orquasi{static \background geometry" 
�� on top of which a small ripple h�� resided, satisfying alinear wave equation. The wave frequency was assumed to be so high as to create a su�cientlylarge e�ective energy density which served as the source of the background 
�� , taken to bespherically symmetric on a time average. For their analysis, they took the Regge{Wheeler [10](henceforth referred to as RW) decomposition of h�� in a spherical background in terms ofwaves characterized by the usual quantum numbers l, m related to the angular momentumoperators, and by the frequency !. They claimed to have found a solution with a 
at{spacespherical interior, a Schwarzschild exterior and a thin shell separation meant to be createdby high frequency gravitational waves. With the mass M identi�ed from the exterior metric,there would follow an unambiguous realization of the gravitational geon as described above.To be complete, however, two conditions must be satis�ed. Firstly, the gravitational geonmust be a non{singular solution of the Einstein equations in vacuum. Any singularities presentwould indicate the presence of non{gravitational sources T�� compacti�ed into points, curvesor surfaces, negating the desired non{singular purely �eld structure. Secondly, the consistencyof the solution must be demonstrated, namely that the background 
�� is consistent with thetime{averaged e�ective density constructed from h�� as source in the region of non{vanishingh�� . Regarding the �rst condition, it is straightforward to show that the junction conditionsfor regularity are not satis�ed by the BH solution and hence as it stands, cannot be takenas singularity{free. With the �rst condition violated, there is no basis for proceeding with aconsideration of the second.One might reasonably argue that while the given structure is inadequate as it stands, anexpansion of the shell region into one of �nite extent would reveal a well{posed geon solutionwith both regularity and consistency. Our analysis is su�ciently general to include this andother geometries in which the gravitational �eld decays su�ciently rapidly at spatial in�nity,and to consider also the possibility of geons \leaking" radiation to the exterior. Both even andodd high frequency modes in the RW formalismwere analyzed in conjunction with a static anda time{dependent spherically symmetric background metric 
�� . It was found that the Einsteinequations forced the elimination of the waves in all cases and hence a spherical gravitational1



geon cannot exist. While a more general case was not yet analyzed, it would be unexpectedthat such a geon could be found when the most primitive case is excluded. Moreover, the keyfactor which leads to the non{existence of the spherical geon is not the spatial symmetry butrather the high frequency. This forti�es the expectation that the result is general.A concise description of this work was published in [15]. The present paper provides detailsof the calculations and an expanded study of the gravitational geon problem. In Sec. 2, wereview the basic mathematical formalism for the construction of gravitational geons. This isused in Sec. 3 to analyze the proposed BH solution. In Sec. 4, we attempt the construction ofa non{singular solution for a general gravitational geon with spherical symmetry and demon-strate that the Einstein equations do not permit the realization of the geon. We conclude witha discussion of the results and their potential rami�cations in Sec. 5.2 Gravitational geonsWe consider the spacetime metric given by 1g�� = 
�� + h�� ; (2.1)where we assume that g�� is asymptotically 
at, that 
�� is a static, spherically symmetric,asymptotically 
at metric and h�� are small perturbations (jh�� j << 1) representing gravita-tional waves. In a system of Schwarzschild{like coordinates fx�g = ft; r; �; 'g, the backgroundmetric is given by (
��) = diag��e� ; e�; r2; r2 sin2 �� ; (2.2)where � = �(r) ; � = �(r) (2.3)and h�� = h��(t; r; �; ') : (2.4)Following BH, we represent the most general gravitational wave perturbation h�� of the spher-ical background as a superposition of tensor spherical harmonics:h�� = +1Xl=0 +lXm=�l +1Z0 d! h(lm!)�� (r; �; ') ei!t + c.c. (2.5)1The metric signature is � + ++. We use units in which G = c = 1. Greek indices run from 0 to 3 andLatin indices run from 1 to 3 (apart from Appendix B, where they assume the values 0, 2 and 3). A comma anda semicolon denote, respectively, ordinary and covariant di�erentiation with respect to the background metric.The Ricci tensor is given by R�� = ����;� � ����;� +�������� � ��������.2



This is justi�ed by the fact that the dynamics of the gravitational waves in the present contextare governed by the linearized Einstein equations around the background 
�� and thereforea superposition principle holds. Due to linearity, we can restrict ourselves to a study of theevolution of the single tensor spherical modes. For ease of comparison with the BH paper, wewill use the RW set of tensor spherical harmonics ([10], [16]{[18]; see [19] for a review and forrelations with other sets of tensor spherical harmonics). An \even mode" (also called \polarmode" by other authors [20]) in the RW formalism is factorized as the product of functionsdependent only on time, radius, and angles respectively. The angular part is determined bythe numbers l and m related to the usual scalar spherical harmonics. The even modes havethe formh(even)�� (t; r; �; ') = 0BBBBBBBBBBBB@ �e�H0(r) H1(r) 0 0H1(r) e�H2(r) 0 00 0 r2K(r) 00 0 0 r2K(r) sin2 � 1CCCCCCCCCCCCA Y lm cos(!t) ; (2.6)where Y lm(�; ') are the usual spherical harmonics 2. These modes have parity (�)l. The \oddmodes" (in the RW terminology { also called \axial modes") are given byh(odd)�� (t; r; �; ') = 0BBBBBBBBBB@ 0 0 �h0(r) (sin �)�1 @Y lm=@' h0(r) sin� @Y lm=@�0 0 �h1(r) (sin �)�1 @Y lm=@' h1(r) sin� @Y lm=@�Sym Sym 0 0Sym Sym 0 0 1CCCCCCCCCCA cos(!t)(2.7)and have parity (�)l+1. We will consider the case of odd and even modes separately.A gravitational geon is de�ned as a bounded con�guration of gravitational waves whosegravity is su�ciently strong to keep them con�ned. It is required that no matter or �elds otherthan the gravitational �eld be present. Although one may consider the possibility of stronggravitational waves, and the de�nition of gravitational geon allows for this possibility, in thispaper we will restrict ourselves to the case in which the amplitude of gravitational waves is2Strictly speaking, the radial functions in Eqs. (2.6) and (2.7) depend on !, l and m and should be labelledaccordingly. However, this would result in a cumbersome notation that is preferably avoided.3



small. This permits us to apply the linearized Einstein theory to the propagation of each singlewave in the background created by the average action of all the waves composing the geon.Furthermore, it is required that the con�guration represented by the metric 
�� be stableover a time scale much larger than the typical period of its gravitational wave constituents,and that the gravitational �eld becomes asymptotically 
at at spatial in�nity. Gravitationalgeons were introduced on the basis of the analogy with electromagnetic and neutrino geonsin the RW paper and were studied in greater detail by BH. Wheeler's method of buildingan electromagnetic geon was to replace the details of the electromagnetic �eld by the timeaverage of the components of the electromagnetic stress energy tensor. Upon averaging overmany modes of oscillation of the electromagnetic �eld, one obtains a stress-energy tensor,and as a consequence, a gravitational �eld and metric which are spherically symmetric. Anygiven mode of oscillation is taken to propagate in the spherically symmetric gravitational �eldcreated by the rest of the radiation. The attempt to build a geon resembles the construction,in other �elds of physics, of a system with many (almost) identical components, each of whichintroduces a negligible perturbation in the dynamics of the whole system and has an evolutiongoverned by the averaged action of all the other components. An example of such a systemin Newtonian theory is a galaxy described by the potential created by the mass distributionof many stars (here we neglect dark matter, and the fact that a potential{density pair usuallydescribes only a single component of a galaxy, and is adequate only for certain types of galaxies[22]). Each star gives a very small contribution to this potential and its orbit is determined bythe global galactic potential.Consistent with this idea, it is required that
�� = hg��i : (2.8)We also have hh��i = �@h��@x� � = * @2h��@x�@x�+ = 0 ; (2.9)where h i denotes an average over a time that is much longer than the typical gravitationalwave wavelength � (\Brill{Hartle average"). A mathematically rigourous treatment of thisconcept is contained in the paper by MacCallum and Taub [23]. This idea has proved veryvaluable and the averaging process has been used by many authors after BH, and is well de�nedonly if it is assumed that the typical wavelength � 3 is much smaller than the space and time3The term \typical gravitational wavelength" � may be source of confusion to some readers. Since weare decomposing the general wave form into an in�nite set of Regge{Wheeler modes, one may think that �represents the wavelength of each mode, and that Eq. (2.10) is only valid if the geon was composed of one andonly one mode. However, when one is analyzing a general wave form, it is justi�able to assign a single parameterdescribing the scale of variation of the wave form. In the present context, � is the scale over which the waveform varies. Equation (2.10) is easily derived from Eq. (2.23) if one keeps in mind that h��;� � �=� etc. (see[24]) and that � represents the scale of variation of h�� .4



scale of variation L of the background metric 
�� (high frequency approximation) [21]:� � �L << 1 : (2.10)This assumption provides us with a smallness parameter � to be used as an expansion pa-rameter. Following [21], we measure times and lengths in units of L so that � = �. We havealso h�� = O(�) ; (2.11)! = 2�� = O� 1� � ; (2.12)O�@h��@x� � = O(1) ; (2.13)O @2h��@x�@x�! = O� 1� � : (2.14)In our notation, O(1)�O(�0). Equation (2.11) is derived in [21, 24, 25]. It is to be notedthat, in the most general case of high frequency gravitational waves on a curved spacetime,two smallness parameters are involved: the dimensionless amplitude of the waves and the ratio�=L. These two parameters coincide in the speci�c case under consideration, in which the onlysource of the background curvature are the gravitational waves. One can conceive of situationsin which more than one parameter arises from the high frequency approximation, and thesecases have been considered in the literature (see e.g. [26]). However, in these situations,gravitational waves are not the only source of curvature. When gravitational waves are theonly source of curvature, as in the gravitational geon, these multiple parameters reduce to thesingle parameter �. Equation (2.13) implies that the quantum numbers l and m are of orderO(1=�).The Ricci tensor can be expanded in the form [11, 21]R��(g) = R(0)�� (
) +R(1)�� (
; h) +R(2)�� (
; h) + � � � ; (2.15)where ([11, 21] and references therein)R(1)�� = 12 
�� (h�� ;�� + h��;�� � h��;�� � h��;��) ; (2.16)R(2)�� = � 12 �h�� ;�2 h�� ;� + h�� (h��;�� + h��;�� � h��;�� � h��;��)+h�� ;� (h��;� � h��;�)� �h�� ;� � h;�2 � (h��;� + h��;�� h��;�)� ; (2.17)5



and h � h��. The term R(0)�� (
) is the Ricci tensor of the background metric 
�� , whereasR(1)�� and R(2)�� are, respectively, the parts of the Ricci tensor linear and quadratic in h�� andtheir derivatives. In the absence of high frequency waves (or on a 
at background), h�� andtheir derivatives are all of order O(�). In this case the superscripts on the expansion terms ofEq. (2.15) also indicate its order in powers of �. However, in the high frequency approximationit is clear that R(1)�� contains terms of order O(1=�) and O(1) as well as O(�) [21]. Similarly,R(2)�� is comprised of terms of order O(1), O(�), etc. Solving the vacuum �eld equationsR�� (g) = 0 (2.18)consistently to any order of approximation requires that we set each order in the expansionparameter � equal to zero. We express Eqs. (2.16) and (2.17) asR(1)�� (
; h) = R(1)�� h��1i+ R(1)�� h�0i+ � � � ; (2.19)R(2)�� (
; h) = R(2)�� h�0i+R(2)�� [�] + � � � ; (2.20)where R(k)�� [�n] denotes the term of order O(�n) in R(k)�� . The �rst order approximation is thusR(1)�� h��1i = 0 : (2.21)The second order approximation requires that terms of order O(1) be set equal to zero. The�eld equations to this order areR(0)�� (
) +R(1)�� h�0i+ R(2)�� h�0i = 0 : (2.22)Performing the Brill{Hartle average on Eq. (2.22), one obtainsR(0)�� (
) = � DR(2)�� h�0iE : (2.23)Note that from Eq. (2.9) DR(1)�� h��1iE = DR(1)�� h�0iE = � � � = 0 (2.24)and hence DR(1)�� (
; h)E = 0 : (2.25)In Eq. (2.23) the part of the Ricci tensor quadratic in h�� and their derivatives has beentaken to the right hand side and is seen as an e�ective source term due to the gravitationalwaves. It is important to note that Eq. (2.23) has the potential to lead to the description of a6



gravitational geon only by virtue of the high frequency approximation. Under the assumptionthat gravitational waves are weak but not of high frequency, Eqs. (2.12){(2.14) would nothold and the two terms in Eq. (2.23) would have di�erent orders. R(2)�� = O(�2) could neverbalance R(0)��(
) = O(1) in this equation. This would prevent a priori the construction of agravitational geon. This point can be understood physically by noting that the e�ective energydensity associated with gravitational waves with amplitude h << 1 and frequency ! is roughlyproportional to (h!)2. This quantity can be of order unity only if ! � 1=h >> 1. Therefore, itis clear that the high frequency approximation is a necessary condition for geon constructionin the present context.We shall designate as the \geon problem", the problem of �nding a solution (
�� ; h��)to the Einstein equations (2.21), (2.22) and (2.23) with the above mentioned properties andsatisfying the boundary conditions describing asymptotic 
atness 4h�� ! 0 as r! +1 : (2.26)3 The BH analysisTo the authors' knowledge the only explicit attempt at gravitational geon construction wasthat of BH. In this Section we review their pioneering approach to the problem and criticallyanalyze their work.We follow BH in expressing the gravitational wave perturbations in terms of RW tensorspherical harmonics. For the sake of simplicity, as done by BH, we restrict ourselves to the caseof odd modes with zero angular momentum along the z{axis (i.e. m = 0). The last assumptioneliminates the '{dependence from the h�� functions and considerably simpli�es the Einsteinequations. This can be seen from Eq. (2.7) and from the well{known form of the sphericalharmonics that we present in Eqs. (3.4), (3.5) below. Thus, the metric perturbations are 5h�� (t; r; �) = R��(r) �l(�) e�i!t ; (3.1)where R��(r) = h0(r) ��0� �3� + �3� �0��+ h1(r) ��1� �3� + �3� �1�� ; (3.2)�l(�) = sin � dY l0d� = �2l+ 14� �1=2 sin � dP l(cos �)d� : (3.3)4In principle one can impose that gravitational waves are con�ned to (and therefore the h�� have supportin) a ball or a spherical shell. However, the less restrictive condition (2.26) is su�cient for our purposes.5For ease of comparison with the BH paper, we use a complex exponential to describe the time{dependenceof the metric perturbations in Eq. (3.1). This notation is adequate as long as linear quantities in h�� and theirderivatives are considered, but clearly it is incorrect when the part of the Ricci tensor quadratic in h�� andtheir derivatives enters the discussion. For future reference, we use a function cos (!t) instead of a complexexponential in Eqs. (2.6), (2.7) and in our calculations of Sec. 4.7



Here we use the expression of the spherical harmonicsY lm(�; ') = Clmeim'P lm(cos �) (m � 0) ; (3.4)Y lm(�; ') = (�1)m �Y ljmj�� (m < 0) ; (3.5)with the normalization constants [19]Clm = (�1)m �2l+ 14� (l�m)!(l+m)!�1=2 (3.6)which guarantee that R4� d
 ���Y lm (�; ')���2 = 1. Here � denotes complex conjugation and P lm(x)are the associated Legendre polynomials (which can be expressed in terms of the Legendrepolynomials P l(x)). Using the relation P l0(x) = P l(x) we obtainY l0(�) = �2l+ 14� �1=2 P l(cos �) ; (3.7)from which Eq. (3.3) follows 6.One can now insert the form (3.1){(3.3) of the metric perturbations into the Einstein equa-tions (2.18), obtaining equations for the unknown functions h0(r) and h1(r). Simultaneouslysolving Eqs. (2.21) and (2.23) for a pair (
�� ; h��) then provides a solution to the geon problem.The correct order of magnitude of the various terms in the Einstein equations is determinedby Eqs. (2.11){(2.14). The correct order of magnitude decomposition of the Einstein equationsis absent in [11]. While the high frequency approximation was assumed in [11], it was notincorporated into the calculations. As a result, the authors did not obtain the two di�erentorders O(1=�) and O(1) in the Einstein equations, using a parameter � arising from the highfrequency approximation. This is evident from the fact that their �nal equations (10a){(10c)and (14) contain terms of di�erent orders in the high frequency limit. In the remaining partof this Section we will show how the BH results can be reproduced and we will comment ontheir proposed geon model.The BH equations can only be reproduced in the absence of high frequency waves. In termsof a parameter � related to the weakness of the gravitational waves, Eqs. (2.11){(2.14) must6Note a misprint in the second of the equations (8) in [11], corresponding to our Eq. (3.2). Also to benoted is an inconsistency in the notation therein: the form (3.1){(3.3) for the metric perturbations is assumedin [11], but the number m in the de�nition of the function �lm corresponding to our �l is retained. This isinappropriate since it is clear from Eqs. (8) and (9) in [11] that the intention was to set m = 0. Otherwise, thefunction �lm would depend on both � and ', which is not the case, and the Einstein equations would be muchmore complicated. 8



be replaced byO(h��) = O�@h��@x� � = O @2h��@x�@x�! = O(�) � ; � = 0; :::; 3 : (3.8)As a consequence of these equations, the Ricci tensor has the form given by Eq. (2.15), whereR(0)�� (
) =O(1), R(1)�� = O(�) and R(2)�� = O ��2�. To order O(1) the Einstein equations give thewell{known equations for a spherically symmetric, static background (see e.g. [25], p. 300) withvanishing energy{momentum tensor. As far as the order O(�) is concerned, only the (0, 3),(1, 3) and (2, 3) components of the Ricci tensor give nontrivial results. These components areR(1)03 = � e��2 � _h13�2r � �02 � �02 �+ h0032 ��0 + � 0� + _h013 � h0003 � 2�0r h03�+ 12r2 (h03;22 � h03;2 cot �) ; (3.9)R(1)13 = � e��2  �h13 � _h003 + 2_h03r !+ e��r h13 ��02 � �02 � 1r�+ 12r2 (h13;22 � h13;2 cot �) ; (3.10)R(1)23 = � e��2 �h013;2 � 2h013 cot � + h13 ��0 � � 0� cot � + h13;22 ��0 � �0���e��  _h03 cot � � _h03;22 ! ; (3.11)where a dot and a prime denote di�erentiation with respect to t and r, respectively. We nowinsert the form of the metric perturbations (3.1){(3.3) into the Einstein equations (2.21) anduse the following property of the function �l (see Appendix A):d2�ld�2 � cot � d�ld� + l(l+ 1)�l = 0 : (3.12)After some manipulations we �nd 7i! �h01 + h1�2r � �02 � �02 ��� h002 ��0 + � 0�+ h000 � h0 "l(l+ 1) e�r2 � 2�0r # = 0 ; (3.13)7Our Eq. (3.13) di�ers from Eq. (10c) of BH in the sign of the �rst term. Equation (3.14) di�ers from theBH Eq. (10a) in the sign of the second term in the �rst bracket, while Eq. (3.15) agrees with Eq. (10b) ofBH. Note misprints in the BH Eq. (11) corresponding to our Eq. (3.16). One of the coe�cients of Q in ourEq. (3.20) di�ers by a factor 1=2 from the corresponding one in BH Eq. (14). The sign of the right hand sideof our Eq. (3.19) is opposite to that in the corresponding BH equation.9



i! e�� �h00 � 2h0r �+ h1 " l(l+ 1)r2 � !2e�� + e��r ��0 � � 0 � 2r�# = 0 ; (3.14)i! e��h0 + e�� �h01 + h12 ��0 � �0�� = 0 : (3.15)Following BH we can now use Eq. (3.15) to eliminate h0 from Eq. (3.14), obtaining the secondorder di�erential equation for h1(r):h001 + h01 �32 ��0 � �0�� 2r�+ h1 "12 ��0 � �0�2 + 12 ��00 � �00�� l(l+ 1) e�r2 + !2e��� + 2r2# = 0 :(3.16)We introduce the variable Q and the Regge{Wheeler coordinate r� de�ned byh1 � re(���)=2Q ; (3.17)dr� = e(���)=2 dr : (3.18)In terms of these quantities we have h0 = � 1i! d(rQ)dr� (3.19)and8 d2Qdr2� + �!2 + 32r ��0 � �0� e��� � l(l+ 1)r2 e��Q = 0 : (3.20)This Schr�odinger{like equation lends itself to the analogy with the dynamics of waves propa-gating in an e�ective potential [1, 10, 11].At this point BH proceed with the speci�cation of the background metrice� = 8><>: 1=9 if r � a1� 2M=r if r � a ; (3.21)e� = 8><>: 1 if r < a(1� 2M=r)�1 if r > a ; (3.22)8An equation similar to Eq. (3.20) can be derived for the even modes with m = 0 [29].10



where a = 9M=4 and M is the geon mass. This vacuum solution for the background metricimplies that the e�ective energy density due to the gravitational waves vanishes for r 6= a.Since the e�ective energy is positive semi{de�nite, Eqs. (3.21), (3.22) imply thath�� = 0 for r 6= a : (3.23)Conversely, if the condition (3.23) is satis�ed, the Birkho� theorem guarantees that the metricis Minkowskian for r < a and the Schwarzschild metric for r > a.Therefore, in the BH model, gravitational waves are con�ned to a spherical shell, thethickness of which is exactly zero. Apparently, BH meant to build a geon model in which thegravitational waves are trapped in a spherical shell which has a nonvanishing thickness which ismuch smaller than its radius. However, their equations do not allow for this possibility. To becomplete, we examine the viability of a geon with gravitational waves con�ned to a shell whosethickness is exactly zero. It is easy to see that such a model is physically meaningless andthat the geon problem becomes mathematically ill{de�ned in this case. In fact, the solutionsof the radial equations (3.13){(3.16) cannot be ordinary functions but must be sought in somespace of distributions. In Eq. (3.16), the coe�cients proportional to � 0��0 and �00��00 are notordinary functions and have a mathematical meaning only if they are regarded as distributions.The �rst of these two quantities can be expressed as�0 � �0 = 4Mr�2�1� 2Mr ��1 �H (r � a) ; (3.24)where �H(x) � 8><>: 0 if x < 01 if x > 0 (3.25)is the Heaviside step function. Clearly, the radial derivative of � 0 � �0 can be taken only ina distributional sense. Therefore the solutions of the Einstein equations are distributions andtheir domain is some space of test functions which must be speci�ed in such a way that thecoe�cients and the operations involved in the Einstein equations are well de�ned. There isno indication as to the manner in which this functional space should be determined. It seemsalmost certain that, if a meaningful and unambigous mathematical formulation of the problemcan be given, the distributional solutions h�� cannot be seen as locally integrable functions,but rather must have properties like a Dirac delta with support on r = a. Furthermore, theproduct of distributions is not de�ned and the Einstein equations involving the part of theRicci tensor quadratic in h�� and its derivatives is mathematically meaningless in this case.This destroys the possibility of exploring one of the essential features of a gravitational geon.Moreover, if the h�� are allowed to be distributions, the whole meaning of the linearizationaround the background 
�� , the condition jh�� j << 1, and the estimates of the di�erent orders11



of magnitude in the Einstein equations, become meaningless. The physical interpretation of adistributional metric and Riemann tensor is problematic. To appreciate this, one can considerthe much simpler case of a metric which does not satisfy the appropriate junction conditions [27]on a spacelike or timelike hypersurface (this is the case of the metric 
�� given by Eqs. (3.21),(3.22) and the timelike hypersurface r = a { see Appendix B). As suggested by Israel [28], andas can be seen from the computation of the Einstein tensor for the spherical metric speci�edby Eqs. (3.21), (3.22), a singular hypersurface S (in the sense [27] that the �rst, or the secondfundamental form, or both are not continuous at S) is associated with nonvanishing T�� , asource of stresses. The de�nition of a geon, a structure of pure gravitational waves in theabsence of matter, excludes the use of a background metric which does not satisfy the properjunction conditions. If, in addition, the \perturbations" h�� are allowed to be distributions, theconsideration of junction conditions loses its meaning, but the argument shows that delta{likesources of stresses are included in the problem. Thus, we exclude the case in which gravitationalwaves are con�ned to a shell, the thickness of which is exactly zero, as physically meaningless,mathematically ill{de�ned, and nonviable.The only possible alternative for a geon model in which gravitational waves are con�ned toa spherical shell is the case in which the shell has a nonzero thickness. Apparently, BH meantto consider such a model, although this contradicts some of their equations. To be speci�c, letus consider a shell of radius a and thickness �a described by values of the radial coordinate inthe range a � �a2 � r � a+ �a2 ; (3.26)where 0 < �a << a. In order for the geon to be a distribution of pure gravitational �eldswithout matter, we must require that the metric tensor satis�es the appropriate junctionconditions [27] at the two timelike hypersurfaces S� = f(t; r; �; ') : r = a� �a=2g. Thisguarantees the absence of a real (as opposed to \e�ective", i.e. generated by gravitationalwaves) stress{energy tensor T�� representing a matter distribution. In this model, the modi�edBH solution would be e� = 8><>: 1=9 if r � a� �a=21� 2M=r if r � a+ �a=2 ; (3.27)e� = 8><>: 1 if r � a� �a=2(1� 2M=r)�1 if r � a+ �a=2 ; (3.28)h�� = 0 if r < a� �a2 ; r > a+ �a2 : (3.29)12



The form of the background metric 
�� inside the spherical shell is not given by BH and mustbe determined by solving simultaneously the Einstein equations to the two lowest orders for apair (
�� ; h��) [26]. The proper orders of magnitude did not appear in [11] as a consequenceof neglecting the high frequency approximation, despite the fact that this was introduced atthe beginning of the paper in order to de�ne time averages. This is the reason why there isonly one set of equations in [11] mixing di�erent orders and a complete solution to the geonproblem is not provided. It is actually easy to see that the BH equations cannot be satis�edby a nontrivial solution, once the correct order of magnitude decomposition of the Einsteinequation is performed. By using Eqs. (2.11){(2.14) in Eq. (3.15) and discarding the higherorder terms, one obtains i!e��h0 + e��h01 = 0 ; (3.30)in which the real functions h0(r) and h1(r) are of order O(�2), as can be deduced from Eq. (2.7).In conjunction with the boundary conditions (2.26), Eq. (3.30) givesh0 = h1 = 0 : (3.31)It is natural to ask if such a solution based on a spherical shell of nonvanishing thickness isviable. This question will be answered in the next Section.4 Resolving the geon problemIn this Section we study the geon problem assuming the high frequency approximation, asrequired, and we take into account the orders of magnitude accordingly. In what follows, wesolve the geon problem in the case of a spherically symmetric, static and asymptotically 
atbackground 
�� . Apart from these assumptions and from the boundary conditions (2.26), wedo not restrict ourselves to a spherical shell, nor do we require that the metric perturbationsvanish outside a certain radius. At the end of this Section, the results will be generalized to
�� being a time{dependent, slowly varying, spherically symmetric background metric. Weconsider separately odd and even modes. In addition, we will not restrict ourselves to aparticular value of the number m.4.1 Odd modesThe form of an odd RW mode is given by Eq. (2.7). The Ricci tensor is computed usingEq. (2.16) which, to the dominant order O(1=�) is simpli�ed to (see Appendix C)R(1)�� h��1i = 12 
�� (h��;�� � h��;�� � h��;��) : (4.1)13



For our purposes it is su�cient to consider the Ricci component R22. By taking into accountthe high frequency approximation and the orders of magnitude given by Eqs. (2.11){(2.14), we�nd R(1)22 h��1i = 12 �
00h02;02 + 
11h12;12� : (4.2)Substitution of Eq. (2.7) into Eqs. (4.2) gives the simple equation!e��h0 sin(!t) + e��h01 cos(!t) = 0 : (4.3)The linear independence of the functions sin(!t) and cos(!t) and the boundary conditions(2.26) give h0(r) = h1(r) = 0 : (4.4)These in turn imply that the e�ective source term � DR(2)��E of gravitational waves in Eq. (2.23)vanishes, leaving us with R(0)��(
) = 0 ; (4.5)which has the Minkowski metric ��� as its only asymptotically 
at solution. Therefore, we seethat the geon problem has no solution in terms of odd waves. The di�erence with respect tothe treatment of the previous Section arises solely from the high frequency approximation. Wenow consider the case of even modes.4.2 Even modesThe form of an even RW tensor spherical harmonic is given by Eq. (2.6). Following the sameprocess as for the odd waves, the relevant Einstein equations to order O(1=�) areR(1)01 h��1i = 12 �
22h22;01+ 
33h33;01 + 
22h01;22 + 
33h01;33� = 0 ; (4.6)R(1)02 h��1i = 12 �
11h11;02+ 
33h33;02 � 
11h01;12� = 0 ; (4.7)R(1)11 h��1i = 12 �
00h00;11+ 
22h22;11 + 
33h33;11 + 
00h11;00 + 
22h11;22 + 
33h11;33�2
00h01;01� = 0 ; (4.8)Insertion of Eq. (2.6) into Eqs. (4.6){(4.8) gives�2!K 0 sin(!t)Y lm + H1r2 cos(!t) @2Y lm@�2 + 1sin2 � @2Y lm@'2 ! = 0 ; (4.9)h! (H2 +K) sin(!t) + e��H 01 cos(!t)i @Y lm@� = 0 ; (4.10)14



"�H 000 + 2K 00 + !2e���H2�Y lm + e�H2r2  @2Y lm@�2 + 1sin2 � @2Y lm@'2 !# cos(!t)�2!e��H 01 sin(!t) = 0 : (4.11)The linear independence of the functions sin(!t), cos(!t) and the boundary condition (2.26)give H0 = H1 = H2 = K = 0 : (4.12)Again, we see that the only possible solution to the Einstein equations to the two lowest ordersis the pair (
�� ; h��) = (��� ; 0), i.e. the geon problem has no solutions also for the even modescase, as a consequence of the high frequency approximation.4.3 The time{dependent and stationary casesThe previous results can be generalized to the case of a time{dependent, spherically symmetricbackground metric 
�� (t; r), under the assumption that its time variation occurs on a scalemuch larger than the period of the gravitational waves. In this case the high frequency ap-proximation and Eqs. (2.11){(2.14) remain valid. Equation (2.2) still holds, but Eq. (2.3) isreplaced by � = �(t; r) ; � = �(t; r) : (4.13)As a consequence of the fact that the estimate of the orders of magnitude in the Einsteinequations does not change, we �nd in this case the same equations that we presented above forthe even and odd modes, and the same conclusions apply. If instead, the background metric
�� (t; r) is allowed to vary on a time scale comparable to the period of the gravitationalwaves, the high frequency approximation does not hold and a gravitational geon cannot beconstructed, as explained in Sec. 2. This remains valid for any time{dependent backgroundmetric 
�� (t; ~x) when symmetries are absent, due to the fact that our considerations based onEq. (2.23) do not rely on the assumption of spherical symmetry. Apart from this argument, therealization of a geon with a rapidly varying background metric 
�� is problematic for anotherreason: If a spherically symmetric background is allowed to vary harmonically with frequency
 comparable to the frequency of the gravitational waves, one expects a parametric resonance[30] for the modes with ! = n
=2, with n = 1; 2; � � � . The strength of the resonance is amaximum for n = 1 and decreases rapidly as n increases. In the limit of a static background,the resonance phenomenon disappears. Accordingly, on the basis of studies of perturbations ofblack holes and relativistic stars [20], it is expected that in the case of a stationary axisymmetricbackground metric describing a rapidly rotating geon, the resonance phenomenon between theperturbations and the background metric occurs. In the general case of a time{dependentand rapidly varying background metric 
�� (t; ~x) without symmetries, it is not known howto decompose metric perturbations on a complete set playing the role of the tensor spherical15



harmonics in the spherical case, or even how to de�ne frequencies in the strong curvatureregion. However, if such concepts can be given a meaning, it seems reasonable to expectsome kind of resonance phenomena between the background metric and its gravitational waveperturbations. All these resonance phenomena certainly do not contribute to the realizationof a stable con�guration, but rather are associated with instabilities that tend to disrupt thesystem.5 Discussion and conclusionThe results of the previous Section were derived by making use of some particular gaugeconditions that RW imposed in order to set the metric perturbations in the form of Eqs. (2.6)and (2.7). However, it is clear from their very nature that our results are covariant and gauge{independent, since the solution (
�� ; h��) = (��� ; 0) that we found has an invariant meaning(for example, the vanishing of the curvature tensor is a covariant concept).Since a spherically symmetric gravitational geon cannot exist due to the fact that the highfrequency approximation forces the elimination of gravitational waves, one might ask if it ispossible to realize a gravitational geon in a con�guration with less symmetry. We do not expectthat such a geon can be constructed when the most primitive case is excluded. The main reasonfor this belief is that the key factor which leads to the non{existence of the spherical geon isnot the spatial symmetry but rather the high frequency.From a mathematical point of view, the main di�erence between our approach to thegeon problem, as compared to that of BH, consists in our explicit use of the high frequencyapproximation. We have already seen in Sec. 2 that this is necessary for the geon problem tobe meaningful. In Sec. 4 it was shown that the same approximation prevents the realizationof a spherically symmetric geon.An important point in the derivation of our results in Sec. 4 is the generality of our boundaryconditions (2.26). These allow for a variety of geometries: spherical shells with �nite thicknessand h�� 6= 0 only for r 2 (rin; rout), degenerate shells with rin = 0 (balls), or more generalunbounded spherical con�gurations restricted only by the condition (2.26). In his papers ongeons, Wheeler [1, 4, 7, 8] describes electromagnetic and neutrino geons as systems which arestable on a long time scale, but not absolutely stable, in the sense that they \leak" radiationto the exterior. The rate of the leaking is negligible, so that a geon is stable for a long time.However a secular instability is introduced, which seems unavoidable [7]. The BH model of aspherical shell with h�� exactly equal to zero outside a certain radius excludes such a possibility,and it could be conjectured that this might be the reason why their model is not viable, leavinga possibility open for the realization of physically more realistic \leaking" geons 9. However,9There is inconsistency in [11] at this point: in that paper it is required that h�� (and therefore Q) vanishesoutside the spherical shell. However, the Schr�odinger{like equation that is derived there for Q (our Eq. (3.20))16



this possibility is excluded by our calculations. In fact our boundary conditions (2.26) allowfor this possibility, which in turn is excluded by our results as well.To provide additional intuitive physical insight, we recall our analogy of Sec. 2 betweengravitational waves composing a geon and stars composing a galaxy. The high frequencyapproximation required in the geon case has a parallel in the case of a galaxy; it correspondsto the requirement that the individual stars have a very high velocity. It is clear that suchstars would escape from the galaxy and would not be trapped by its potential well. A galaxycannot be built exclusively from such stars in rapid motion. In other words, the system wouldnot satisfy the virial theorem and would not be bounded. The di�erence with the gravitationalgeon case is that while one is not obliged to require that stars have a very high velocity whenconstructing a galactic model, the high frequency approximation is necessary for a geon andthis, in turn, prevents its realization.An independent argument to understand the impossibility of a gravitational geon is thefollowing: it is well known that, in the limit of high frequencies, gravitational waves obey thegeometric optics approximation [21, 24]. Spatially closed lightlike geodesics exist only insideblack holes, which necessitate the existence of singularities. Thus, they are necessarily incon-sistent with the de�nition of a geon. The null circular geodesic at r = 3M in the Schwarzschildgeometry is unstable. It is therefore hard to reconcile high frequency gravitational waves withstable trapped graviton trajectories in the absence of matter.Traditionally, the geon was conceived as a structure of small{amplitude high{frequencygravitational waves compacti�ed to the point where one could describe the resulting metricas the averaged \background" metric induced by the totality of the waves plus a small per-turbation due to the local wave presence. This is what was analyzed in the present work. Itis natural to consider also waves of \large" amplitude in which case linearization is no longerpossible nor is it meaningful to envisage a splitting of the metric as before. In fact, to assigna measure to amplitude presupposes a standard for comparison and in the present work, thebackground metric served this role. To speak now of large amplitude is to consider waves forwhich there is no longer a discernable \background" and hence no standard for comparisonof amplitude measure. This leads to the realm of exact solutions. One might ask whether anexact wave{like solution of the Einstein equations, singularity{free with localized curvature,asymptotically 
at, could exist. Existing exact wave{like solutions such as the plane wavesof Bondi, Pirani and Robinson or the cylindrical waves of Einstein and Rosen [34] are notlocalized and in the second case, are also not singularity{free. While it would appear doubtfulthat solutions with the geon{like properties can exist, to our knowledge they are not ruled out.Implicit in the gravitational geon concept is the assumption that the gravitational �eldimplies a \leaking" geon, as is stated in [11]. In fact, the function Q has a nonvanishing tail for large values ofthe radius, due to the fact that the e�ective potential barrier is �nite. This e�ect is analogous to the well{knowntunnel e�ect in quantum mechanics. 17



has some particular essential features shared by other �elds. Other �elds, even in their purestates, carry energy. Energy has a mass equivalent and all masses gravitate. Thus, givena su�cient concentration of �eld energy, one could imagine a gravitated concentration intoa spherical region with the e�ective mass displayed unambiguously by the coe�cient of the1=r part of the asymptotic static vacuum metric. The gravitational geon concept is builtupon the assumption that the gravitational �eld itself, even in its pure state, will gravitateand thus have the potential to behave as other concentrations of matter or �elds. Throughthe years, various authors such as Isaacson [21] have dwelt upon the similarities betweenthe gravitational and other �elds. For example, Isaacson has attempted to establish thatthere is a basis for considering a certain construct of the metric as an energy{momentumtensor of the gravitational �eld which is as substantial as a true energy{momentum tensor.However, this requires averaging and under the appropriate limits, his construct merges withthe energy{momentum pseudotensor, the shortcomings of which epitomize the gravitationalenergy problem. If the gravitational �eld in its pure form really did have the properties whichthose authors have ascribed to it, then it would seem reasonable to expect that a gravitationalgeon could, at the very least in principle, be constructed. However, given the present results,it is worth considering alternative ideas.Recently, one of the authors [31, 32] introduced a new hypothesis that gravitational energyis localized in regions of non{vanishing energy{momentum tensor. The motivation derivedfrom the fact that the traditional means by which physicists have identi�ed gravitationalenergy was through the covariant energy{momentum conservation laws. While those lawswere extrapolated to produce energy{momentum pseudotensors, implying densities and 
uxeseven in vacuum, the fact is that the laws themselves are devoid of content in vacuum, producingthe empty identity 0 = 0. Given that there is a plethora of possible pseudotensors and, as theirname implies, they are not really tensors, it was suggested [31] that the root of the ambiguitylies in the extrapolation of the conservation laws to regions in which they are without actualcontent. The hypothesis goes on to propose that the true expression of the gravitationalcontribution to energy is con�ned to regions of non{vanishing T�� . In a sense this is theopposite of the Isaacson approach in that rather than being satis�ed with a construct whichreduces to the pseudotensor, the new hypothesis suggests that proper localization is realizedwhen the pseudotensor is removed.Clearly, the gravitational geon would negate the new hypothesis as it would provide an ex-ample of a space totally free of true energy{momentum tensor T�� yet exhibit an unambiguousenergy content via its asymptotic metric. While one might propose exact plane gravitationalwave solutions as counter{examples to the hypothesis, it is to be noted that these are un-bounded �elds with questionable relevance to physical situations and more directly, these wavesolutions can be expressed in Kerr{Schild form for which the pseudotensor vanishes in its en-tirety [33]. The gravitational geon is a direct challenge to the hypothesis and if the geon cannotexist, the hypothesis has passed another test.18



AcknowledgmentsThis research was supported, in part, by a grant from the Natural Sciences and EngineeringResearch Council of Canada.Appendix A: Derivation of Eq. (3.12)We start from the Legendre equationddx "�1� x2� dP l(x)dx # + l(l+ 1)P l(x) = 0 (A.1)and note that�l(�) = �2l+ 14� �1=2 sin � dP l(cos �)d� = �2l + 14� �1=2 �x2 � 1� dP l(x)dx ; (A.2)where x = cos �. Using dd� = � sin � ddx ; (A.3)d2d�2 = sin2 � d2dx2 � cos � ddx ; (A.4)and the Legendre equation (A.1), we �nd the relationsd�ld� = �l(l+ 1)�2l+ 14� �1=2 sin � P l(x) ; (A.5)d2�ld�2 = �l(l+ 1)�2l + 14� �1=2 "xP l(x) + �x2 � 1� dP l(x)dx # : (A.6)Using Eqs. (A.5) and (A.2) in Eq. (A.6), Eq. (3.12) follows.Appendix B: Junction conditions for the BH background metricWe consider the Darmois junction conditions [27] for the BH background metric on the timelikehypersurface S � f(t; r; �; ') : r = ag separating the regions of the spacetime manifold U �f(t; r; �; ') : r < ag, �U � f(t; r; �; ') : r > ag. fx�g = f�x�g = ft; r; �; 'g and �ui	i=0;2;3 =ft; �; 'g are coordinate systems in U , �U and S, respectively (note that, in this Appendix, Latin19



indices assume the values 0, 2, 3 due to the timelike character of S). The unit normal to S isdirected along the coordinate basis vector dual to dr and has componentsn� = �1� e�=2 : (B.1)The metric components 
�� in U and �
�� in �U are given by Eqs. (2.2), (3.21) and (3.22).The �rst fundamental form of S has components 
ij = �
ij . The second fundamental formK�� � n�;� of any hypersurface r =constant has componentsKij = n�;� @x�@ui @x�@uj = ��1ij e�=2 (B.2)in coordinates �ui	. Using the Christo�el symbols of a spherically symmetric metric (see e.g.[25]), we obtain the only nonvanishing componentsK00 = � �02 e���=2 ; (B.3)K22 = r e��=2 ; (B.4)K33 = r e��=2 sin2 � : (B.5)The Darmois conditions [27] require the continuity of the �rst and second fundamental formacross S. The �rst condition is trivially satis�ed, while the second is violated. In fact, we havelimr!a�K00 = 0 6= limr!a+K00 = � 1627M ; (B.6)limr!a�K22 = a 6= limr!a+K22 = a3 ; (B.7)limr!a�K33 = a sin2 � 6= limr!a+K33 = a3 sin2 � ; (B.8)where the BH relation a = 9M=4 was used.Appendix C: Dominant order in R(1)��The second covariant derivatives appearing in Eq. (2.16) areh��;�� = h��;�� � ����h��;� � ����h��;� � ����h��;� � ����;�h�� � ����h��;�+��������h�� + ��������h�� + ��������h�� � ����;�h�������h��;� + ��������h�� + ��������h�� + ��������h�� : (C.1)20



Symbolically, we express the various quantities in the last equation as follows:� = 
 @
 = O(1) ; (C.2)
 @h = O(1) ; (C.3)(@
)h = O(�) ; (C.4)h @h = O(�) ; (C.5)� @h = O(1) ; (C.6)(@�)h = O(�) ; (C.7)� � h = O(�) : (C.8)By using Eqs. (C.2){(C.8) in (C.1) and then, in conjunction with Eq. (2.16), Eq. (4.1) follows.The quantity (h��;�� � h��;�� � h��;��) in Eq. (4.1) contains terms of order O(1=�) as well asterms of order O(1). We retain only the former ones in the linearized Einstein equations toorder O(1=�).
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