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The solution to the empty-space, time-symmetric Einstein initial-value problem recently given by Komar
as representing a bootstcap gravitational geon is shown to display singular behavior along portions of an
axis in the regions in which the solution deviates from the standard Schwarzschild solution. This difficulty
is in addition to the problems explicitly studied by Komar related to the jumps in the derivatives of the
metric and seems to correspond more closely to the essential, delta-function type of singularity in the
Schwarzschild solution at the origin. A direct analysis in terms of Cartesian coordinates seems to cast
doubt on the likelihood that Komar’s metric is even C? in any topologically trivial manifold.

I. INTRODUCTION

ECENTLY, Komar! has discussed the possibility
of a solution to the initial-value Einstein equa-
tions, without explicit source term, corresponding to a
topologically trivial, singularity-free initial surface for
which the metric in an exterior region is precisely the
Schwarzschild initial metric. Such solutions were named
“bootstrap gravitational geons” by Komar since they
could be interpreted as describing situations in which
the gravitational radiation alone provides the source for
the external Schwarzschild field, as electromagnetic
energy does for Wheeler’s geons.?

Previous studies of the Schwarzschild solution had
seemed to indicate that the production of a nontrivial
external field of precisely the Schwarzschild form
requires at least one of the following conditions: (1) an
explicit nongravitational energy-source term T; in the
field equations; (2) a topologically nontrivial space in
which certain closed surfaces are not the boundaries of
volumes (wormholes) ; (3) an intrinsic singularity in the
field. This is precisely the situation for the Maxwell
electromagnetic field equations in which

V-E=0 1)

implies that the total charge within any closed surface
is zero unless either condition (2) or (3) above is
satisfied.? Nevertheless, the well-known nonlinear,
“self-contributing” aspects of the gravitational field
distinguish it in many ways from the electromagnetic
field. The existence of bootstrap gravitational geons
would provide another important example.

However, the purpose of this paper is to point out
that the solution described by Komar possesses anom-
alous differentiable structure of precisely the same
sort as exhibited by the standard Schwarzschild solution
at =0. This is completely distinct from the ‘“‘jumps”
of the derivatives of the metric across certain spherical
surfaces for which Komar was careful to show that no
delta-function-type behavior in the Ricci tensor was
generated. It would seem that such a demonstration
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would be even more necessary (and difficult) for the
new singularity.

The existence of such additional problems is first
discussed in Sec. IT in terms of the second-order differ-
ential invariants of the Riemann tensor in the regions
in which Komar’s metric is apparently C*. A more direct
analysis in Sec. III then shows that the components of
Komar’s metric cannot even be C° when expressed in
the Cartesian coordinates naturally defined by the
spherical coordinates in which Komar originally ex-
pressed his metric. There is, of course, still the possi-
bility that Komar’s coordinate system is simply not
admissible in terms of differential structure of the
manifold. However, this alternative still leaves un-
answered many important questions.

II. INVARIANTS OF KOMAR’S SOLUTION

The initial surface metric described by Komar! is of
the form
ds?=dr*+B(r)d6*+C(r) sinfd o2, (2)

in which B and C are functions of 7 only.

An essential part of Komar’s argument is that his
metric is to be given on a manifold which is topologically
Euclidean. Consequently, it would seem that his 7, 8, ¢
should be interpreted as spherical coordinates in the
usual sense so that the surfaces »=constant>0 are to
be topological 2-spheres while =0 is a point. Further,
to ensure a complete manifold, the z axis, given by §=0,
0=, must be included.

In discussing Komar’s metric Eq. (2) it is necessary
to distinguish two possible sources of difficulty. First
is the fact that he has chosen spherical coordinates,
which are not globally admissible, even in the flat-space
case, B=C=r?% because of the presence of the term
sin’d along the z axis. Consequently, any discussion
concerning which coordinate systems are to be admissi-
ble can only begin after the choice of one such is made,
by relating it to the 7, 8, ¢.

The importance of specifying this differentiable
structure of the manifold cannot be emphasized too
greatly. It is not adequate merely to write an expression
such as Eq. (2) in order to specify a geometry on a
manifold. Rather, the precise relationship between this
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coordinate system and the admissible coordinate
systems associated with the definition of the manifold
must be clearly stated. For a clear statement of these
points and a complete definition of the basic geometric
object—differentiable manifold—dealt with in differ-
ential geometry, see the first few pages of the book by
Lichnerowicz.*

In the second place, in breaking with the stringent
analyticity of the Kruskal expression of the Schwarzs-
child solution, Komar considers metrics which are C°.
Of course, in doing so care must be exercised to ensure
that the discontinuities in the derivatives of the metric
do not give rise to a delta-function-type of behavior in
the Ricci tensor. For a treatment of such questions see
the work of Papapetrou and Treder.® The general
philosophy in dealing with such problems seems to be
that the metric will be of higher order of differentia-
bility, at least C?, except for surfaces of discontinuity
across which the derivatives of the metric may “jump.”
However, the ruling criterion for determining the ad-
missibility of such a jump is that it can be regarded as
a limiting case of a situation in which the metric is at
least C? and satisfies the Einstein equations across a
region of width e surrounding the surface, as e goes to
zero. Consequently, in such a situation the metric is C?
on either side of the jump surface and the one-sided
limits of the Riemann tensor invariants exist and are
finite, although they may be unequal.

This is of course the case for the spherical surfaces of
discontinuity of the metric derivatives carefully
analyzed by Komar. Thus, in Eq. (2), B and C are C*
functions of 7 except for a finite set of values for . Of
course, it is certainly true that an attempt to evaluate
the second-order invariants precisely at these surfaces
would yield infinite results, but nevertheless the one-
sided limits exist and are finite from each side.

In this section we will show that another anomalous
region exists which was not considered by Komar,
namely, the portion of the z axis along which his solution
differs from the Schwarzschild solution but in which B
and C are C*. Further, this behavior along this axis is
of a much more serious nature than the simple dis-
continuities of the invariants since it corresponds to an
actual divergence to infinity of these invariants, in
precisely the same fashion as do the same invariants for
the Schwarzschild solution as » — 0. Hence, although
Komar’s solution avoids this singularity at the origin,
which is generally regarded as essential and irremovable
if the manifold is to be topologically Euclidean, it does
contain another region of singularity of precisely the
same sort.

The fact that the divergence of the invariants of the
Riemann tensor would indeed give rise to difficulties in
the metric is easily seen in terms of normal coordinates,
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in which the Riemann tensor is immediately seen to
influence the behavior of the metric.® Any differential
geometry in which normal coordinates are not regarded
as admissible would of course be extremely unusual.
Finally, it might be pointed out that this relationship
between the behavior of the metric and that of the
invariants of the Riemann tensor certainly does not
hold for any arbitrarily constructed second order
differential invariants, such as R,s,sR*"®/R,,R*, since
such do not enter into the definition of intrinsically
admissible coordinates such as the Riemann invariants
do for normal coordinates.

It should again be emphasized that the following
discussion concerns those regions in which the functions
B and C are C” and thus is totally unrelated to the
jumps of the derivatives of these functions across the
spherical surfaces described by Komar. For the present
purposes, it is adequate to consider the invariants
associated with the Ricci tensor (for the three-dimen-
sional case these are equivalent to those of the full
Riemann tensor). These invariants will be the eigen-
values of the mixed components, R;;, solving the equa-
tion

det(R;/—N8)=0. 3)

A simple calculation shows that the R, for Eq. (2) form
the array

a(r) B(r)cots 0
Ri=|BB(r)cotd  v(7) 01, 4
0 0 e(r)

in which a, v, €, depend on B, C and their first two
derivatives and, denoting » derivatives by primes,

B(r)=(B'C-C'B)/(2CBY), )

from Egs. (3) and (4) it follows that two of the eigen-
values will be A;, A

Ay= f(r)E£[g(r)—BE(r) cot?d ] (6)

Thus, unless 3=0, the metric in Eq. (2) will not be
truly spherically symmetric, as pointed out by Komar.
More important, however, is the fact that unless =0
the metric cannot be continued to =0 or §== without
an essential singularity in its invariants. Consequently,
in no admissible coordinate system which includes the
line §=0, == will the components of the metric be C?
along the z axis.

Even more serious, however, is the fact that the
invariants actually diverge to infinity along this line,
precisely imitating that behavior of the Schwarzschild
solution at the origin which bootstrap gravitational
geons were to have eliminated. Hence, it appears
entirely possible that this singularity in bootstrap geons
acts as a delta-function source in the Einstein equations
precisely as the singularity at the origin does in the

6 E. Cartan, Legons sur la Géoméirie des Espaces de Riemann
(Gauthier-Villars, Paris, 1951), pp. 234-237.
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Schwarzschild metric. At any rate, this point should be
clarified.

Finally, as mentioned above, the use of normal
coordinates actually seems to imply that such behavior
will be inconsistent even with the possibility that the
metric be C° This will be taken up further in the follow-
ing section.

III. CARTESIAN COORDINATES

Since bootstrap gravitational geons were intended to
eliminate not only the singularity of the Schwarzschild
metric at the origin, but also the necessity for the con-
jecture that a topologically nontrivial space (S?2XR)
would be the only way to eliminate the singularity,
Komar explicitly required that the manifold be topo-
logically Euclidean. Thus, it might seem reasonable to
require the existence of globally admissible Cartesian-
like coordinates, «, ¥, 2, with — o0 <x < o0, —o0 <y< o0,
— o <z< . The admissibility of these coordinates
and the fact that the metric is to be C° would then
imply that the components of the metric expressed in
this coordinate system be C° functions.

However, due to Komar’s failure to completely
specify his manifold by prescribing which coordinates
are to be admissible, it is not immediately obvious how
Komar’s 7, §, ¢ are to be related to the admissible
coordinates. The most natural assumption would seem
to be the following. Set

x= f(r) sinf cosgp,
y=f(r) sinf sing, 0
2= f(r) cosf,

in which f'>0 for all » and f(0)=0. We might then
consider %, y, z as globally admissible coordinates and
regard the singularity of any component of the metric
in them as intrinsic. This is precisely what is meant by
saying that 7, 6, ¢ are to be regarded as spherical
coordinates in the usual sense.

It is convenient to distinguish three possibilities.
First, if B/C=1 everywhere, choose f(r) to solve

af/dr=f/(B)'*, )

and using Eq. (7), Eq. (2) becomes the singularity-free,
conformally flat metric

ds?= (dr/df)*(dx*+dy*+dz?). 9

Next, assume B/C=p? with p*=constant greater
than zero. This is easily seen to reduce to the previous
case upon replacing ¢ in Eq. (2) by pe. This merely
means that the scale of the original ¢ was inappropriate.
Note that this cannot be done if B/C depends on 7. In
fact, in this case this transformation would introduce a
term proportional to ¢?d7? which will yield a non-single-
valued metric.

Finally, assume d(B/C)dr#0. Set F=B—C so that
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for some 7, F5£0. Hence, Eq. (2) becomes
ds?=ds¢+Fde?, (10)

in which ds¢ is of the form Eq. (2) but with B=C.
Hence, make the same transformation as above for
ds®. In terms of these x, ¥, z coordinates the coefficient

of dy? is
gaa=ga"+ (F/r')2*y*/ («*+ %), (11)

in which g»s is the contribution from ds¢? and is thus a
nonsingular function. However, the second term on the
right side of Eq. (11) cannot be continued as a con-
tinuous function over a region including the z axis if
F>0. In fact,

t=lim lim 1%/ (43 <lim lim 7/ (47 =0,  (12)

whereas if gse were to be continuous these two limits
would have to be equal.

Hence, if Komar’s metric is to be C° on a topologically
trivial manifold, his 7, 8, ¢ cannot be regarded as
spherical coordinates in the usual sense.

If such a manifold does indeed exist, and &, 7, Z are
globally admissible Cartesian coordinates on it, the
partial derivatives of Z, ¢, Z with respect to the x and y
described in Eq. (7) must have different limits as the z
axis is approached from different directions. The only
reasonable explanation for this behavior would seem to
be that what is regarded as a line, 2=0, in the «, y, 2
coordinate system is really a volume, Z: —F:(¢,2)
<ZLFy(7,2); —G1(%,2) <§<G2(%%) when viewed from
the admissible Z, §, Z coordinates. Thus, the difference
in the limits of the components of the metric in the
x, v, 3 coordinates as the z axis is approached would be
due to the fact that the approach is to different regions
of a surface of Z, given by &= f(7,2). However, this
would mean that Komar has exhibited his metric only
over a part of the manifold and must explicitly demon-
strate that it can be continued without inadmissible
singularity over the remaining region Z in such a way
as to still satisfy the initial condition R3=0.

Finally, the divergence of the invariants as the
surface of Z is approached would still remain. The
possibility that these invariants converge to different
values on this surface or that they be discontinuous
across it would be relatively easy to understand. How-
ever, the lack of even one-sided limits for these in-
variants is a problem of a different magnitude that
would have to be resolved before the manifold could be
understood in standard differential geometric terms.
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