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We investigate the effect of gravitational collapse of rotating bodies on the induced rotation of inertial
frames. In particular, it is shown that the angular velocity of the inertial frames, within an adiabatically
collapsing, slowly rotating mass shell supported by elastic stresses, approaches that of the shell as the shell
radius approaches the Schwarzschild radius. Even when this relative angular velocity approaches zero, the
angular momentum (a conserved quantity) does not vanish; it remains constant during the collapse. On the
other hand, an observer within a slowly rotating dust shell (at the point of maximum expansion) does not see
the angular velocity of the inertial frames approach that of the shell as the radius approaches the Schwarzs-
child radius. This difference between the two situations is shown to be in accordance with Mach’s principle.
The effect of rotation on gravitational collapse is also considered. This is done to shed some light on an im-
portant question in astrophysics: Does rotation stop collapse, or does collapse crush rotation? A spherical
shell of dust supported by “centrifrigal forces” is considered. It is shown that rotation cannot stop collapse
unless the shell radius is equal to or larger than (9/8)X (Schwarzschild radius). This happens even though
the velocity of the particles in the shell is allowed to approach that of light.

I. INTRODUCTION

CCORDING to Einstein,! Mach’s principle im-

plies that a “rotating hollow body must generate
inside of itself a ‘Coriolis field,” which deflects moving
bodies in the sense of a rotation, . . .” A weak effect
of this sort was found in 1918 by Thirring,? who showed
that a slowly rotating mass shell (producing a weak
gravitational field) drags along the inertial frames
within it. Because of the approximations used, Thir-
ring’s result is valid only when the induced rotation
is small compared to the rotation rate of the shell.

Subsequent to Thirring’s work, various authors®*
have stressed the importance of obtaining a strong-field
solution in order to see how Mach’s principle enters
into general relativity. In particular, Dicke® has argued
that, if Mach’s principle is contained in general rela-
tivity, there should be a limit in which the angular
velocity of the inertial frames within the shell ap-
proaches that of the shell.

Recently, it has been shown®*® that such a limit does
exist in general relativity. Within a slowly rotating
mass shell whose geometric radius approaches its
gravitational radius, the induced rotation of the in-
ertial frames approaches that of the shell. The elastic
stresses, necessary to keep the shell from collapsing,
become large as the shell radius approaches the gravi-
tational radius.

Unfortunately, from the above results it was not
clear why the induced rotation of the inertial frames
approaches that of the shell. Thus, it seemed reasonable

1 A, Einstein, The Meaning of Relativity (Princeton University
Press, Princeton, N. J., 1956).

2 H. Thirring, Physik. Z. 19, 33 (1918).

3R. H. Dicke, Am. J. Sci. 47, 25 (1959).

4], A. Wheeler, Relativity, Groups, and Topology, edited by
B. S. DeWitt and C. M. DeWitt (Gordon and Breach, Science
Publishers, Inc., New York, 1964). )

6J. M. Cohen, Lectures in Applied Mathematics, edited by
J. Ehlers (American Mathematical Society, Providence, R. L.,

1967), Vol. 8.
¢ D. Brill and J. Cohen, Phys. Rev. 143, 1011 (1966).
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to ask: Is the effect only a consequence of the non-
physical mass distribution of the thin shell? The
answer is no. Such induced rotation effects manifest
themselves also for more physical configurations of
matter, e.g., a slowly rotating sphere of perfect fluid.
The induced rotation of the inertial frames is exhibited
throughout the interior of the fluid sphere,” as well as
exterior to the sphere where the metric is the same as
that for the spherical shell. When the geometric radius
of the sphere approaches (9/8) X (Schwarzschild radius),
the induced rotation rate at the center approaches that
of the fluid.

Unfortunately, the problem is not yet completely
solved since, at the center of the fluid sphere, both the
pressure and red shift (from the center to an observer
at infinity) become large as the radius approaches
(9/8) X (Schwarzschild radius). In Sec. III, we con-
sider a situation in which the pressure does not become
large but the red shift does. The adiabatic gravitational
collapse® of rotating configurations is investigated in
Sec. II in order to examine the effects of collapse on
rotation.

These induced rotation effects have raised questions
of importance in astrophysics. Does rotation stop
gravitational collapse or does collapse crush rotation?
In any event, angular momentum,® a conserved
quantity, cannot be crushed. Since in the strong-field
case, the gravitational field makes a non-negligible
contribution to the angular momentum, the ‘“angular
momentum of a body” is not a well-defined concept
in general relativity as it is in Newtonian mechanics.

7J. Cohen, Middlestates Relativity Seminar, 1966 (unpub-
lished) ; J. Cohen and D. Brill, Nuovo Cimento (to be published).

8 For a discussion of the adiabatic collapse of nonrotating
spheres, see, e.g., H. Bondi, 1964 Lectures on General Relativity
(Prentice-Hall, Inc., Englewood Cliffs, N. J., 1965).

9A. G. W. Camerson (private communication); see, e.g., F.
Hoyle, W. A. Fowler, G. R. Burbridge, and E. M. Burbridge,
Astrophys. J. 139, 909 (1964).

10 See, e.g., J. M. Cohen, J. Math. Phys. 8, 1477 (1967); 9, 905
(1968), and the references cited therein.
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Because of this, conservation of momentum does not
a priori imply that rotation stops collapse or vice versa.
This question is discussed in Sec. V.

II. ADIABATIC GRAVITATIONAL COLLAPSE
OF ROTATING ELASTIC MASS SHELL

A noncollapsing slowly rotating mass shell supported
by elastic stresses drags along the inertial frames
within it. The induced rotation rate of these inertial
frames approaches that of the shell when the gravi-
tational radius 74,y approaches the shell radius 7,12
If a similar limit exists for a gravitationally collapsing
shell, then collapse will crush the rotation® as gy — 0.

On the other hand, in Newtonian mechanics rotation
often stops collapse because “centrifugal forces” build
up since angular momentum is conserved. For an
axially symmetrical system in general relativity, there
is a Killing vector £, which generates an isometry
group. Corresponding to this Killing vector is a con-
served quantity, angular momentum, which reduces
to the Newtonian expression in the weak-field limit.5¢
In view of the existence of this conserved angular
momentum in general relativity, it seems reasonable
to ask if rotation will stop collapse in general relativity.
To get some insight into this question, the adiabatic
collapse? of a slowly rotating elastic mass shell is treated
in this section. The elastic stress in this shell would be
sufficient to maintain neutral equilibrium if the shell
were not collapsing.® Other situations are treated later.

The metric associated with a slowly rotating shell
which collapses adiabatically is the same as that for a
noncollapsing shell supported by elastic stresses except
for the time dependence®-®:

dst= — V2de-yALdr+rde+0? sin?0(de—Qdd)z], (1)

where

V=Vo=(r—a)/(rte),

y=vo=1+ars, (2)
Q=Qy, for r<ro;
V=(r—a)/(r+ea),
y=1+ar, 3)
Q= (ropo¥/ry2)*Qo, for r>7,.
Here,
Qo=ws/{1+[3(r0—a)/8a(14+B0)]}, @
Bo=a/2(ro—a), ®

2a is the mass of the shell m, and w, is the angular
velocity of the shell. Note that all quantities with
subscript 0 change slowly with time as the shell
collapses.

There is an important difference between the col-
lapsing and noncollapsing cases. In the noncollapsing
case, the angular momentum J is just a quantity
associated with the rotating body. Once 7o and w, are
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given, J is determined via
]= %m(1+30)702|//05 (ws—Qo)/Vo . (6)

However, in the collapsing case, the requirement that
angular momentum be conserved gives a relation (6)
between the radius and angular velocity of the body
which must be satisfied during the entire collapse.
This relation (6) is completely determined once the
initial values are given.

Substitution of Eq. (4) into Eq. (6) yields

27 = (roo?)*Qs. (N

From Eq. (4), it can be seen that Qy— w, as 7o — «q,
i.e., the angular velocity of the shell relative to the local
inertial frames within it approaches zero as the shell
radius approaches the Schwarzschild radius. On the
other hand, the angular momentum approaches

J=%(4)’w,, )

a nonzero value. Thus, the adiabatic gravitational
collapse of a slowly rotating mass shell crushes the
rotation but leaves the angular momentum unchanged.
This may seem to be a paradoxical result if one asks
the question: How can collapse crush rotation but not
angular momentum? However, from the point of view
of the various observers, nothing strange takes place.
For example, an inertial observer at infinity sees a
rotating shell generating angular momentum. He mea-
sures this angular momentum via the metric in his
asymptotically flat region using the relation!

81r]=/ £u(Pr—n#P)dg,. 9)
a3

Here, P* is the second fundamental form, 82 denotes
the two-dimensional boundary of the spacelike surface,
do, is a two-dimensional area element of 2, and £, is a
Killing vector associated with the axial symmetry.

Meanwhile, an inertial observer within the shell sees
a shell whose angular velocity approaches zero as the
shell radius approaches its gravitational radius. He
cannot measure the angular momentum of the shell
unless he communicates with another observer outside
the shell.

At this point the reader may be wondering about the
observer just outside the shell. If the observer can build
a closed surface around the rotating shell, he can mea-
sure a nonzero angular momentum. Thus, if the angular
velocity of his local inertial frames relative to the shell
vanishes everywhere, we indeed have a paradox.

What should we expect from Mach’s principle? An
observer inside the shell sees each element of mass in
the shell moving in the same direction. Thus we might
expect from Mach’s principle that every element of
mass in the shell will drag along the inertial frames
within the shell in the same direction. The same is
true along the rotation axes even outside the shell.
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Fi16. 1. Direction of induced-rotation rate € of inertial frames
outside of slowly rotating spherical mass. The vectors w!, w?, «?
denote orthonormal Cartan frames and ® denotes the angular
velocity of the rotating body.

Thus, one might expect the angular velocity of the
inertial frames within the shell to be the same as those
just outside the shell, along the rotation axes.

At other points outside the shell, the situation is more
complicated. For example, an observer in the equatorial
plane does not see all elements of the shell rotating in
the same direction. Relative to him, the closest elements
of the shell rotate in a direction opposite to the rotation
direction of the shell. If we assume that the effect on
inertial frames of an element of the shell falls off with
distance, then we might expect the angular velocity
of this observer’s inertial frames to be opposite in
direction from that of the frames within the shell. The
direction of the rotation of inertial frames outside the
shell, relative to the shell, is shown in Fig. 1.

To see if such Machian effects are actually contained
in general relativity, we compute the angular velocity
of the inertial frames.!! Inside the shell, the angular

11 The calculations can be carried out using Godel’s formula or
that of L. Landau and E. Lifshitz, The Classical Theory of Ficlds
(Addison Wesley Publishing Co., Inc., Reading, Mass., 1962).
Gaodel’s formula expressed in coordinate-free notation is

Q=F)*@UAU).

Here U is the four-velocity of a test particle on which the ob-
server is sitting, dU is the exterior derivative of U, A denotes the
exterior product, and * denotes the duality operation. € is the
angular velocity of the inertial frames relative to an observer
sitting on the test particle. An observer at infinity will see this
angular velocity red-shifted. For a discussion of this formula see,
e.g., L. C. Shepley, thesis, Princeton University, 1965 (unpub-
lished). For an introduction to exterior calculus see, e.g., D. Brill
and J. Cohen, J. Math. Phys. 7, 238 (1966); C. W. Misner and
J. A. Wheeler, Ann. Phys. 2, 525 (1957).

The formula of Landau and Lifshitz was derived for a stationary
metric. In the notation of exterior calculation this formula takes
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velocity of the inertial frames is given by

VQ=0(cosh w'—sinf «?). (10)
Thus an observer at infinity sees the inertial frames
(within the shell) rotating with angular velocity Qo
about the rotation axis of the shell. Outside the shell,
the expression for the angular velocity of the inertial
frames becomes!?

VQ=0[ cosf w'+ (1/2V) sinf w?]. (11)

Along the axis of rotation (§=0 or 7), the magnitude
of the angular velocity of the inertial frames is € and
its direction is the same as the angular velocity vector
of the shell’s rotation. Along this axis and just outside
the shell, the magnitude and direction of the angular
velocity (of the inertial frames) is the same as that
within the shell. In the equatorial plane (§=%x), the
angular velocity of the inertial frames is opposite in
direction from the shell’s angular velocity.’® These
results are in agreement with the above conjecture
based on Mach’s principle.

Returning now to the question of the angular mo-
mentum, we note that the angular velocity of the
inertial frames just outside the shell relative to the
shell does not vanish everywhere. Consequently, it is
not surprising that the angular momentum does not
vanish. As mentioned in Sec. I, the gravitational field
also carries angular momentum.

III. COLLAPSE OF A ROTATING SHELL
OF DUST

Consider a body momentarily not expanding or
collapsing but rotating. If the initial-value equations®

the form
Q=3 (—goo)/**d (gadx*),
where
La= —gOm/goo-

For the axially symmetric stationary metric
ds?= — A%+ Bdri+ C2d02+ E2 (d0—Qd1)2,

where the metric coefficients are functions of  and 6 only, both
formulas for € give the same result
Q= (4/2/2CE) (FX/ A2 [%) g — (4/%/2BE) (B*Q/ A2 [*):0%,

where f2=1— 20242 and ' and «? are unit vectors along the dr
and d# directions, respectively. These vectors are shown in Fig. 1.

12Tn the weak-field limit, this result (11) agrees with that of
R. H. Boyer and T. G. Price, Proc. Cambridge Phil. Soc. 61, 531
(1965). Their result (11) differs in sign from that of L. Landau
and E. Lifshitz, The Classical Theory of Fields (Addison-Wesley
Publishing Co., Inc., Reading, Mass., 1962).

18 Since the induced rotation of inertial frames is a Machian
effect, this result helps to explain, in terms of Mach’s principle,
the results of Boyer and Price, Ref. 12, and of J. Lense and
H. Thirring, Phys. Z. 19, 156 (1918). These authors note that, in
the case of a satellite orbiting a rotating central body in its
equatorial plane, the advance of the perihelion of the satellite
orbit is decreased if both rotations (rotational and orbital) have
the same sense. We see that this is caused by a retrograde rotation
of the inertial frames (in the equatorial plane) induced by the
rotating central body.
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can be solved at this instant, then the solution can be
continued out of the initial spacelike surface via the
other six Einstein equations. In this way the collapse
can be followed. Here we will consider only the initial-
value problem.5

At this instant, the stationary metric associated with
a rotating spherical shell of dust is very similar to that
of the previous section.®® The only difference is that the
pressure vanishes (i.e., Bo=0) for the case of dust. Else-
where,5 ¢ it is shown how the pressure enters the initial-
value equations and the full set of Einstein equations
via the stress-energy tensor. Of course, after this instant
the dust will not collapse adiabatically.4

To an observer at infinity, the momentarily sta-
tionary metric associated with a shell of dust is very
much like an adiabatically collapsing shell. In each
case, for » — a, the angular velocity of the shell (rela-
tive to the local inertial frames within it) approaches
zero, while the angular momentum J does not.

On the other hand, an inertial observer inside the
dust shell sees something different. For him the angular
velocity of the shell relative to his local inertial frames
approaches 2Q, as the shell radius approaches the gravi-
tational radius. This follows directly from Eq. (4),
with Bo=0, if one keeps in mind the relationship
between the proper time, 7, of an observer within the
shell and the proper time, ¢, in the asymptotically flat
region far from the shell, i.e., dr=Vdi. Denoting the
angular velocity seen by an observer within the shell
by barred quantities, one can reduce Eq. (4) to

Vo ((I’s—'QO) = 3(7’0‘“&)90/80[ .
In the limit as 7, approaches a, this reduces to
éswao:%Qo.

Thus, in this limit, some observers note that the angular
velocity of the dust shell relative to the local inertial
frames within the shell does not approach zero.

These results raise a number of new questions: Why
should the observers inside and outside the adiabati-
cally collapsing mass shell both see perfect dragging
along of the inertial frames within the shell, while only
the observer outside the dust shell sees perfect dragging?
Are these results in accordance with Mach’s principle s
These questions will be discussed in the Sec. IV.

IV. DISCUSSION OF MACHIAN EFFECTS

Far from the rotating source, the rotating metric (1)
approaches the Schwarzschild metric. If the Schwarzs-
child metric in this region is patched to a positive-

14 For a discussion of the collapse of a nonrotating shell of dust
see W. Isreal, Nuovo Cimento 44, 1 (1966).

LE, Mach The Science of M echanics (Open Court Publishing
Co., La Salle, Ind 1902).
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curvature Friedmann metric,'® we obtain a closed
universe. The rotating source can than be interpreted
as one of the many particles generating the Friedmann
geometry. From Mach’s principle, one expects the
distribution of stress energy in the universe to influence
the motion of inertial frames. If the stress energy of
one body in the universe becomes large compared to
that of the rest of the universe, an observer would not
be surprised to find that this had the predominant
effect on the local inertial frames in its vicinity.

Such an effect indeed manifests itself as the shell ra-
dius approaches the Schwarzschild radius. The elastic
stress in the shell becomes very large, representing more
nearly all the stress energy in the universe than that
of the shell considered by Thirring.?

The stress energy of the dust shell does not become
large compared to that of the rest of the universe as
ro— a. The observer within the dust shell, conse-
quently, sees nothing strange in this limit, The shell
rotates relative to the local inertial frames within it.
However, the relative rotation is less than it would be
if the shell did not drag along the inertial frames.

The observer far from the source notes that the
stress energy of the shell is sufficient to make its
gravitational radius approach its geometrical radius.
Consequently, this observer is not surprised to see the
angular velocity of the dust shell relative to the inertial
frames within it approach zero as 7o— a.

On the other hand, the rotating shell represents only
one of the many small dust particles generating the
Friedmann geometry. Consequently, the rotating
source has a negligible effect on the inertial frames in
the Friedmann region. This is in accord with Mach’s
idea that the inertial properties of space are influenced
by the mass distribution.

The situation with the angular momentum is also
Machian. If a body rotates relative to the other bodies
in the universe, Mach’s principle implies that one
cannot tell whether the body is rotating and the other
masses are stationary, or if the body is nonrotating
and the other masses are revolving about it.

A body which rotates relative to the other masses
in the universe induces a rotation of the inertial frames
relative to the other masses in the universe. Conse-
quently, the other masses in the universe rotate in the
opposite direction as the rotating source relative to
the inertial frames. One might think that the question
of which mass is actually rotating might be resolved
by measuring the angular momentum. However, such
a procedure is not as straightforward as it might seem,
since there is not only a contribution from the rotating
mass but also an opposite contribution from the other
masses in the universe (because they rotate in the
opposite direction relative to the inertial frames). This
latter rotation rate is small while the mass is large.

16 See, e.g., J. M. Cohen, Intern. J. Theoret. Phys. (to be

published), and references cited therein, for the details of patching
the Schwarzschild metric to the Friedmann metric,
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If these results are to be in accordance with Mach’s
principle, only relative rotation must be measurable.
Thus, Mach’s principle implies that both contributions
to the angular momentum cancel. Then one cannot
tell which mass is “actually” rotating.

Such an integral form of Mach’s principle exists for
closed universes in general relativity. Using the gen-
eralized form of Stokes’s theorem,

o=
24 4

one can show that the angular momentum J, defined
on any closed simply connected spacelike surface,
vanishes since the manifold has no boundary. Thus,
in a closed universe, only relative rotation can be
measured.

(12)

V. DOES ROTATION STOP COLLAPSE?

In order to shed some light on this question, we will
consider a spherical shell of dust. Each dust particle
moves in a circular orbit in the gravitational field of
all the other particles. If a large number of particles
with randomly oriented orbits is considered, the mass
distribution is spherical and the resultant angular
momentum vanishes. The angular velocity of an indi-
vidual particle is limited only by the requirement that
the particle’s world line remain in the forward light
cone. Because the total angular momentum vanishes,
the inertial frames are not dragged along as they are
by rotating bodies. Thus, since the rotation of the
particles relative to the inertial frames cannot be
stopped, we have a situation in which we have isolated
the problem: Does rotation stop collapse?

The stress-energy tensor for particles of rest mass
mo and density 7 in the rest system is

Tw=mmU*+U", (13)

where U* is the four-velocity. If all the particles move
in spherical orbits (with the same center and radius 7o)
which are oriented randomly relative to each other,
the nonvanishing components of the stress-energy
tensor are related via

T2=T8=1 (rape?) % T®. (14)
Here T% is the energy density (including both rest
energy and kinetic energy) and & is the angular velocity
of the particles.!” The factor § arises because all particles
contribute equally to 7% but not to 7% and 7%, A
particle in the xy plane contributes to 7% but not to
7?2, while one in the xz plane contributes to 7% and

17For a discussion of similar problems see A. Einstein, Ann.
Math., 40, No. 4, 922 (1939).
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not to T%; particles in orbits with other orientations
can contribute to both components, the magnitude of
the contribution depending on the orientation of the
orbit. When all contributions are added, we obtain the
factor of §. The T% terms vanish since the average
velocity of the particles vanishes. The 7% and T%
terms do not vanish, since they involve the square of
the velocity.

In Newtonian mechanics, one finds that the stronger
the gravitational attraction, the greater must be the
angular velocity if the “centrifugal force” is to balance
the gravitational force. A similar condition can be
obtained in general relativity by substituting the
stress-energy tensor into Einstein’s field equations and
requiring that the self-consistent solution be static. In
general relativity, however, there is an important
difference., The absolute value of the dust-particle
velocity cannot exceed that of light. This leads to a
constraint on the stress-energy tensor,

T2=T%<3TW, (15)
Such a constraint on the “centrifugal force” does not
exist in Newtonian mechanics.

The problem is most easily solved by reducing it to
another problem which has already been solved,® a
shell of matter supported by elastic stresses in the shell
[the metric is the same as that of Eq. (1) but is not
time-dependent]. Without loss of generality let

Bo= 13 (ropo®)%e?; (16)
then the stress-energy tensor (13) takes the form
T%=
P, (17)
T2="T%=pB,,

the same as in the previous problem.®® One cannot
tell from the self-consistent metric or stress-energy
tensor whether the shell is supported by elastic stress
or by “centrifugal forces.”

Thus, B, is given by Eq. (5). Equating Egs. (5) and
(16), the two expressions for 8, yields

a= (ro—a) (rap?)%?,

(18)

a relation between the angular velocity of the dust
particles and the radius of the dust shell—a modified
“Kepler’s law.” Because there is a limit on the velocity
of the dust particles, the stresses which the particles
can produce are constrained by Eq. (15), or by 8,<3.
The components of the stress-energy tensor can satisfy
this relation for

702 20[ . (19)

If we redefine our radial coordinate in such a way that
the radius of the shell is (27)~1X (circumference of a
great circle on the shell), i.e., let Ry=rq, the relation



173 GRAVITATIONAL

(19) becomes!®
Ry> (9/8) X (Schwarzschild radius). (20)

When the shell radius is less than this value, the dust
particles cannot generate a large enough stress to main-
tain equilibrium!®; the gravitational attraction over-
powers the centrifugal force and the body collapses.

Although the ‘“‘centrifugal force” increases as the
particle velocity increases, the kinetic energy increases
also, thereby increasing the gravitational attraction
(i.e., the kinetic energy contributes to the Schwarzs-
child mass). This, plus the requirement that the local
velocity of the particles cannot exceed that of light,
means that the body must have a radius equal to or
greater than (9/8)X (Schwarzschild radius) if it is not
to collapse.

VI. CONCLUSIONS

The angular velocity of inertial frames within an
adiabatically collapsing and slowly rotating mass shell
approaches the angular velocity of the shell as the
shell’s radius approaches its Schwarzschild radius. All

18 This quantity, (9/8)X (Schwarzschild radius), appears in
other problems in general relativity; e.g., the radius of a static
sphere of perfect fluid must be equal to or greater than this value,
while the equilibrium radius of a spherical electromagnetic or
gravitational geon is equal to this value [J. A. Wheeler, Phys.
Rev. 97, 511 (1955); D. Brill and J. Hartle, bid. 135, B271
(1964)7]. The connection, if any, between the factor 9/8 of this
paper and that for a fluid sphere is not known, but the results of
this paper and those for the geon are closely connected. As the
shell radius approaches (9/8)X (Schwarzschild radius), the
velocity of the particles in the shell approaches that of light,
whereas the above geons contain zero-rest-mass particles moving
at the velocity of light. Thus, the results agree in this limit as
they should.

It may be of interest to note that if a photon leaves the
vicinity of the surface of a body with this radius and travels
radially to infinity, it experiences a red shift of 2. This is a common
red shift observed in quasars. If the photon is emitted by one of
the rapidly revolving particles, the red shift will be even larger;
however, if it is emitted during a collision of two particles, the red
shift may be about 2. For a discussion of the collision problems for
two stars, see, e.g., A. G. W. Cameron and F. Seidel (to be
published).

12 The results obtained here differ from those of Einstein (Ref.
17) because a different velocity distribution is used here. We con-
sider a thin shell containing particles moving at the same velocity,
whereas Einstein considered a shell containing particles whose
velocity increases with radius. (The results differ since the prob-
lems differ.) Because of this, the minimum radius obtained here
is less than that obtained by Einstein. However, the minimum
radius in both cases is greater than the Schwarzschild radius.
Thus Einstein’s discussion and conclusions are still valid.
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observers come to this conclusion, since the elastic
stress (necessary to maintain adiabatic collapse) be-
comes large compared to the stress energy of other
bodies in the universe.

On the other hand, a slowly rotating shell of dust is
not supported by elastic stress. Consequently, its stress
energy never becomes large compared to the other
masses in the universe, and the observers within the
dust shell do not see the angular velocity of the inertial
frames within the shell approach that of the shell. Such
effects occur not only when one considers thin shells,
but also manifest themselves when one treats, e.g.,
slowly rotating spheres of perfect fluid. For a closed
universe, at least, these effects are found to be in
accordance with Mach’s principle.

An important question in astrophysics is: Does
rotation stop gravitational collapse or does collapse
crush rotation? To shed some light on this question we
have considered a noncollapsing shell of dust particles
supported only by “centrifugal forces.” The shell is held
together by the self-consistent gravitational field of all
of the particles which move in randomly oriented
circular orbits.

Collisions were assumed to be negligible, and all
particles to have the same mass and move at the same
velocity. It was found that if the radius of the shell
exceeds (9/8)X (Schwarzschild radius), rotation can
stop collapse; but for a shell radius between this value
and the Schwarzschild radius, the rofation cannot siop
collapse. Two reasons for this are: (1) The particle
world lines must remain within the future light cone;
(2) large particle velocities imply large ‘kinetic
energies” as well as large ‘‘centrifugal forces.” The
“kinetic energy” contributes to the Schwarzschild
mass; thus, the gravitational attraction is greater than
it would be for stationary particles.
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