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It is shown that (i) the angular momentum of a gravitational geon must be zero if it is axisymmetric and (2) the 
mass of a gravitational geon must be zero if it is stationary, i.e., if the space-time possesses a Killing vector 
which is timelike at infinity. Here angular momentum and mass are defined in terms of the asymptotic form of 
the metric at large distances; they are physical quantities which can be experimentally measured by distant 
observers. Since the gravitational geons previously considered are highly dynamical on a small scale, our re
sult on the vanishing mass of a stationary geon does not conflict with previous analyses showing that gravita
tional geons can have mass. Similarly, our results do not exclude the possibility of gravitational geons having 
nonvanishing angular momentum if they are not strictly axisymmetric. 

1. INTRODUCTION 

A gravitational geon may be described physically as 
a localized region of pure space-time curvature. 
More precisely, we define a gravitational geon to be a 
solution of the vacuum Einstein field equations, 

GJ1V = 0 (1) 

which is (1) nonsingular, (2) topolOgically EUClidean, 
(3) asymptotically flat, i.e., there exist coordinates 
xII such that on the hypersurfaces xO = const the 
metric takes the form g"v = lI"v + O(l/r) at large dis
tances, where 1I

1l
v = diag (- 1, 1,1, 1) and r is a radial 

parameter, and (4) approximately stationary in the 
asymtotically flat region, i.e., for sufficiently large r, 
derivatives of the metric with respect to x O can be 
neglected compared with derivatives with respect to 
the space like coordinates Xi. Gravitational geons as 
well as electromagnetic and neutrino geons have been 
studied as models for material bodies free from the 
uncertainty about any equations of state. 1 

In this paper, we prove that a gravitational geon can
not have a nonvanishing angular momentum if it is 
axisymmetric. We also show that the mass of a gravi
tational geon must vanish if it is stationary. 

In Sec. 2 we review the definition of angular momen
tum and mass used in this paper. We obtain expres
sions for these quantities in Sec. 3 which are used in 
Sec.4 to prove our results on gravitational geons. 

2. DEFINITION OF ANGULAR MOMENTUM AND 
MASS 

The discussion of this section follows closely that of 
Misner, Thorne, and Wheeler.2 

The space-time metric of any asymptotically flat 
solution of Einstein's equations which is approxi
mately stationary in the asymptotically flat region 
can be put in the following form2 for large r: 

dS2 =_(1_2m +2m2)dt2 
r r2 

_ 4E Jk(XI\ dtdxi + (1 + 2m 
jkl riJ r 

+ 3m2) (j "kdxidx k+ O(~) dxlldxv. 
2r2 J r3 

(2) 

Here Roman indices run from 1 to 3, Greek indices 
run from 0 to 3, and Ejkl is the completely antisym
metric tensor. The parameters m and J = ((Jl)2 + 
(J2)2 + (J3)2)1/2 of a space-time are uniquely de
fined by Eq. (2), i.e., their values cannot be changed 
by a coordinate transformation which preserves the 
form, Eq. (2), of the metric. If the gravitational field 
is weak throughout the space-time, the linearized 
theory of gravity yields the following expressions2 

for m and Jk: 

(3) 

(4) 
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where TjJu is the stress-energy tensor of matter. 
Thus, in the weak field limit, m and J may be identi
fied' respectively, as the total mass and angular 
momentum. In the strong field case, Eqs. (3) and (4) 
are, of course, no longer valid, but the expansion of 
the metric, Eq. (2), still holds in the asymptotically 
flat region. In the strong field case, we define the 
total (active gravitational) mass to be m and the total 
angular momentum to be J. Both m and J have direct 

I 

physical significance: A distant observer can 
measure m by a study of Keplerian orbits and can 
measure J by observation of gyroscope precession 
resulting from the dragging of inertial frames. 
Transforming from the symptotically Minkowskian 
coordinates of Eq. (2) to asymptotically spherical 
polar coordinates and aligning the z axis in the direc
tion of J, we put the metric of Eq. (2) into the follow
ing form which is more useful for our purposes: 

t ~ r 8 

O(I/r2) 

O(I/r) 

O(I/r2 ) 

- [1- 2m/r + O(I/r2)] [(- 2J sin28)/r + O(I/r2)] O(I/r3 ) 

r 2 sin28(1 + O(1/r» 
gjJU = 

SYM 

Note that, comparing Eq. (5) with the Kerr metric, 

dS 2 = - (1 - 2~r)dt2 _ 4mar t n28 
dt d~ 

+ (r2 + a2) sin28 + 2ma2~ sin48)d~2 

+ ~ (d82 + d~2), (6) 

where 
~ = r 2 + a2 cos28, (7) 

t:.= r2 - 2mr + 0 2, (8) 

we can immediately see that the angular momen
tum of the Kerr metric is given by3 

J = ma. (9) 

3. FORMULAS FOR J AND m 

We now obtain formulas for J and m which will be 
used in Sec. 4. 

Let ~jJ be any vector field which reduces to the vector 
field a/a~ at large distances, where ~ is the angular 
coordinate defined at large distances by the form of 
the metric, Eq. (5). (The definition of ~jJ is left arbit
rary in the nonasymptotically flat region.) Then, we 
have3 

J = _1-limJytconst*d~ 
161T y-><>O ' 

= -1-limJ (- g)1/2(~y;t - ~t;r)d6d~, (10) 1611 y .... CO y,t const 

where t, ~, r, 8 are the coordinates of Eq. (5). To 
prove (10), we note that since ~jJ agrees with a/a~ for 
large r, we obtain by direct calculation from the 
metric of Eq. (5) that 

~y;t = gtar;a = 3J sin28/r2 + O(l/r3 ), (11) 

~t;r = gyar: a = - 3J sin2 8/r2 + O(I/r3 ), (12) 

(- g)1/2 = r2 sin8 [1 + O(1/r)]. (13) 
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O(I/r2) 

1 + O(I/r) 

r2[1 + O(1/r)J 

Equation (10) then follows immediately. 

(5) 

A similar calculation establishes the following formu
la for m. Let 1/1 jJ be any vector field which agrees 
with a/at for large values of r. Then we have4 

m = - ..!.. lim Jy t const *dl/l 81T y->oo ' 

=J.. J(_g)1/2(l/It;IrV;t)d8d~ (14) 
81T 

4. APPLICATION TO GRAVITATIONAL GEONS 

The results of this paper now follow from Eqs. (10) 
and (14). 

The assumption that the space-time is topologically 
Euclidean implies that the 2-surface of constant r 
and t over which the integral, Eq. (10), is to be taken 
is the boundary of the interior part of the hyper
surface, t = const. Hence, the divergence theorem 
implies 

J = 1!1T Jt=constd*d~ 
= _1_ Jt- st(- g)1/2(~jJ;t - ~t;jJ). drd8d~. (15) 161T -con ,jJ 

If the space-time is axisymmetric, we may take ~jJ to 
be the axisymmetric Killing vector. Now, for a Kill
ing vector, we have 

Hence, we have 

(EjJ;t - Et;Jl);Jl = 2EiJit;jJ' 

In addition, 

~jJ;f.I = 0, 

and by the Ricci identity we thus obtain 

(16) 

(17) 

(18) 

(19) 

Thus, for an axisymmetric, topologically Euclidean 
space-time, we have 
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J = l.. J (- a)1/2R td3x i (20) 871 t=canst h «J • 

[Note that, in Eq. (20), <p is fixed by the symmetry but 
the choice of t is arbitrary except in the asymptotical
ly flat region.] For a gravitational geon R,/ is zero 
by virtue of the field equation (1), and so for an axi
symmetric gravitational geon Eq. (20) yields 

J = o. (21) 

An identical calculation starting from Eq. (14) shows 
that for a stationary, topologically Euclidean space
time, 

m - _l.. J (- rr)1/2R td3x i 
- t canst h t • 

471 
(22) 

(Here t is fixed throughout the space-time by the 
stationary symmetry.) Hence, for a stationary gravi
tational geon, 

m = O. (23) 

Since G t = R t, it follows from Eq. (20) that J is a 
conserv~d quaritity associated with axial symmetry 
and arising from the conservation law (GJlv~Jl);v = O. 
This quantity was used in Ref. 3 to define the angular 
momentum of an axisymmetric space-time. However, 
since Gt t = R / - ~, we see from Eq. (22) that in the 
stationary case m is not (in general) equal to the 
conserved quantity arising from (G vlj;Jl). v = 0, except 
for space-times with vanishing scalar curvature R 
(e.g., electiovac space-times). 

Note that if matter is present in the interior, one 
obtains m > 0 for a stationary, topologically Euclidean 
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The proof of Eqs. (21) and (23) does not apply to black 
holes because for black holes the space like hyper
surfaces either contain a singularity or have non
Euclidean ("wormhole") topology. In either case, 
Eq. (15) does not follow from Eq. (10). For further dis
cussion see, e.g., Ref. 5 and the references cited 
there. 

It should be emphasized that, in the proof of Eq. (21), 
it is required that the geon be strictly axisymmetric, 
i.e., axisymmetric on a small scale, not merely 
approximately axisymmetric when averaged over 
some region. Similarly, in the proof of Eq. (23), the 
geon must be strictly stationary. Since the gravita
tional geons previously considered are highly dynami
cal on a small scale, our results do not conflict with 
analyses which find them to have positive mass. 1 ,6 

Nor do our results exclude the existence of geons 
having angular momentum which are not axisym
metric on a small scale, e.g., on account of gravita
tional waves traveling in the <p direction. 
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