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We investigate the Finkelstein-Misner geons for a non-simply-connected space- 
time manifold (M, go). We use relations between different Lorentzian structures 
unequivalent to go and topological properties of M given by the Morse theory. 
It implies that to some pieces of geons we have to associate Wheeler's "worm- 
holes." Geons that correspond to time-orientable Lorentz structures are related 
to go by Morse functions that describe the attaching of a handle of index one. 
In the case of geons associated to time-nonorientable Lorentzian structures, 
appropriate handles are related to loops along which the notion of time reverses. 
If we assume electromagnetic properties of geons, then only four species, "z,", 
"e", "p", "m", of different geons can exist and geon "m" has to decay according 
to "m" --> "v" + "p" + "e". 

1. I N T R O D U C T I O N  

Let us assume that the background  of any physical  theory is given by 
some differential 4-mani fo ld  ~ .  Fur ther  let us assume that ~ is a connected,  

open,  or ientable  spin man i fo ld  whose fundamen ta l  group r has an 
infinite, cyclic subgroup.  Now we should add a metric g to make a differential 
mani fo ld  ~ a Lorentz ian manifold .  Usual ly  we assume that  it is done  in 
such a way that  ( ~ ,  g) is a causal  (i.e., it conta ins  no close t imelike or nut1 
curves) and  i sochronous  (i.e., a con t inuous  choice of the forward light cone 
can be made)  manifold .  There is a c o m m o n  view that if there exists a close 
t imelike curve along which the no t ion  of t ime reverses, then no physical  
entity could survive a trip along such a curve. 

Let us assume that  there exist objects which are related to different 
Lorentzian metrics on ~ .  Such pure "gravi ta t ional  s tructures" have been 
in t roduced  by Finkels te in  and  Migner (1959) and  were called by them 
M-geons .  According to these authors  any  M-geon  is given by a homotopy  
class of Lorentz ian structures of ~ .  They have considered the case when 
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the compactification of a spacelike hypersurface is topologically S 3 and 
when each M-geon is given by a homotopy class of maps from S 3 to R P  3. 

In this case R P  3 is the deformation retract of the space of  all Lorentzian 
structures of  a tangent space at a point x c At. 

In this paper  the notion of the M-geon is the fundamental  one; however, 
we will use the following, slightly more general definition. 

Definition I. Let At be an open 4-manifold satisfying the condition 
mentioned at the beginning of this introduction. Let us fix some concrete 
Lorentzian metric g~ in any homotopy class o- of  Lorentzian structures on 
At (not necessarily time-orientable). Now a concrete Finkelstein-Misner- 
Wheeler geon (FMW-geon for brevity) is determined by a metric structure 
on g~, uniquely given by its homotopy class 0-. 

The reason we add Wheeler 's name to this definition will be clear later. 
The set of  homotopy classes of  Lorentzian structures on an open 

4-manifold At is given by'(Bugajska,  1987a) 

H i ( A t ,  Z2) • Hi(At ,  Z )  (1) 

So we have that the number  and the nature of  FMW-geons depend on the 
algebraic-topological invariants of  At. 

A manifold At is characterized by its fundamental  group ~-~At, its 
homotopy,  homology, and cohomology groups, its orientability properties, 
characteristic classes, etc. Most of  these have some physical meaning. Some 
of them (for example, the Stiefel-Whitney classes) do not depend on a 
concrete differential structure of  At and are topological invariants of  the 
manifold At (Steenrod, 1951). Nevertheless, we assume that At is equipped 
with some concrete differential structure. It is known that any such manifold 
At possesses a smooth triangulation making it homeomorphic  to a com- 
binatorial manifold (Hilton, 1968). (By the Whitehead theorem every 
differential manifold carries an essentially unique smooth combinatorial 
structure.) Let W be a Whitehead functor from the category of differential 
manifolds Diff to the category of combinatorial manifolds PL and let F be 
the forgetful functor, i.e., 

w F 
Diff ~ PL ~ Top 

It appears that there exist combinatorial manifolds that do not admit any 
differential structure (Hilton, 1968). In other words, for some combinatorial 
manifold N there does not exist a differential manifold At such that 
Fo W ( A t ) ~ - F ( N ) .  Thus, if it will appear  that the topological and com- 
binatorial invariants are of  primary importance for physical theories, then 
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perhaps we will be forced to resign from the differential structure of  ~ .  
But now let us agree that the arena of our physical world is given by some 
differentiable manifold J /posses s ing  some concrete topological invariants. 
Although these invariants do not depend on a concrete metric structure of  
~/, we have some relations between them and metric characteristics, such 
as scalar curvature, mean curvature, or sectional curvature of  possible metric 
structures of  At. These relations are different for Riemannian and semi- 
Riemannian cases. So, for example, the scalar curvature of  a possible 
Riemannian structure seems to be unrelated to the fundamental  group of 
J /  (Kazdan and Warner, 1975), whereas in a Lorentzian case there exist 
some relations [a relativistic spherical space form has to have a finite 
fundamental  group and to be noncompact  (Calabi and Marcus, 1962), etc.]. 
Besides, an open manifold J / /cannot  admit a complete Riemannian structure 
whose sectional curvature is bounded below (Milnor, 1963). Moreover, 
using the Morse theory of  geodesic and the notion of conjugated points we 
can obtain some other relations between the topology and curvature for 
Riemannian as well as for Lorentzian structures on ~ (Uhlenbeck, 1975). 
The assumption about the fundamental  group ~ r J / m a d e  at the beginning 
of this section can be satisfied, for example, by a manifold ~ that admits 
a complete Riemannian structure whose sectional curvature is nonpositive. 
In this case 7r~J/has no other elements of  finite order than the identity and 
all higher homotopy groups ~-iM, i > 1, vanish (Milnor, 1963). 

The properties of  the manifold ~ described by its fundamental  group 
~r~M are very important in our considerations. Namely, we have the natural 
homomorphism 

h: ~rl~ ~ H I ( ~ ,  z) ~ H~~ z) 

This fact together with the formula (1) implies certain relations between 
some of the FMW-geons. In Section 2 we will see that geons related to 
time-orientable Lorentzian structures that are nonhomotopic  to the excep- 
tional, fundamental,  and observed metric go have to be associated with the 
attaching of a handle of  index 1 in some place of our space-time manifold 
J/. More exactly, they are related to the go structure by a Morse function 
which describes the mentioned handle. Equivalently, instead of a handle 
of  index 1 we can talk about a surgery of  type (1, 3) or Wheeler's "worm- 
hole." Geons related to t ime-nonorientable Lorentzian structures are also 
associated to a corresponding handle of index 1, but in a different way. 
Namely, these pieces of  geons are associated to close curves along which 
the notion of time reverses. The homotopy classes of  these curves are related 
to appropriate  handles (or Wheeler's "wormholes") .  

Because of such a strong relation between Finkelstein-Misner M-geons 
and handles of  index 1, we propose to denote M-geons by FMW-geons. 
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In Section 3 we assume that FMW-geons can possess some electromag- 
netic properties. This fact allows us to introduce only four qualitatively 
different species of FMW-geons. We denote them by "u," "e, . . . .  p," and 
"m."  Moreover, in this approach we obtain the following relation: 

" m "  --* "p"+"e"+"u" 

2. PURE GRAVITATIONAL STRUCTURES 

It is known (Hawking and Ellis, 1974) that any Lorentzian structure g 
of  J / c a n  be given by some Riemannian metric ~ and a tangent line bundle 
L c T ~  over ~ .  Of  course, such "representat ion" of g is not unique. 
However, when we consider a family ~7 of Riemannian structures related 
to some auxiliary splitting 

T~ = X • N  

of the tangent bundle T ~  into a line bundle X and its linear complement  
N, then, according to Bugajska (1987a), any Lorentzian metric g is deter- 
mined by a unique couple 

g -= (4, L) (a) 

with ff c ~?. Since all Riemannian metrics belonging to ~ are homotopic,  to 
find the homotopy classes of Lorentzian metrics, we have to find the 
homotopy classes of  tangent line bundles. 

We will assume the following property of our geons. Namely, every 
gravitational structure related to any FMW-geon can be given by the same 
Riemannian structure, say g, but different tangent line bundles. Let us 
denote any geon by ~H/'~. We can write 

~ i  ~ (if, L,) (3) 

In other words, we can say that any FMW-geon 7gi can be related to a 
tangent line bundle Li. Besides, according to our assumptions, different 
FMW-geons are related to different line bundles, which belong to different 
homotopy classes. So, to classify FMW-geons we have to know the classes 
of tangent line bundles over ~ .  

Let ~: be some line bundle over J/. It is known that the set of  isomorphic 
classes of  line bundles over J /  can be given by H i ( J / ,  Z2) (Husemoller,  
1966). It can be shown that for an open manifold there is no obstruction 
to embed any line bundle ~: into the tangent bundle T J / (Koscho rke ,  1974). 
In other words, for any element z c  HI(J~, Zz) there does exist a tangent 
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line bundle L ~ T~/ such that its first Stiefel-Whitney class satisfies 

w,(L) = z (4) 

Moreover, it can be shown (Bugajska, 1987a) that for any line bundle ~: 
over ~t the set of nonhomotopic embeddings into T~/is given by H~(v~, Z).  
In other words, for any r e  H1(~r Zz) we have the set given by H I ( ~ ,  Z)  
of homotopy classes of tangent line bundles. So, in principle there could 
exist H1(~/, Z2) x H~(J//, Z)  different FMW-geons. 

Now it is natural to assume, and we always do this, that all observers 
and all observations are related to the same concrete Lorentz structure go 
on ~ .  This means, among other things, that any description of observable 
physical objects is given by sections of an appropriate vector bundle associ- 
ated to the principal spin bundle of the go structure. In other words, (~ ,  go) 
is our space-time manifold. However, the causal and the isochronous 
assumptions mentioned in the introduction are too weak to be very useful. 
So usually we assume that our space-time manifold (if/, go) is strongly causal 
and Lorentz-complete. [The former condition says that every point of ~ is 
contained in an open neighborhood that intersects every timelike or null 
curve in a connected set. The latter condition means that for each pair of 
points x , y ~  the set I + ( x ) n  I - ( y )  is compact; here I - ( x )  and I+(x) 
denote the past or the future of x, respectively (Hawking and Ellis, 1974).] 
It was shown by Choquet-Bruhat (1967) and Lichnerowicz (1967) that 
strongly causal plus Lorentz-complete is equivalent to globally hyperbolic. 
However, due to the Geroch result, for any globally hyperbolic Lorentzian 
manifold (d/, go) there exists a splitting 

~/l = S x R (5) 

such that the surfaces (S, t), t c R, are all Cauchy surfaces. Usually such a 
splitting (5) is called a globally hyperbolic splitting. Thus, the Finkelstein- 
Misner M-geons correspond to the case when the compactification of S is 
given by S 3. In this case (as well as in the case when a Cauchy surface in 
a globally hyperbolic splitting is S 3 itself) the group H1(~ ,  Z;) = 0 and all 
FMW-geons correspond to time-orientable metric structures. However, we 
will admit that our manifold ~ is topologically more complicated and that 
the fundamental group 7hi// is nontrivial and contains infinite cyclic sub- 
groups. 

Let us recall the known natural relation between the integral first 
homology group of ~// and the fundamental group of ~ .  Namely we have 
the theorem (Hu, 1959) that if ~ is pathwise connected, then the natural 
homomorphism 

h: 1rl(J/t, x) ~ H,(~/, Z)  (6) 

has the commutator subgroup of ~rl(~, x) as its kernel. This means that 
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we have the natural isomorphism h* between the group Hi(At, Z)  and zri~ 
made abelian. But we have Hi(A/, Z)  ~ H i ( J / ,  Z)  and this latter group 
numerates the homotopy classes of isomorphic tangent line bundles over 
A/. So we see immediately that for such homotopically nontrivial manifold 
A/ we should have certain relations between some FMW-geons and some 
classes of homotopic loops in A/. To find these relations, let us consider a 
realization of X/ by an expanding union of compact manifolds { Ui} with 
boundaries. Let 

~t = U U, (7) 
i=0 

and U~c U H ,  with Uo being a 4-cell. Now either Ui+~ is a collarlike 
neighborhood of U~ or U~+I is U~ with a handle of index A ~ n - 1 attached. 
In the latter case we can say that OUi+~ can be obtained from 0U~ by a 
surgery of type (A, n -  1). Let U~ ~ ~ be such that OU~+I is obtained from 
OU~ by a surgery of type (1, 3) (or equivalently that we can get U~+I by 
attaching a handle of index 1 to U~). In other words, we can say that OU~+I 
and a U~ are related by a spherical modification (Milnor, 1963) of type 
A - 1 = 0. Let us notice that it could correspond to the formation of a Wheeler 
"wormhole",  

Now, let p be a loop that represents the homotopy class of loops given 
by such an effective attaching of a handle of index 1 to Ui (Bugajska, 
1987a). Let ~r E H1(~,  Z)  be a generator of the torsionless part of H~(~, Z) ,  
which corresponds to the homotopy class of  p under the isomorphism h*. 
Let Lo be the trivial tangent line bundle that corresponds to our space-time 
manifold (~ ,  go) [i.e., go--- (if, Lo)] and let LI be another trivial tangent line 
bundle, which belongs to the homotopy class determined by the element 
o-~ H~(~, Z)  mentioned above. It can be seen (Bugajska, 1987a) that two 
Lorentzian structures go-= (if, Lo) and ga-= (4, L1) are related by a Morse 
function f on J//with only one nondegenerate critical point of index 1. This 
function describes exactly the attaching of a handle of index 1 to U~ in the 
decomposition (7) of ~/. So if FMW-geons ~ Lo and 74r~ -- L~ do exist, 
then the main difference between them is that 7g'~, in contrast to ~ has 
to distinguish one Wheeler "wormhole"  in our space-time manifold ~ .  In 
other words, we can say that a FMW-geon ~o  is not "sensitive" to any 
topological properties of ~ ,  whereas ~lf~ has to recognize the attaching 
handle of index 1 in some decomposition of ~ of the form (7). Hence, any 
generator of H i (Z ,  Z)  that corresponds to the homotopy class of loops 
determined by the attaching of a handle of index 1 (or equivalently to 
the Wheeler "wormhole")  can be associated to a FMW-geon in a natural 
way. Now it is obvious why we call such pure gravitational structures 7g~ 
FMW-gons. 
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However, we have two possible physical interpretations of such struc- 
tures. Namely, we can assume that FMW-geons that "recognize" different 
Wheeler "wormholes" (or equivalently that are related to different handles 
of  index 1) correspond to (a) qualitatively different objects or (b) different 
concrete objects of the same quality. 

Possibility (a) seems to involve greater difficulties, requiring that an 
FMW-geon that is related to one part of the universe, namely the part that 
surrounds a corresponding handle of index 1 (or equivalently one Wheeler 
"wormhole") ,  is qualitatively different from a similar FMW-geon related 
to another part of the universe. This suggests that physics may be different 
in different parts of the space-time manifold (~/, go) or that different parts 
of the universe have different natures. This would contradict our understand- 
ing of physical principles. So it seems that possibility (a) should be rejected. 

Possibility (b) seems to be in better agreement with our intuition. It 
simply means that all FMW-geon corresponding to ~rEHI(M, Z)  in the 
way described above are the same kind of physical "beings." The characteris- 
tic feature of these "beings" is that they are related to the fundamental 
Lorentzian structure go [which determines our observable space-time 
(M, go)] by a Morse function that describes a handle of index 1 in some 
place of our space-time manifold M. Intuitively speaking, these objects have 
to "recognize" one Wheeler "wormhole." 

However, besides the possibilities considered above, we should also 
decide whether FMW-geons are (1) "localized" objects or (2) global objects. 
In case 1 we have still at least two possibilities: 

(li) "Localizations" of a given FMW-geon ~Vi are completely unre- 
lated to "posit ions" of  the corresponding handle. This means that 
a geon ~Vi "observes" almost everywhere a metric structure of J /  
given by go- Only when it is close to an appropriate handle does 
it start to "observe" it, i.e., it starts to observe different metric 
relations. 

(lii) Any FMW-geon ~V~ is always situated in the closest vicinity of 
the corresponding "wormhole." So any movement of ~W~ is accom- 
panied by the corresponding movement of the appropriate handle 
of index 1 and vice versa. 

Possibility 2 says that any FMW-geon ~ is smeared over the whole 
universe ~ .  In this case the interpretation (a) given above could be even 
more acceptable than (b). It seems, however, that the combination (b) + (lii) 
is the closest one to the hypothesis of Finkelstein, Misner, and Wheeler as 
well as to our intuition. 
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3. FMW-GEONS WITH ELECTROMAGNETIC PROPERTIES 

By definition, FMW-geons ~ are objects related to certain non- 
homotopic Lorentzian structures gi on M. Since, according to our assump- 
tion, any gi is determined by a couple (4, Li) with the same Riemannian 
metric g, any geon ~V~ is characterized by an appropriate tangent line bundle 
L~. However, although the homotopy classes of  tangent line bundles are 
given by the formula (1), we have no natural correspondence between these 
homotopy classes and elements of  (1). To find any such correspondence, 
we have to fix some line bundle and relate it to the trivial element of  
H ~ ( M ,  Z ) .  We have to do this in any class of  isomorphic tangent line 
bundles over ~ .  So we see that the existence of the exceptional Lorentzian 
structure go (related to all observations and all observers) is very important.  
It simply fixes the correspondence between time-orientable Lorentzian 
structures {g~} and H~ Z ) .  It implies that the properties of FMW-geons 
considered in the previous section are well defined. 

Now let us consider an FMW-geon ~Fk related to some time-nonorient- 
able Lorentzian structure gk, i.e., to a nontrivial tangent line bundle Lk 

W I ( L k ) = ~ ' E H I ( j / [ , Z 2 ) ,  "c#O (8) 

In this case we will assume that the corresponding geon 7~/'k has to decay. 
We relate the process of  decaying to the existence of time like curves along 
which the notion of time reverses. However, when the Stiefel-Whitney class 
is unequal to zero, i.e., wl = r ~ 0, we have no possibility to fix the correspon- 
dence between homotopy classes of  appropriate line bundles and elements 
of  H ~ ( ~ ,  Z )  in a natural way. For this reason we will choose only one 
Lorentzian structure g~ (see Definition 1) from the whole set determined 
by a given ~'~ H 1 ( ~ ,  Z2). In other words, with any class of  isomorphic 
nontrivial line bundles over ~ we will relate only one FMW-geon ~ .  

Now let us assume that FMW-geons also have the possibility of  elec- 
tromagnetic interactions. It is known that the underlying structure for 
electromagnetic interactions ~ is given by a principal U(1) bundle over a 
space-time manifold 3//. Moreover, the set of  sectors of  interactions ~ (or 
equivalently its vacuums) is given by the subset of  flat connections on the 
U(1) bundle given by H o m ( r r l ~ ,  Z2) ~- H I ( ~ ,  Z:) (Bugajska, 1987b). We 
will assume that any FMW-geon ~ c  is related to some concrete sector of 
electromagnetic interactions, i.e., to some concrete element r ~ H I ( ~ ,  Z2). 

Let us introduce a notation we will use later. Let 

H I ( ~ ,  Z )  = Z ~ ) @ Z ~ 2 ~ G .  �9 �9 Z~k~O �9 �9 �9 (9) 

Let an element r k ~ H o m ( H ~ ( ~ ,  Z) ,  Z2) be such that 

0 ~ ~ k 
~'k(z~i)) = Z2 i-= k (10) 
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Let trk denote the generator of  the torsionless component  Z (k) of Hi(if//, Z). 
Since rk(trk) = --1 and rk(~r~) = 0, i ~ k, we have one-to-one correspondence 
between the generators trk of  Z (k> and the elements r ke  
H o m ( H l ( ~ ,  Z) ,  Z2) - HI(f/t ,  Z2) introduced by (10). In other words, to any 
such element r k ~ H 1 ( ~ ,  Z2) we can associate a unique element of  H l ( ~ ,  Z) ,  
namely the generator trk of  its Z <k) component,  and vice versa. 

Let us return to the problem of FMW-geons. According to our idea 
we relate to any geon ~/'i some Lorentz structure (i.e., a line bundle Li) 
and some element of  H1(3//, Z2) which determines a "vacuum"  of its 
eletromagnetic interactions. We will assume that any such vacuum sector 
is represented by elements of  the form r k described above. Since any element 
r k determines also the isomorphism class of  line bundles over ~ ,  we see 
that to any FMW-geon Wk we can associate a couple 

(~:, ~/) (11) 

of  real vector bundles. The first is related to a metric structure of M and 
the second to an electromagnetic vaccuum. 

Let us recall some facts from fibre bundle theory (Husemoller,  1966). 
Let ~: and ~/be two real vector bundles over M. We have the addition function 

and the multiplication function 

which introduce a semiring structure in the set S of  real vector bundles 
over M. The ring completion of a semiring S is a pair (S*, 0) where S* is 
a ring and 0: S - ~ S *  is a morphism which has universal property. This 
means that for each ring R and for each map f :  S + R there exists a unique 
map a such that the diagram 

S* 

is commutative. For the construction of S* we consider pairs (~:, ~) of  S x S. 
We introduce the following relation: 

(s r ~ ) ~  (~:', rl') (12) 

if there exists p e S such that 

~:@ ~ ' @ p  = ~"@ ~/@p (12') 

This is the equivalence relation and (~, r/) denotes the equivalence class. 
Returning to our physical considerations, i.e., to FMW-geons {~ 

we will [according to our previous considerations and (11)] make the 
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physical distinction between the elements of  a pair (~:, r/)~ S x S. The first 
factor will be related to a metric structure of  ~ and the second to an 
electromagnetic vacuum. 

Moreover, we assume the following convention: if the first factor is a 
line bundle, then it denotes an appropriate homotopy  class of trivial line 
bundles (we use the bijection r k ~ Ok). This means that the corresponding 
Lorentz structure gk of ~ can be connected to the fundamental  one go by 
a Morse function which describes an attaching of a handle of index 1. In 
this case we say that a geon ~ ~gk  has to "realize" or has to "observe" 
an appropriate surgery of type (1, 3) (or a wormhole).  I f  the Lorentz metric 
gi is related to a nontrivial line bundle Li, then we denote this fact by taking 
the Whitney sum of Lo and Li as the first factor, i.e., in this case we have 

= L o O r  i (13) 

The presence of the bundle Lo in the first factor ~: means not only that 
go ~- (4, Lo) is the exceptional, fundamental  Lorentz structure, but also that 
the Lorentz structure corresponding to ~ possesses a close curve A related 
to r ~ [i.e., A ~ {h*-l(o'i)}] along which the notion of time reverses. 

In this way to some kind of FMW-geons we can relate a couple of 
vector bundles. The first bundle s can be at most two-dimensional,  but the 
second can be at most linear. 

Now let us recall some relations between electromagnetic interactions 
and spinor fields. Namely, if we had only Majorana spinor fields or (even) 
two-spinor fields, then we could not introduce the electromagnetic U(1) 
bundle in a natural way. Only when we take a Dirac spinor bundle does 
the isomorphism 

s | s162 (14) 

between the Hermitian part  of  the tensor product of  odd half-spinors s 
and even half-spinors s  and the tangent bundle T~t admit the local U(1) 
invariance and imply the existence of some U(1) principal bundle 
(Bugajska, 1985). We regard this bundle as the underlying structure for an 
electromagnetic gauge. [We also can construct an isomorphism between 
some part  of  the tensor product  of Majorana spinors and T~/, but this map 
has a different property and does not imply the existence of any U(1) 
bundle (Bugajska, 1986). This strong relation between Dirac spinors and 
electromagnetic interactions suggests that particles described by Dirac 
spinor fields should have some electromagnetic properties even in the case 
of  null electric charge. 

Moreover, in the general case, we have a whole set of  unequivalent 
spinor structures on ~ .  This set is given by H1(~/,,22). Each of  these 
"exotic" spinor structures introduces its own U(1) bundle, due to an 
isomorphism analogous to (14). 
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However, since all these bundles are isomorphic, we distinguish them 
by considering different connections on the one U(1) bundle introduced 
by the ordinary spinor structure (Avis and Isham, 1979). This procedure is 
equivalent to introducing different fiat connections on our U(1) bundle i.e. 
different vacuums (or sectors) of  electromagnetic interactions. In this way 
we see once again that the spin properties and the electromagnetic properties 
are strongly related to each other. This seems to be physically justified by 
the experimental fact that spin can be detected only by means of electromag- 
netic interactions. However, since we have such an interdependence in the 
physics of  elementary particles, it is natural to assume that we meet a similar 
situation in the case' of  FMW-geons. Thus, because we have prescribed 
some electromagnetic properties to FMW-geons, they also should possess 
some spin properties. 

Let us suppose that there exist goons for which the metric relations of  
are exactly the same as for observers and which do not have any 

electromagnetic properties. This means that in this case we have the Lo 
bundle in the first place and the zero bundle in the second. Hence, to this 
piece of  FMW-geons corresponds the element (Lo, 0) in the ring S*. The 
fact that we have the couple (L0, 0) ~ S • S means that we can relate such 
geons only to two spinors or Majorana spinors. Let us denote this geon by 

" u "  ~ (Lo, 0) (15) 

Because ~ has no electromagnetic properties at all, its electric charge has 
to be zero. So " u "  geons are the least complicated and the most natural 
geons in our description. However, besides " u "  there should exist goons 
that are also related to the fundamental  metric structure go but have some 
nontrivial electromagnetic properties. Thus, for these geons the electromag- 
netic vacuum should be important,  i.e., we should have a nonzero element 
in the second place of a pair  (s ~, r/). Since in the ring S* we have (Lo, Lo) = 0 
as the bundle 71, we can only take a line bundle that has the nontrivial 
Stiefel-Whitney class. Let us assume that this bundle is given by some 
element z k c H i ( M ,  Z2) introduced in Section 2. So, if we accept the interpre- 
tation of FMW-geons described by (b), then we can introduce the same 
notation for all FMW-geons related to couples of  the form (Lo, ~.k). Let us 
denote them by 

" e " -  (Lo, ,/.k) (16) 

Now let us consider FMW-geons related to a metric structure of  ~ different 
from go. At the beginning let us take geons related to couples of  the form 
( r  k, Lo), According to our convention we can say that: 

(i) A metric structure related to these geons is determined by a trivial 
line bundle which belongs to the homotopy class of  tangent line 
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bundles associated to o'k ~ Hi(J/ / ,  Z )  ,--> H~(M, Z)  (by the corre- 
spondence ~.k r ok). 

(ii) Since WI(Lo) = 0, the electromagnetic vacuum sector is determined 
by the canonical flat connection on the principal U(1) electromag- 
netic bundle. 

The presence of r k in the first position means that this kind of geon is 
related to a surgery of type (1, 3). This means nothing more than the 
"observation" of a "wormhole"  between some surfaces a Ui and 0 Ui+l in a 
decomposition of ~ .  The homotopy class of a loop related to this surgery 
(or equivalently to attaching a handle of index 1 to Ui.) corresponds, by 
the natural isomorphism h*, to the generator ~r k of Hx(~,  Z)  or to the 
element ~.k~ H1(Z,  Z2). Similarly as above, we will introduce the same 
notation for all FMW-geons related to couples of the form (% Lo). We will 
call them "p" ,  

"p"  - (~ ,  Lo) (17) 

As we have said, the presence of ~q # 0 in the second position means that 
these geons have some electromagnetic properties. So, relations between 
spin and interactions ~ imply that such geons are related to Dirac 4-spinors. 

We can try to prescribe an electric charge for FMW-geons. Namely, 
the following situation seems to be the most natural. Since " v "  has no 
electric charge, all geons related to a pair of vector bundles (~:, ~7) that 
belongs to the same equivalence class as (Lo, 0) (i.e., elements of S • S that 
form (Lo, 0) ~ S*) have no electric charge also. Further, since all FMW-geons 
related to a couple (s ~, ~7) = (Lo, * k) are different concrete objects of the 
same quality "e" ,  we prescribe for them the same electric charge, say q. 
Again, all geons related to a pair of vector bundles (~:, r/) that belongs to 
(Lo, ~.k) have the same electric charge as "e" .  Now we can use the following 
relation valid in the ring S*: 

(Lo, ~.k)= _(zk, Lo) (18) 

This relation suggests that according to our convention geon "p "  should 
have an electric charge opposite to the electric charge of geon "e" ,  i.e., -q .  

Now let us consider FMW-geons associated to Lorentz structures 
g~--- (4, L~) with W1(L~) ~ O. Let us consider the case when WI(Li) = r i. In 
this case the first factor in the pair (~:, r/) of vector bundles has to be equal 
to ~: = LoO z *. Let us consider the couple 

(LoG k,r (19) 

According to our convention, these geons are unstable, since they are 
associated to a loop along which the notion of time reverses [the homotopy 
class of this loop determines trk c HI (~ ,  Z)  or equivalently z k 6 H i ( M ,  Z2) 
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as mentioned above]. Moreover, although electromagnetic properties of a 
geon related to a couple (19) do not vanish (i.e., these geons are related to 
Dirac 4-spinors), the electric charge of this geon has to be equal to zero 
((L0, 0) = (Lo@ ~k, rk) in S*). We will denote these FMW-geons by "m " ,  i.e., 

" m "  - (Lo@ "r k, r k ) (20) 

As a matter of fact we have no other possibility to fix the second factor in 
(19). Namely, according to our convention and according to the rules in 
the ring S* an electric charge equal to the electric charge of geon " e "  can 
be represented by elements of the form (Lo| A, A@ ~.k) with nontrivial A. 
Also, an electric charge equal to the charge of geon "p"  can be given by 
( r  k + B, B + Lo) with nontrivial B. However, our interpretation of the second 
factor as an electromagnetic vacuum excludes both these possibilities. It 
excludes also the possibility of  the existence of FMW-geons associated to 
a couple of  the form 0 -k, 0). Namely, such a pair of real vector bundles 
determines another (other than " e "  or "p")  electric charge, but simul- 
taneously a geon related to it cannot have any electromagnetic properties 
since ~/= 0. 

In this way when we consider gravitational and electromagnetic proper- 
ties of FMW-geons we can introduce only four qualitatively different types 
of FMW-geons. We have denoted them by "z,, . . . .  e," "p," and "m." The 
first three are stable, whereas " m "  has to decay. Now in the ring S* we 
have the following rules: 

(LoG ~.k, ~.k)= (Lo, ~.k)+ (~.k, 05 (21) 

= (Lo, ~.k) + (~.k, Lo) + (Lo, 0) (21') 

Since an element (~.k, p) cannot be related to any FMW-geon, we should 
consider only the formula (21'). We can rewrite it as 

" m "  ~ "u"  + "p" + " e "  

Although there exist other possibilities than (21) of the "decomposit ion" 
of " m "  in the ring S*, it is easy to check that they also are excluded by 
our convention. 
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