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Abstract
By an argument similar to that of Gibbons and Stewart (1984 Absence of
asymptotically flat solutions of Einstein’s equations which are periodic and
empty near infinity Classical General Relativity (London, 1983) ed W Bonnor,
J N Islam and M A H Callum (Cambridge: Cambridge University Press) pp 77–
94), but in a different coordinate system and less restrictive gauge, we show that
any weakly asymptotically simple, analytic vacuum or electrovacuum solutions
of the Einstein equations which are periodic in time are necessarily stationary.

PACS numbers: 04.20.−q, 04.20.Cv, 04.20.Ha

1. Introduction

The inspiral and coalescence of binary black holes or neutron stars appears to be the most
promising source for the detectors of gravitational waves, so that there has been much effort
going into the development of numerical codes and analytic approximation methods to find
the corresponding solutions of Einstein’s equations. One of the recent approaches assumes
the existence of a helical Killing vector k (see e.g. [25]). The field is assumed stationary in
a rotating frame where k generates time translations but k becomes null at the light cylinder
and is spacelike outside. k has the form k = ∂t + ω∂φ , where ∂t is timelike and ∂φ is spacelike
with circular orbits with parameter length 2π (except where ∂φ = 0); ω = constant. The
spacetime is not stationary but it is still periodic where k is spacelike. Requiring the helical
symmetry for a binary system implies equal amounts of outgoing and incoming radiation so
that the spacetime, containing energy radiated at all times, is not expected to be asymptotically
flat. A corresponding solution in Maxwell’s theory for two opposite point charges moving
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on circular orbits was considered a long time ago by Schild [19]. The properties of the field
were analysed recently in the Newman–Penrose formalism in [1]. The rather complicated
periodicity properties of the solution became apparent as well as its asymptotic behaviour: at
I− the advanced fields exhibit the standard Bondi-type expansion and peeling, whereas the
retarded fields do decay with r → ∞ but in an oscillatory manner like (sin r)/r . Hence for
the retarded plus advanced solution, no radiation field is asymptotically defined. Naturally,
one would like to go beyond the linearized theory. There are special exact, time-dependent,
solutions known, for example, as Szekeres’s dust solution, which has in general no Killing
vector, which can be matched to an exterior Schwarzschild metric [3]. One can construct
oscillating spherical shells of dust particles moving with the same angular momentum,
but in every tangential direction, or oscillating Einstein clusters which are matched to the
Schwarzschild spacetime outside [8]. Can there be periodic solutions representing ‘bound
states’ of gravitational or electromagnetic waves so that the radiation field at infinity vanishes
and the Bondi mass remains constant?

There have been various attempts to prove that while solutions of the vacuum Einstein
equations can be genuinely periodic in a suitable time coordinate (so not time independent),
these solutions cannot be asymptotically flat. These started with [15, 16], with a summary in
English in [17, 24] and more recently was considered in [10]. The method in [15] considers
vacuum metrics which are everywhere nonsingular, weak and asymptotically flat and which
can be expanded in a series in some parameter, with the flat metric as the first term in the
series. Each term in the series is assumed to be periodic in a fixed Minkowski time coordinate
and to satisfy the de Donder gauge condition. The second and third terms, call them vab and
wab respectively, are expanded as Fourier series in the background time coordinate and the
Einstein equations then imply that vab satisfies the source-free wave equation, and wab satisfies
a wave equation whose source is a quadratic expression in vab. Assuming that the solution for
vab is everywhere regular, the author shows that there cannot be an asymptotically flat solution
for wab unless vab vanishes. Therefore, the spacetime is flat. In [16], a similar calculation
when vab is regular only outside a certain radius leads to the conclusion that vab must be
time independent in order to have asymptotically flat wab, and the spacetime is stationary. In
[24] it was observed by integrating the Einstein pseudotensor and matter energy–momentum
tensor over a four-dimensional volume that ‘the mean value of power radiated by a periodic,
asymptotically Minkowskian gravitational field is equal to zero’. The question of existence of
periodic fields was left open. In [10] the authors used the spin-coefficient formalism (see e.g.
[14, 22]) to study the system of conformal Einstein equations of Friedrich [5]. A coordinate
system is based on two families of null hypersurfaces, incoming from past null infinity I−

and labelled by constant v and outgoing near I− and labelled by constant u. The authors
make a definition of periodicity which enables them to prove that, at I−, the u-derivatives
of all orders of all components of the metric are independent of v. They conclude that if
the metric is analytic in these coordinates, then it necessarily has a Killing vector, which in
these coordinates is ∂v , at least in a neighbourhood of I−. Thus any analytic metric, periodic
in their sense, has such a Killing vector. While certainly correct, there is a problem with
this conclusion in that, by construction, the Killing vector is null wherever it is defined, and
reduces at I− to a constant translation along the generators. These are strong conditions and
in fact no Killing vector in flat space has these properties (any null Killing vector is necessarily
a null translation, and a null translation is zero along one generator of I)4. Thus flat space
is not periodic according to the definition of [10] and nor is any of the familiar stationary,
asymptotically flat solutions, for example the Schwarzschild solution.

4 For example the null translation ∂t + ∂z becomes 2 cos2(θ/2) ∂v on I−, which vanishes at θ = π .
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For convenience, we follow [10] in working at I− rather than I+, though this is trivial to
switch, but we shall make a weaker definition of ‘periodic in time’ which will permit metrics
stationary near I− and indeed will allow only these for analytic, asymptotically flat vacuum
or electrovac metrics. We follow the method of [10] for both the vacuum and electrovac field
equations, deferring other cases to a second paper, but in a different coordinate and tetrad
system. Our coordinate and tetrad system is similar to the one used at I in [14], and to prove
the existence of a symmetry at the event horizon in [11] and at a compact Cauchy horizon
in [12]. We also differ from [10] in the choice of conformal gauge. In [10] the unphysical
Ricci scalar is set to zero by a choice of conformal factor obtained by solving a wave equation.
However, the solution of the characteristic IVP for this wave equation as posed in [10] will not
in general be periodic, so that the rescaled, unphysical metric would not in general share the
periodicity of the physical metric—in fact, in the particular case of the Reissner–Nordström
solution this gauge choice is compatible with periodicity only for zero mass, as we show in
appendix C. Thus we assume that there is at least one conformal factor which is periodic and
then modify this choice in the course of the calculation in order to simplify the spin coefficients.
From this point on, our method is then essentially the same as in [10], though a little more
complicated, and we arrive at the same conclusion, but now with a Killing vector which is
timelike in the interior, at least near to I−. The condition of timelike periodicity which we
impose is as follows: a spacetime is timelike periodic if there is a discrete isometry taking
any point of the physical spacetime to a point in its chronological future. To define timelike
periodicity at I− for an asymptotically flat spacetime, we require this isometry to extend to
an isometry of a neighbourhood of I− which preserves the generators of I−. In particular,
we require the existence of at least one � which conformally compactifies the spacetime and
preserves the periodicity. The isometry has to be a supertranslation [22],

v → v + a(θ, φ), (1)

on I−, in terms of the usual coordinates (v, θ, φ) on I− and we shall assume that a �= 0.
(We could imagine allowing a to vanish on some generators of I−, since as noted above
periodicity along a null translation in flat space would appear like this at I−, but this would be
null-periodicity rather than timelike periodicity.) We could assume further that a is actually
a positive constant but this turns out not to be necessary, as we shall find that, for analytic
spacetimes, this assumption of periodicity necessarily leads to a spacetime metric with a
Killing vector which, in coordinates to be defined, is ∂v and is timelike near I−. Our result is

Theorem 1.1. A weakly asymptotically simple, vacuum or electrovac, time-periodic spacetime
which is analytic in a neighbourhood of I− in the coordinates introduced below necessarily
has a Killing vector which is timelike in the interior and extends to a translation on I−.

Thus there are no non-trivial time-periodic solutions satisfying these conditions, in the
sense that they would necessarily be actually time independent if time periodic. In a later
paper, we shall prove the corresponding result for the Einstein equations coupled to either a
massless scalar field with the usual energy–momentum tensor, or a solution of the conformally
invariant wave equation with the energy–momentum tensor from p 125 of [18] (sometimes
called the ‘new improved energy–momentum tensor’).

The method of proof requires the assumption of analyticity. It was shown in [6] that there
are vacuum solutions analytic near I−. However, one would like either to drop the assumption
of analyticity, for example following the lead of [7] or [9] with a similar problem, or to prove
that it follows from the assumptions of periodicity and asymptotic-flatness. It remains to be
seen in what circumstances this can be done since, as noted above, there are non-analytic
solutions with matter in periodic motion and matched to a (static) Schwarzschild exterior.
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While this work is primarily motivated by an interest in the possibility or impossibility
of helical motions, it is worth noting the connection with the question of the inheritance of
symmetry. Recall that, for a solution of Einstein’s field equations with matter, the matter is said
to inherit the symmetry of the metric if any isometry of the metric is necessarily a symmetry of
the matter. There are explicit solutions of the Einstein–Maxwell equations known for which
an isometry of the metric is not a symmetry of the Maxwell field [13] but these solutions are
not asymptotically flat. In [21] some other references may be found for explicit solutions with
Maxwell fields which do not share the symmetry of the metric. The same will be true for
some Robinson–Trautman solutions with the null electromagnetic field which may depend on
time though the metric is static (see [21], section 28.2). These solutions will very likely have
wire singularities extending to infinity. From theorem 1.1 noninheritance cannot happen with
asymptotically flat, analytic solutions.

Corollary 1.2. In any weakly asymptotically simple, stationary electrovac spacetime which
is analytic in a neighbourhood of I− in the coordinates introduced below, the Maxwell field
is also stationary.

One can raise the question of inheritance also for Einstein-scalar field solutions but the
answer is rather different: for a massive (complex) Klein–Gordon field, there do exist solutions,
the so-called boson stars, for which the metric is spherically symmetric, asymptotically flat
and static but the scalar field has a phase linear in time (see e.g. [2]); however, these solutions
are not analytic at infinity and, by a scaling argument, such solutions do not exist with
massless scalar fields. In a later paper, we shall obtain this result as a corollary of the result
corresponding to theorem 1.1. In that subsequent work, we start from the conformal Einstein
field equations with a general energy–momentum tensor as a source and specialize them to
scalar field cases.

In section 2, we analyse the conformal Einstein–Maxwell equations. We first rewrite
Maxwell’s equations in the unphysical spacetime, and then translate the physical Bianchi
identities and obtain differential equations for the unphysical Weyl spinor and Ricci spinor.
In appendix A, we summarize a number of quantities, their relations and behaviour under
conformal transformations in the Newman–Penrose formalism [14]; these are extensively
used in the main text and in appendices B and C. In particular, all conformal equations for the
gravitational and electromagnetic field analysed in terms of spinors in section 2 are projected
on the spin basis (i.e. the null tetrad) and written down in the Newman–Penrose formalism
in appendix B. In section 3, a suitable coordinate system and a convenient Newman–Penrose
null tetrad which gives special values to some of the Newman–Penrose spin coefficients are
introduced in the neighbourhood of I−. As noted above, these differ from those used by the
authors of [10]. At the end of section 3, we explain in detail in what our choice of the coordinate
system and the null tetrad differs from that of [10]. In appendix C, we demonstrate that in
contrast to [10] our choice of gauge admits simple static (i.e. ‘periodic’) spacetimes like flat
space and the Reissner–Nordström metric. In section 4, we follow [10] (although in a different
conformal gauge) and study the problem in the NP formalism in the unphysical spacetime,
with data on I−. Assuming periodicity along I− we first discover that the only possibility is
the independence of all geometric quantities of an affine parameter v along I−. By induction
we then prove that all derivatives of all geometric quantities, including the physical metric
components, in the direction into the physical spacetime must also be v-independent. The
proof of theorem 1.1 and corollary 1.2 then follows from the assumed analyticity.

This paper arose from a collaboration after PT posted his work [23] on the gr-qc arXiv
and JB informed him that he and his PhD student MS were already engaged in tackling the
same problem [20].
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2. The conformal Einstein–Maxwell equations

We first introduce conformal equations for the gravitational and electromagnetic field in the
formalism of two-component spinors. In appendix B, these equations are written down
explicitly after the projection on a spin basis, in the form employed in the Newman–Penrose
formalism. In the physical spacetime, Maxwell’s equations without sources are simply5 (see
e.g. [22])

∇̃AA′
φ̃AB = 0. (2)

They are conformally invariant if under conformal rescaling the Maxwell spinor φAB

transforms with conformal weight 1,

φ̃AB = �φAB, (3)

when the convention used in this paper for conformal rescaling is ε̃AB = �−1εAB .
From the transformation of the derivative operator (see (A.12)), in the unphysical

spacetime, equation (2) becomes

∇AA′
φAB = 0. (4)

The situation is more complicated in the case of the gravitational field. The physical
Bianchi identities read

∇̃D
C ′	̃ABCD = ∇̃D′

(C 
̃AB)C ′D′ , (5)

where 	̃ABCD and 
̃ABC ′D′ are the Weyl and the Ricci spinor, respectively. Using the rules
for the conformal transformation of these spinors (equations (A.15) and (A.17)), we find

�2∇D
C ′ψABCD = �∇D′

(C 
AB)C ′D′ +
(∇D′

(A�
)

BC)C ′D′ + ∇D′

(C ∇A(C ′∇D′)B)�, (6)

where ψABCD = �−1	ABCD . These equations are the physical Bianchi identities written in
terms of the quantities in the unphysical spacetime. We simplify them by employing Einstein’s
equations in the physical spacetime,


̃ABA′B ′ = kφ̃AB
¯̃φA′B ′ . (7)

Here we used the fact that the physical scalar curvature vanishes for the electromagnetic field;
we put the constant factor k on the rhs of (7) equal to 1 following the convention of [14],
unlike, e.g., [18]. From equations (A.15), (7) and (3), we obtain

∇A(A′∇B ′)B� = �3φABφ̄A′B ′ − �
ABA′B ′ . (8)

Applying ∇D′
C , symmetrizing and using Maxwell’s equations (4), we can express the term

containing the third derivative of � appearing in (6) as follows:

∇D′
(C ∇A(C ′∇D′)B)�

= 3�2φ̄C ′D′φ(AB∇D′
C)� + �3φ̄C ′D′∇D′

(C φAB) − �∇D′
(C 
AB)C ′D′ − (∇D′

(C �
)

AB)C ′D′ .

Inserting this result into (6), we arrive at the conformal Bianchi identities for the Einstein–
Maxwell field expressed in terms of the quantities in the unphysical spacetime:

∇D
A′ψABCD = 3φ̄A′B ′φ(AB ∇B ′

C)� + �φ̄A′B ′ ∇B ′
(CφAB). (9)

Projecting these equations onto the spin basis, we obtain the set of the equations which
are explicitly written down (using the NP formalism) in appendix B, see (B.5a)–(B.5h).
Equations (9) are differential equations for the unphysical Weyl spinor. To obtain the equations

5 Spinor indices are labelled by A, A′, B, B ′, . . . and have values 0, 1. The metric has signature −2.
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for the Ricci spinor, we use the Bianchi identities valid for quantities in the unphysical
spacetime:

∇D
C ′	ABCD = ∇D′

(C 
AB)C ′D′ . (10)

Combining the last two equations, we get

∇B ′
(C
AB)A′B ′ = ψABCD ∇D

A′� + 3 �φ̄A′B ′φ(AB ∇B ′
C) � + �2φ̄A′B ′∇B ′

(CφAB). (11)

In the following, we shall also need the expression for quantities ∇AA′∇BB ′�. Let us
decompose ∇AA′∇BB ′� into its symmetric and antisymmetric parts

∇AA′∇BB ′� = ∇A(A′∇B ′)B� + 1
2εA′B ′∇AC ′∇C ′

B �. (12)

The first term on the rhs is given in (8); the second term can be decomposed again:

∇AC ′∇C ′
B � = ∇C ′(A∇C ′

B)� + 1
2εAB � �. (13)

Since the operator ∇C ′(A∇C ′
B) is just the commutator ∇[a∇b] contracted by εA′B ′

, it
annihilates scalar quantities. Using equations (8), (12) and (13), we obtain

∇AA′∇BB ′� = �3φABφ̄A′B ′ − �
ABA′B ′ + 1
4εA′B ′εAB ��. (14)

It will be convenient to introduce the quantity

F = 1
2�−1(∇AA′�)(∇AA′

�), (15)

which can be seen to be smooth in the unphysical spacetime from the rule for the conformal
transformation of the scalar curvature (A.15) in the form

� � = 4 �� − 4 �−1 �̃ + 4 F, (16)

since the physical scalar curvature �̃ = 0 for the electromagnetic field. From equation (14),
we now obtain the following expressions for the second derivatives of �:

∇AA′∇BB ′� = �3φABφ̄A′B ′ − �
ABA′B ′ + εA′B ′εAB (F + ��). (17)

Finally we wish to derive expressions for ∇AA′F . Directly from the definition of the
unphysical Riemann tensor and from the decomposition (A.3), we have

(∇AA′∇BB ′ − ∇BB ′∇AA′)∇BB ′
� = −2
ABA′B ′∇BB ′

� + 6 �∇AA′ �. (18)

Employing Maxwell’s equations (4) and the contracted Bianchi identities (A.21), we find
that equations (14) and (18) imply

∇AA′F = �2φB
Aφ̄B ′

A′ ∇BB ′� − 
ABA′B ′∇BB ′
� + �∇AA′�. (19)

3. Coordinates, tetrad and conformal gauge

We assume that we have an analytic, time-periodic solution of the Einstein–Maxwell equations
and an analytic, time-periodic conformal factor so that the unphysical metric with I− also has
these properties. We construct a convenient coordinate system and a Newman–Penrose null
tetrad in the neighbourhood of I− (see figures 1 and 2). We stay in the unphysical spacetime
in order to include I−. Let S ⊂ I− be a particular spacelike 2-sphere. We can introduce
arbitrary coordinates xI , I = 2, 3 on S and propagate them along I− by the condition

∇γ̇ xI = 0, (20)

where γ = γ (v) is an affinely parametrized null generator of I−. We may set v = 0 on S.
The triple (v, x2, x3) represents suitable coordinates on I−. In order to go into the interior of
spacetime, we introduce the family of null hypersurfaces Nv orthogonal to I− and intersecting

6
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Figure 1. Construction of the coordinate system.
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Figure 2. NP null tetrad.

I− in the spacelike cuts Sv of constant v. Let γ ′ = γ ′(r) be the null generators of the surface
Nv labelled by xI. Here, r is the affine parameter which can be chosen so that r = 0 on I−

and g(dv, dr) = 1 at I−. We propagate the coordinates v and xI onto Nv by the conditions

∇γ̇ ′ xI = 0, ∇γ̇ ′ v = 0. (21)

We thus have established a coordinate chart

xμ = (v, r, x2, x3), μ = 0, 1, 2, 3, (22)

in the neighbourhood of past null infinity6.
Next we construct a suitable Newman–Penrose null tetrad. Nv are null hypersurfaces

v = constant; therefore, the gradient of v is both tangent and normal to Nv; we denote it by

na = ∇a v. (23)

Since na is tangent to γ ′ along which only r varies,

n = ∂

∂r
. (24)

6 Components of tensors with respect to the basis induced by these coordinates will be labelled by Greek letters
μ, ν, . . .. Components with respect to an arbitrary tetrad will be labelled by Latin letters a, b, . . . from the beginning
of the alphabet. Indices labelled by capital letters I, J, . . . have values 2, 3.
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On each cut Svr : v, r = constant there exists exactly one null direction normal to Svr not
proportional to na. We choose the vector field la to be parallel to this direction and normalize
it by nal

a = 1. It can be written in the form

l = ∂

∂v
− H

∂

∂r
+ CI ∂

∂xI
. (25)

On I− l is tangent to the generators γ (v), so functions H and CI vanish on I−. The
conformal gauge can be chosen so that

∂�

∂r
= 1 on I−. (26)

Let us now turn to the 2-spheres Svr on which ∂I are basis vectors. Since Svr is a spacelike
sphere, we choose, following the standard procedure, a complex vector m and its complex
conjugate m̄, such that

ma ma = 0, mam̄a = −1, (27)

m has the form

m = P I ∂

∂xI
, (28)

where P 2, P 3 are complex functions. The coordinates xI can be chosen to be the standard
spherical coordinates, xI = (θ, φ). Then the appropriate choice of the null vector m at I− is
(see e.g. [22])

m = 1√
2

(
∂θ +

i

sin θ
∂φ

)
, P I = 1√

2

(
1,

i

sin θ

)
. (29)

The vectors m, m̄ are orthogonal to l and n. The contravariant components of the tetrad read

lμ = (1,−H,C2, C3),

nμ = (0, 1, 0, 0), (30)

mμ = (0, 0, P 2, P 3).

The contravariant components of the metric tensor are given, regarding the relation
gμν = 2l(μnν) − 2m(μm̄ν), by the matrix

gμν =

⎛
⎜⎜⎝

0 1 0 0
1 −2H C2 C3

0 C2 −2P 2 P̄ 2 −P 2 P̄ 3 − P 3 P̄ 2

0 C3 −P 2 P̄ 3 − P 3 P̄ 2 −2P 3 P̄ 3

⎞
⎟⎟⎠ . (31)

Using (30) and the inverse of (31) we find the covariant components of the tetrad vectors:

lμ = (H, 1, 0, 0),

nμ = (1, 0, 0, 0), (32)

mμ = (ω, 0, R2, R3),

where

R2 = P 3

P 2 P̄ 3 − P 3 P̄ 2
, R3 = P 2

P 3 P̄ 2 − P 2 P̄ 3
,

ω = −CI RI . (33)

The covariant components of the metric are

gμν =

⎛
⎜⎜⎝

2H − 2ωω̄ 1 −ωR̄2 − ω̄R2 −ωR̄3 − ω̄R3

1 0 0 0
−ωR̄2 − ω̄R2 0 −2R2R̄2 −R3R̄2 − R2R̄3

−ωR̄3 − ω̄R3 0 −R3R̄2 − R2R̄3 −2R3R̄3

⎞
⎟⎟⎠ . (34)

8
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The vectors l, n,m and m̄ constitute the NP tetrad. However, it is not unique since there is
a rotation gauge freedom m → eiχm which will be used later. Following the standard notation
of the NP formalism (e.g. [14, 22]), we define the operators

D = la∇a, � = na∇a, δ = ma∇a. (35)

We shall also employ the spin basis (oA, ιA) associated with the null tetrad

la = oAōA′
, na = ιAῑA

′
, ma = oAῑA

′
, (36)

normalized by oA ιA = 1. Note that this coordinate and tetrad system has some more gauge
freedom associated with it. In particular, we may make another choice �̂ with �̂ = ��,
where � is also periodic and takes the value 1 at I−. Thus,

g̃ab = �̂−2ĝab = �−2gab

and so ĝab = �2gab. We assume that � = 1 + f (v, r, xI ), with f = O(r). This will change
the definition of the affine parameter r, to r̂ say, and then we must accompany the change of
the conformal factor with a null rotation of the tetrad so that δ̂ is tangent to the sphere Svr̂ ;
thus,

n̂a = na,

m̂a = �(ma + Zna), (37)

l̂a = �2(la + Zm̄a + Z̄ma + ZZ̄na),

where Z, which parametrizes the null rotation, is fixed by requiring δ̂r̂ = 0. The associated
operators change according to

�̂ = �−2�,

δ̂ = �−1(δ + Z�), (38)

D̂ = D + Zδ̄ + Z̄δ + ZZ̄�.

With the coordinate v common to both systems, we define r̂ as the affine parameter with

�̂r̂ = �−2�r̂ = 1.

This can be integrated to give

r̂ =
∫ r

0
�2 dr = r + O(r2), (39)

and we need

0 = δ̂r̂ = �−1(δr̂ + Z�r̂),

so that

Z = −�−2δr̂,

which can be calculated from (39). Note that Z = O(r2). We shall need to exploit this gauge
freedom below. Next we examine what special values some of the spin coefficients take due to
the above choice of the null tetrad (we calculate for the unhatted system, but the same relations
hold in the hatted systems). Acting by the commutators (A.2) on the coordinate v, we find

γ + γ̄ = ᾱ + β − π̄ = ν = μ − μ̄ = 0. (40)

Furthermore, the commutators [δ,�]r and [δ̄, δ]r give

τ − ᾱ − β = ρ − ρ̄ = 0. (41)

Applying the remaining commutators on the variables v, r and xI leads to the ‘frame
equations’, i.e. the equations for the metric functions H,CI and PI:

9



Class. Quantum Grav. 27 (2010) 055007 J Bičák et al

�H = −(ε + ε̄), (42a)

δH = −κ, (42b)

�CI = −2πP I − 2π̄ P̄ I , (42c)

δ̄P I − δP̄ I = (α − β̄)P I − (ᾱ − β)P̄ I , (42d)

�P I = −(μ − γ + γ̄ )P I − λ̄P̄ I , (42e)

δCI − DP I = −(ρ + ε − ε̄)P I − σ P̄ I . (42f )

Since the generators γ (v) of I− are affinely parametrized null geodesics, Dla = 0 on I−.
Comparing this with the general relation

Dla = (ε + ε̄)la − κ̄ ma − κm̄a, (43)

we see that

ε + ε̄ = κ = 0 on I−. (44)

Next we wish to show that the freedom in choosing the basis (m, m̄) of the space
tangential to Svr allows us to set γ = 0. From the definition of γ (equation A.1), we
have γ − γ̄ = ma�m̄a . Under the rotation through χ ,

ma → eiχma, (45)

the quantity γ − γ̄ transforms according to

γ − γ̄ → γ − γ̄ + i�χ, (46)

so by solving the equation

�χ = i(γ − γ̄ ), (47)

and regarding (40) we can set

γ = 0. (48)

Because the �-operator is the derivative with respect to the coordinate r, further rotation (45)
with an r-independent function χ does not violate equality (48). The quantity ε − ε̄ under the
rotation (45) transforms according to

ε − ε̄ → ε − ε̄ + iDχ. (49)

Solving the equation

Dχ = i(ε − ε̄) (50)

on I−, where r = 0, we set ε = ε̄ which, together with (44), implies

ε = 0 on I−. (51)

To end this section, we exploit the gauge freedom (37) and (38) to achieve a further
simplification. From the commutator [δ̂, �̂] (see (A.2) with the values of the spin coefficients
fixed above), we calculate

μ̂ = �−2(μ + �−1��),

so that we can set μ̂ = 0 by choosing

� = exp

(
−

∫ r

0
μ dr

)
.

Having done this, we omit the hats.

10
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In order to elucidate the differences between our choice of the coordinate system and the
null tetrad and those used by Gibbons and Stewart, we conclude this section by giving the
details of their construction. Instead of the affine parameter r they use coordinate u, defined
as follows. Let S ′

0 be a spacelike cut on I− and N ′,S ′
0 ⊂ N ′, the null hypersurface such that

the null generators of N ′ are orthogonal to S ′
0. Now, the real function u on N ′ is defined in

such a way, that u = 0 on S ′
0, and on spacelike two-surfaces Su u = constant. The cut Su

defines another null hypersurface Nu with null generators orthogonal to Su. The coordinate
u is obtained by setting u = constant on Nu. Similarly, the family of null hypersurfaces
N ′

v orthogonal to spacelike cuts S ′
v on I−, with v being the affine parameter along the null

generators of I−, is constructed. Coordinates xI are chosen freely on S ′
0 and propagated into

the spacetime along N ′ and Nu. The functions xμ = (u, v, x2, x3) constitute a coordinate
system in the neighbourhood of I− but note that in these coordinates the vector field ∂v is null,
which is not in our coordinates.

The NP tetrad used in [10] consists of vectors l, tangent to Nu, n, tangent to N ′
v , and m, m̄

spanning the tangent space of S ′
0 and propagated into the spacetime. Coordinate expressions

of their tetrad read (this should be compared with our expressions (24), (25) and (28))

l = Q∂v, n = ∂u + CI ∂I , m = P I ∂I , (52)

where Q,CI and PI are metric functions. In this tetrad, the following equation holds:

�na = −(γ + γ̄ )na.

Therefore, the null generators of N ′
v are geodesics, but u is not an affine parameter.

The periodicity of the spacetime is defined as the periodicity of all geometrical quantities
in the variable v. It is shown in [10] that K = ∂v is the Killing vector of the metric and
concluded that the spacetime is stationary. However, K is null everywhere by construction as
it is tangent to the null generators of Nv , while the stationarity requires the timelike Killing
vector. Thus, it is impossible to conclude that the spacetime is stationary from the fact that K
is the Killing vector. As was mentioned in the introduction, even the Minkowski spacetime
does not posses the Killing vector which is everywhere null and tangent to I−.

In the following, we use the coordinates and the tetrad introduced in the beginning of
this section. We show that K = ∂v is the Killing vector null on I− but timelike in its
neighbourhood.

4. Proof of the theorem

Having chosen coordinates and tetrad and fixed special values of some of the NP coefficients
we now analyse all geometric quantities assuming analyticity in the chosen coordinates and
periodicity on I− in v. Following [10] we introduce the notation

S0 = D�, S1 = δ�, S2 = ��,

F = 1

�
(S0S2 − S1 S̄1), ψn = 	n

�
, n = 0, 1, 2, 3, 4,

(53)

where 	n are the NP components of the Weyl spinor (see equation (A.10)). In the case of
asymptotically flat spacetime, they vanish on I−, so assuming smoothness, the ψn are regular
there. Tangential derivatives of the conformal factor vanish on I−, i.e. S0 = S1 = 0, and so,
again by smoothness, the quantity F is regular on I−. The remaining component of ∇� is S2

which is 1 on I− (cf (26)), so that its tangential derivatives also vanish on I−. Equations (17)
and (19) are explicitly written down in the NP formalism in appendix B as (B.2a)–(B.4c).
Equations (B.2d)–(B.2j ) show that on I−

11
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σ = 0, (54a)

F = 0, (54b)

ρ = 0, (54c)

π̄ = 0 = β + ᾱ = τ, (54d)

�S0 = 0, (54e)

�S2 = 0, (54f )

�S1 = 0. (54g)

Since F = 0 on I−, also the tangential derivatives DF and δF vanish there. From
equations (B.4a) and (B.4b) we thus obtain


00 = 
01 = 0 on I−. (55)

The metric functions PI on I− are given by (29). Inserting this expression into the frame
equation (42d) and using relation (54d) we find

α = −β = − 1
2
√

2
cot θ on I−. (56)

The Ricci identity (A.20q) now shows that

� + 
11 = 1
2 on I−. (57)

In order to discover the behaviour of the other relevant quantities we shall take into account
the properties of the Bondi mass. In a general asymptotically flat electrovacuum spacetime,
the total mass energy at I+ is defined by the formula (see e.g. [4])

MB = − 1

2
√

π

∫
dS

(
	̃0

2 + σ̃ 0 ˙̃̄σ
0)

. (58)

By the superscript 0 we denote the leading term in the asymptotic expansion of a
quantity; the superscripts 1, 2, . . . then denote higher order terms, for example, σ̃ =
σ̃ 0 �2 + σ̃ 1�3 + O(�4). The rate of decrease of the Bondi mass is given by

ṀB = − 1

2
√

π

∫
dS

(
˙̃σ 0 ˙̃̄σ

0
+ φ̃0

2
¯̃φ0

2

)
. (59)

The quantities σ and φi, i = 0, 1, 2, are defined in (A.1) and (A.26). Following the
‘conversion table’ between I+ and I− (see (A.14)), we analogously define the Bondi mass at
I− by

MB = − 1

2
√

π

∫
dS

(
	̃0

2 + λ̃0 ˙̃̄
λ0

)
. (60)

Since radiation comes into the physical spacetime through I− but cannot exit through it,
the total mass energy at I− cannot decrease. Its rate of change in (advanced) time v along I−

is given by

ṀB = 1

2
√

π

∫
dS

( ˙̃λ0 ˙̃̄
λ0 + φ̃0

0
¯̃φ0

0

)
. (61)

Now we assume periodicity. But a non-decreasing periodic function must be a constant.
Hence, our assumption of periodicity of the mass energy at I− requires

˙̃λ
0 = 0, φ̃0

0 = 0. (62)

12
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The leading term in the asymptotic expansion of 	̃0 is then 	̃0
0 = ¨̄̃

λ0 = 0. Regarding
equations (A.16) and (A.18) and putting 	̃0

0 = 0, we can write the asymptotic expansion of
	0 near I− as

	0 = 	1
0�2 + O(�3), (63)

or (cf equation (53))

ψ0 = O(�). (64)

Equation (63) implies

�	0 = 0 on I−. (65)

Similarly, equation (A.27), where we put φ̃0
0 = 0, implies φ0 ∈ O(�) and

�φ0 = φ1
0 S2 on I−. (66)

The geometrical quantities consist of the tetrad components, which give the metric
functions, the spin coefficients and the components of the Weyl and the Ricci tensor on
I−. Because of our assumption of the periodicity of gravitational field, the geometrical
quantities are all assumed to be periodic in the variable v on I−. We do not assume the
periodicity of the electromagnetic field since this field may not have the same symmetries
as the gravitational field (this is the issue of inheritance which we shall return to). We have
shown that the following spin coefficients vanish on I− (and thus do not depend on v):

μ, ρ, σ, κ, ε, ν, γ, π, τ. (67)

The spin coefficients α and β are v-independent because of (56). Now we wish to show
that also the last spin coefficient λ is independent of v. The Bianchi identity (A.23a) together
with (65) and (55) shows that

D
02 = 0 on I−. (68)

If we now apply D to the Ricci identity (A.20g), we get

D2λ = 0 on I−. (69)

The general solution of this equation on I− is

λ = λ(0) + v λ(1), (70)

where λ(0) and λ(1) are functions independent of v. Since λ is assumed to be periodic and a
polynomial in v can be periodic only if it is constant, we get λ = λ(0) and

Dλ = 0 on I− (71)

(we borrow this style of argument from [10] where it is used extensively). The Ricci identity
(A.20g) then implies


02 = 0 on I−. (72)

The Ricci identity (A.20h) on I− becomes

� = 0, (73)

and then by (57) 
11 = 1/2 there. Now from (A.22c) and D on (A.20k), D
12 and D
22

vanish at I−. We collect these results and some similar ones as a lemma.

Lemma 4.1. The following are zero on I−:

H,CA, ρ, σ, π, κ, ε, S0, S1, F,ψ0,
00,
01,
02, φ0,�,

DP A,Dα,Dβ,DS2,Dλ,D
11,D
12,D
22,Dψ1,Dψ2,Dψ3,Dψ4,Dφ1,Dφ2,

D�S0,D�S1,D�S2.

13
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Proof. The first line is done already, as is the second line up to Dψ1, which comes from
(B.5a). From D applied to (B.5b)–(B.5d), we obtain D2ψi = 0 whence by periodicity
Dψi = 0 at I−, in order for i = 2, 3, 4. The same procedure applied to (A.29a), (A.29b)
takes care of Dφ1,Dφ2. Then the third line follows from D applied to (B.2h)–(B.2j ).

Now we turn to the proof of the theorem. We set up an induction with the following
inductive hypothesis. Suppose inductively that ∂v�

jQ = 0 at I− for 0 � j � k with Q one
of

H,CI , P I , ε, π, λ, β, α, ρ, σ, κ, F,ψi,
ij , φi,� (74)

and for 0 � j � k + 1 with Q = Si .
This is easily seen by the lemma to hold for k = 0, so we need to deduce it for j = k + 1

from its truth for j � k. In this calculation, we use the fact that ∂v = D at I− and make
extensive use of the commutators (A.2). Under the inductive hypothesis, the inductive step
follows

• for H,CI , P I from (42a), (42c) and (42e);
• for ε, π, λ, β, α, ρ, σ, κ , respectively, from (A.20f ), (A.20i), (A.20j ), (A.20l), (A.20o),

(A.20n), (A.20m) and (A.20c);
• for F from (B.4c);
• for φ0 and φ1 directly from (A.29c) and (A.29d), respectively; for φ2, from (A.29b), we

deduce at I−

D2�k+1φ2 = 0,

and then periodicity implies

D�k+1φ2 = 0;
• for ψi, i = 0, 1, 2, 3, from (B.5e)–(B.5h); for ψ4, under the inductive hypothesis, we

deduce at I−

D2�k+1ψ4 = 0

from (B.5d) and then periodicity implies

D�k+1ψ4 = 0;
• for 
00,
01,
02,
12 from (A.22b), (A.23b), (A.22d) and (A.23d), respectively, all

with 	n = �ψn; then for �,
11 and 
22 we use (A.20h), (A.24c) and (A.20k).

This completes the inductive step for the first set of quantities Q. For Q = Si , we use
D�k+1 applied to (B.2h)–(B.2j ). Thus r-derivatives of all orders of the quantities in (74),
which includes the metric functions H,CI and PI, are independent of v. Now analyticity in r
forces these functions to be independent of v. Therefore, by (30), the metric components are
all independent of v and so K := ∂/∂v is a Killing vector of the unphysical metric. However,
for any j ,

∂v�
j� = ∂v�

j−1S2,

at I− and the rhs vanishes for all j . Thus, by analyticity in r,� is also independent of v and
so K is a Killing vector of the physical metric too. The norm-squared of the Killing vector is

g(K,K) = 2(H − ωω̄).

This is O(r2) at I− but there

�2g(K,K) = 2�2H = −2�(ε + ε̄) = 2

so that K is null at I− but timelike just inside: the metric is stationary. �
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This completes the proof of the theorem. Note that we have shown that under the assumption
of periodicity, both fields are necessarily time independent. A slightly different question
is whether a stationary asymptotically flat gravitational field might be produced by an
electromagnetic field which is not itself stationary. The content of corollary 1.2 is that
the answer is no.

Proof of corollary 1.2. Starting from the assumption that the metric admits ∂v as a Killing
vector, we want to show that this is also a symmetry of the Maxwell field. We have


̃ij = �2φiφ̄j , (75)

and ∂v
̃ij = 0 so that, for some χ possibly depending on v, we have

φi = ei χ ϕi, (76)

where ϕi is v-independent. From the Maxwell equation (A.29a), with φ0 = 0 on I−, we find
φ1Dχ = 0 on I− so that Dχ = 0 unless φ1 = 0 there. If φ1 = 0 there, (A.29b) gives Dχ = 0
unless φ2 = 0, so we can conclude that Dφi = 0 on I−. Now we set up an induction to show
that D�nφi = 0 on I− for all n ∈ N and i = 0, 1, 2. The inductive hypothesis will be

(∀k � n) (∀i ∈ {0, 1, 2}) (D�kφi = 0 on I−). (77)

Then by D�n on (A.29c) and (A.29d), we obtain this for k = n + 1 and i = 0, 1. For
i = 2,D�n+1 on (A.29b) gives

D2�n+1φ2 = 0 on I−, (78)

which integrates to give �n+1φ2 = av + b. This would contribute a v-dependent term to 
̃22

at O(�2n+4), a contradiction unless a = 0. Then D�n+1φ2 = 0 on I−, which completes the
induction.

By assumption, the Maxwell field is analytic and so has a convergent power series in r
near to I− and we have shown that all coefficients are v-independent. Since the spinor dyad
is Lie-dragged by the Killing vector, this proves that the Maxwell field is too: in this situation
the Maxwell field inherits the symmetry. �
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Appendix A. The Newman–Penrose formalism and conformal transformations in
Einstein–Maxwell spacetimes

A.1. Gravitational field

In the NP formalism, the spin coefficients are the Ricci rotation coefficients with respect to a
null tetrad {l, n,m} with the corresponding spin basis oA, ιA; they encode the connection. The
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12 independent complex coefficients are defined by (see e.g. [14, 22] for details)

κ = maDla = oADoA, τ = ma�la = oA�oA,

σ = maδla = oAδoA, ρ = maδ̄la = oAδ̄oA,

ε = 1
2 [naDla − m̄aDma] = ιADoA, β = 1

2 [naδla − m̄aδma] = ιAδoA,

γ = 1
2 [na�la − m̄a�ma] = ιA�oA, α = 1

2 [naδ̄la − m̄aδ̄ma] = ιAδ̄oA,

π = naDm̄a = ιADιA, ν = na�m̄a = ιA�ιA,

λ = naδ̄m̄a = ιAδ̄ιA, μ = naδm̄a = ιAδιA,

(A.1)

where D = ∇l , � = ∇n, δ = ∇m. Acting on a scalar, the operators D,�, δ obey the
commutation relations:

Dδ − δD = (π̄ − ᾱ − β)D − κ� + (ρ̄ − ε̄ + ε)δ + σ δ̄,

�D − D� = (γ + γ̄ )D + (ε + ε̄)� − (τ̄ + π)δ − (τ + π̄)δ̄,
(A.2)

�δ − δ� = ν̄D + (ᾱ + β − τ)� + (γ − γ̄ − μ)δ − λ̄δ̄,

δδ̄ − δ̄δ = (μ − μ̄)D + (ρ − ρ̄)� + (ᾱ − β)δ̄ − (α − β̄)δ.

The Riemann tensor can be decomposed as follows:

Rabcd = Cabcd + 
ABC ′D′εA′B ′εCD + 
̄A′B ′CDεABεC ′D′

+ �(εACεBD + εBCεAD) εA′B ′εC ′D′

+ �(εA′C ′εB ′D′ + εB ′C ′εA′D′) εABεCD. (A.3)

The first part is the Weyl tensor whose spinor equivalent is the totally symmetric Weyl
spinor 	ABCD:

Cabcd = 	ABCDεA′B ′εC ′D′ + 	̄A′B ′C ′D′εABεCD. (A.4)

The scalar � is related to the scalar curvature R by

� = 1
24R. (A.5)

The symmetric Ricci spinor 
ABC ′D′ is equivalent to the trace-free part of the Ricci tensor:

Rab = −2
ABA′B ′ + 6�εABεA′B ′ . (A.6)

The spinor equivalent of the Einstein tensor is

Gab = −2
ABA′B ′ − 6�εABεA′B ′ , (A.7)

and the spinor equivalent of Einstein’s equations is


ABA′B ′ = − 3 �εABεA′B ′ + 4 π TABA′B ′ . (A.8)

Taking the symmetric part or contracting them with εABεA′B ′
, respectively, we obtain two

equations, equivalent to (A.8):


ABA′B ′ = 4 π T(AB)(A′B ′),

3� = π T A A′
A A′ .

(A.9)

The five complex components of the Weyl spinor are

	0 = Cabcd l
amblcmd = 	ABCD oAoBoCoD,

	1 = Cabcd l
anblcmd = 	ABCD oAoBoCιD,

	2 = Cabcd l
ambm̄cnd = 	ABCD oAoBιCιD, (A.10)

	3 = Cabcd l
anbm̄cnd = 	ABCD oAιBιCιD,

	4 = Cabcdm̄
anbm̄cnd = 	ABCD ιAιBιCιD.
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The traceless Ricci tensor has the following components (three real and three complex):


00 = − 1
2Rabl

alb = 
ABA′B ′oAoBōA′
ōB ′

,


01 = − 1
2Rabl

amb = 
ABA′B ′oAoBōA′
ῑB

′
,


02 = − 1
2Rabm

amb = 
ABA′B ′oAoB ῑA
′
ῑB

′
,


11 = − 1
4Rab(l

anb + mam̄b) = 
ABA′B ′oAιBōA′
ῑB

′
,


12 = − 1
2Rabn

amb = 
ABA′B ′oAιB ῑA
′
ῑB

′
,


22 = − 1
2Rabn

anb = 
ABA′B ′ ιAιB ῑA
′
ῑB

′
.

(A.11)

The three remaining components can be obtained via the condition 
ij = 
̄ji . Under the
conformal rescaling gab = �2g̃ab, the covariant derivative acting on a two-component spinor
transforms as

∇̃AA′ξB = ∇AA′ξB + �−1 ξA∇BA′�. (A.12)

The NP quantities also transform. To find relations between the physical and unphysical
quantities, we have to transform the null tetrad. We wish to keep na = ña = ∂av so the correct
choice is
oA = õA, ιA = �−1 ι̃A, oA = � õA, ιA = ι̃A,

la = l̃a, na = �−2ña, ma = �−1 m̃a, m̄a = �−1 ¯̃ma

la = �2 l̃a, na = ña, ma = �m̃a, m̄a = � ¯̃ma,

(A.13)

from which the transformation of the spin coefficients can be found.
The geometrical meaning of the spin coefficients depends on the choice of the null tetrad.

With our choices, the vector l is pointing into I+, while n is tangent to I+. On I− the role of
these vectors is interchanged, n is pointing from I− and l is tangent to it. To convert quantities
from I+ to I−, we have only to switch the spinors oA and ιA (and adjust some signs). The
correspondence between the quantities on I+ and I− is given in the following table:

κ ↔ ν, τ ↔ π,

σ ↔ λ, ρ ↔ μ,

ε ↔ γ, α ↔ β,

	n ↔ 	4−n, 
ij ↔ 
(2−i)(2−j).

(A.14)

The scalar curvature and the Ricci spinor transform according to the formulae

R̃ = �2R − 6��� + 12gab (∇a�) (∇b�) ,


̃ABA′B ′ = 
ABA′B ′ + �−1∇A(A′∇B ′)B�,
(A.15)

the NP components of the Weyl spinor as

	̃n = �n	n. (A.16)

The Weyl spinor is conformally invariant with weight zero:

	ABCD = 	̃ABCD. (A.17)

Because the physical Weyl spinor vanishes on I−, so does the unphysical one, and
assuming smoothness is therefore O(�). Then we get

	̃n ∈ O(�n+1). (A.18)

The Ricci identities can be written in the spinor form as follows:

∇A′(A∇A′
B)ξC = 	ABCDξD − 2�ξ(AεB)C,

∇A(A′∇A
B ′)ξC = 
CDA′B ′ξD.

(A.19)
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Substituting the basis spinors oA and ιA for ξA and projecting the last equations onto the
spin basis we obtain the Ricci identities in the NP-formalism:

Dρ − δ̄κ = ρ2 + (ε + ε̄)ρ − κ
(
3α + β̄ − π

) − τ κ̄ + σ σ̄ + 
00, (A.20a)

Dσ − δκ = (ρ + ρ̄ + 3ε − ε̄)σ − (τ − π̄ + ᾱ + 3β)κ + 	0, (A.20b)

Dτ − �κ = ρ(τ + π̄) + σ(τ̄ + π) + (ε − ε̄)τ − (3γ + γ̄ )κ + 	1 + 
01, (A.20c)

Dα − δ̄ε = (ρ + ε̄ − 2ε)α + βσ̄ − β̄ε − κλ − κ̄γ + (ε + ρ)π + 
10, (A.20d)

Dβ − δε = (α + π)σ + (ρ̄ − ε̄)β − (μ + γ )κ − (ᾱ − π̄)ε + 	1, (A.20e)

Dγ − �ε = (τ + π̄)α + (τ̄ + π)β − (ε + ε̄)γ − (γ + γ̄ )ε + τπ − νκ + 	2 − � + 
11,

(A.20f )

Dλ − δ̄π = (ρ − 3ε + ε̄)λ + σ̄μ + (π + α − β̄)π − νκ̄ + 
20, (A.20g)

Dμ − δπ = (ρ̄ − ε − ε̄)μ + σλ + (π̄ − ᾱ + β)π − νκ + 	2 + 2�, (A.20h)

Dν − �π = (π + τ̄ )μ + (π̄ + τ)λ + (γ − γ̄ )π − (3ε + ε̄)ν + 	3 + 
21, (A.20i)

�λ − δ̄ν = −(μ + μ̄ + 3γ − γ̄ )λ + (3α + β̄ + π − τ̄ )ν − 	4, (A.20j )

�μ − δν = −(μ + γ + γ̄ )μ − λλ̄ + ν̄π + (ᾱ + 3β − τ)ν − 
22, (A.20k)

�β − δγ = (ᾱ + β − τ)γ − μτ + σν + εν̄ + (γ − γ̄ − μ)β − αλ̄ − 
12, (A.20l)

�σ − δτ = −(μ − 3γ + γ̄ )σ − λ̄ρ − (τ + β − ᾱ)τ + κν̄ − 
02, (A.20m)

�ρ − δ̄τ = (γ + γ̄ − μ̄)ρ − σλ + (β̄ − α − τ̄ )τ + νκ − 	2 − 2�, (A.20n)

�α − δ̄γ = (ρ + ε)ν − (τ + β)λ + (γ̄ − μ̄)α + (β̄ − τ̄ )γ − 	3, (A.20o)

δρ − δ̄σ = (ᾱ + β)ρ − (3α − β̄)σ + (ρ − ρ̄)τ + (μ − μ̄)κ − 	1 + 
01, (A.20p)

δα − δ̄β = μρ − λσ + αᾱ + ββ̄ − 2αβ + (ρ − ρ̄)γ + (μ − μ̄)ε − 	2 + � + 
11, (A.20q)

δλ − δ̄μ = (ρ − ρ̄)ν + (μ − μ̄)π + (α + β̄)μ + (ᾱ − 3β)λ − 	3 + 
21. (A.20r)

The spinor form of the Bianchi identities is

∇D
B ′	ABCD = ∇A′

A 
BCA′B ′ + εC(A ∇B)B ′� − 3
2εAB ∇CB ′�. (A.21)

Projecting these equations onto the spin basis leads to the Bianchi identities in the NP
formalism:

D	1 − δ̄	0 − D
01 + δ
00 = (π − 4α)	0 + 2(2ρ + ε)	1 − 3κ	2 + 2κ
11

− (π̄ − 2ᾱ − 2β)
00 − 2σ
10 − 2(ρ̄ + ε)
01 + κ̄
02, (A.22a)

D	2 − δ̄	1 + �
00 − δ̄
01 + 2D� = −λ	0 + 2(π − α)	1 + 3ρ	2 − 2κ	3

+ 2ρ
11 + σ̄
02 + (2γ + 2γ̄ − μ̄)
00 − 2(α + τ̄ )
01 − 2τ
10, (A.22b)

D	3 − δ̄	2 − D
21 + δ
20 − 2δ̄� = −2λ	1 + 3π	2 + 2(ρ − ε)	3 − κ	4

+ 2μ
10 − 2π
11 − (2β + π̄ − 2ᾱ)
20 − 2(ρ̄ − ε)
21 + κ̄
22, (A.22c)

D	4 − δ̄	3 + �
20 − δ̄
21 = −3λ	2 + 2(α + 2π)	3 + (ρ − 4ε)	4 + 2ν
10

− 2λ
11 − (2γ − 2γ̄ + μ̄)
20 − 2(τ̄ − α)
21 + σ̄
22, (A.22d)
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�	0 − δ	1 + D
02 − δ
01 = (4γ − μ)	0 − 2(2τ + β)	1 + 3σ	2

+ (ρ̄ + 2ε − 2ε̄)
02 + 2σ
11 − 2κ
12 − λ̄
00 + 2(π̄ − β)
01, (A.23a)

�	1 − δ	2 − �
01 + δ̄
02 − 2δ� = ν	0 + 2(γ − μ)	1 − 3τ	2 + 2σ	3

− ν̄
00 + 2(μ̄ − γ )
01 + (2α + τ̄ − 2β̄)
02 + 2τ
11 − 2ρ
12, (A.23b)

�	2 − δ	3 + D
22 − δ
21 + 2�� = 2ν	1 − 3μ	2 + 2(β − τ)	3 + σ	4

− 2μ
11 − λ̄
20 + 2π
12 + 2(β + π̄)
21 + (ρ̄ − 2ε − 2ε̄)
22, (A.23c)

�	3 − δ	4 − �
21 + δ̄
22 = 3ν	2 − 2(γ + 2μ)	3 + (4β − τ)	4 − 2ν
11

− ν̄
20 + 2λ
12 + 2(γ + μ̄)
21 + (τ̄ − 2β̄ − 2α)
22, (A.23d)

D
11 − δ
10 + �
00 − δ̄
01 + 3D� = (2γ + 2γ̄ − μ − μ̄)
00 + (π − 2α − 2τ̄ )
01

+ (π̄ − 2ᾱ − 2τ)
10 + 2(ρ + ρ̄)
11 + σ̄
02 + σ
20 − κ̄
12 − κ
21,

(A.24a)

D
12 − δ
11 + �
01 − δ̄
02 + 3δ� = (2γ − μ − 2μ̄)
01 + ν̄
00 − λ̄
10 + 2(π̄ − τ)
11

+ (π + 2β̄ − 2α − τ̄ )
02 + (2ρ + ρ̄ − 2ε̄)
12 + σ
21 − κ
22, (A.24b)

D
22 − δ
21 + �
11 − δ̄
12 + 3�� = ν
01 + ν̄
10 − 2(μ + μ̄)
11 − λ
02 − λ̄
20

+ (2π − τ̄ + 2β̄)
12 + (2β − τ + 2π̄)
21 + (ρ + ρ̄ − 2ε − 2ε̄)
22. (A.24c)

A.2. Electromagnetic field

For the description of an electromagnetic field, we use the electromagnetic field tensor Fab

and its spinor equivalent φAB :

Fab = φABεA′B ′ + φ̄A′B ′εAB. (A.25)

The NP components of the Maxwell spinor are defined by

φ0 = Fab la mb = φAB oA oB,

φ1 = 1
2Fab[lanb − mam̄b] = φAB oAιB, (A.26)

φ2 = Fabm̄
a nb = φABιAιB.

The conformal transformation of these quantities is given by

φ̃AB = �φAB, φ̃i = �i+1φi. (A.27)

Maxwell’s equations without sources are equivalent to the (conformally invariant) spin-1
zero-rest-mass equation

∇A
A′φAB = 0. (A.28)

Projecting this onto the spin basis we obtain Maxwell’s equations in the NP formalism:

Dφ1 − δ̄φ0 = (π − 2α)φ0 + 2ρφ1 − κφ2, (A.29a)

Dφ2 − δ̄φ1 = −λφ0 + 2πφ1 + (ρ − 2ε)φ2, (A.29b)

�φ0 − δφ1 = (2γ − μ)φ0 − 2τφ1 + σφ2, (A.29c)

�φ1 − δφ2 = νφ0 − 2μφ1 + (2β − τ)φ2. (A.29d)
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Appendix B. Conformal field equations

B.1. Einstein–Maxwell fields

The projections of equation (17),

∇AA′∇BB ′� = �3φAB φ̄A′B ′ − �
ABA′B ′ + (F + ��)εA′B ′εAB, (B.1)

onto the null tetrad imply the following system of equations:

DS0 + (ε + ε̄)S0 + κ̄S1 + κS̄1 = �3φ0φ̄0 − �
00, (B.2a)

DS1 − π̄S0 + (ε̄ − ε)S1 + κS2 = �3φ0φ̄1 − �
01, (B.2b)

δS0 − (ᾱ + β)S0 + ρ̄S1 + σ S̄1 = �3φ0φ̄1 − �
01, (B.2c)

δS1 − λ̄S0 + (ᾱ − β)S1 + σS2 = �3φ0φ̄2 − �
02, (B.2d)

DS2 − F − �� − πS1 − π̄ S̄1 + (ε + ε̄)S2 = �3φ1φ̄1 − �
11, (B.2e)

δS̄1 + F + �� − μS0 + (β − ᾱ)S̄1 + ρ̄S2 = �3φ1φ̄1 − �
11, (B.2f )

δS2 − μS1 − λ̄S̄1 + (ᾱ + β)S2 = �3φ1φ̄2 − �
12, (B.2g)

�S0 − F − �� − (γ + γ̄ )S0 + τ̄ S1 + τ S̄1 = �3φ1φ̄1 − �
11, (B.2h)

�S1 − ν̄S0 + (γ̄ − γ )S1 + τS2 = �3φ1φ̄2 − �
12, (B.2i)

�S2 − νS1 − ν̄S̄1 + (γ + γ̄ )S2 = �3φ2φ̄2 − �
22. (B.2j )

The projections of equation (19),

∇AA′F = �2φB
Aφ̄B ′

A′∇BB ′� − 
ABA′B ′∇BB ′
� + �∇AA′�, (B.3)

give

DF = −S0
11 + S1
10 + S̄1
01 − S2
00

+ �2[S0φ1φ̄1 − S1φ1φ̄0 − S̄1φ0φ̄1 + S2φ0φ̄0] + �S0, (B.4a)

δF = −S0
12 + S1
11 + S̄1
02 − S2
01

+ �2[S0φ1φ̄2 − S1φ1φ̄1 − S̄1φ0φ̄2 + S2φ0φ̄1] + �S1, (B.4b)

�F = −S0
22 + S1
21 + S̄1
12 − S2
11

+ �2[S0φ2φ̄2 − S1φ2φ̄1 − S̄1φ1φ̄2 + S2φ1φ̄1] + �S2. (B.4c)

The conformal Bianchi identities (9) for the Einstein–Maxwell field projected onto the
spin basis imply the following system:

Dψ1 − δ̄ψ0 = (π − 4α)ψ0 + 2(ε + 2ρ)ψ1 − 3κψ2 − 3S1φ0φ̄0 + 3S0φ0φ̄1

+ �[2σφ1φ̄0 − 2βφ0φ̄0 + 2εφ0φ̄1 − 2κφ1φ̄1 + φ̄0δφ0 − φ̄1Dφ0], (B.5a)

Dψ2 − δ̄ψ1 = −λψ0 + 2(π − α)ψ1 + 2ρψ2 − 2κψ3 − S2φ0φ̄0 − 2S1φ1φ̄0

+ 2S0φ1φ̄1 + S̄1φ0φ̄1 + 2
3 �[φ̄0δφ1 − φ̄1Dφ1 − (γ + μ)φ0φ̄0 + τφ1φ̄0

+ (α + π)φ0φ̄1 + σφ2φ̄0 − ρφ1φ̄1 − κφ2φ̄1] + 1
3 �[φ̄0�φ0 − φ̄1δ̄φ0], (B.5b)
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Dψ3 − δ̄ψ2 = −2λψ1 + 3πψ2 + 2(ρ − ε)ψ3 − κψ4 − 2S2φ1φ̄0 − S1φ2φ̄0 + S0φ2φ̄1

+ 2S̄1φ1φ̄1 + 2
3 �[−νφ0φ̄0 − μφ1φ̄0 + λφ0φ̄1 + (β + τ)φ2φ̄0 + πφ1φ̄1

− (ε + ρ)φ2φ̄1 + φ̄0�φ1 − φ̄1δ̄φ1] + 1
3 �[φ̄0δφ2 − φ̄1Dφ2], (B.5c)

Dψ4 − δ̄ψ3 = −3λψ2 + 2(α + 2π)ψ3 + (ρ − 4ε)ψ4 − 3S2φ2φ̄0 + 3S̄1φ2φ̄1

+ �[φ̄0�φ2 − φ̄1δ̄φ2 − 2νφ1φ̄0 + 2γφ2φ̄0 + 2λφ1φ̄1 − 2αφ2φ̄1], (B.5d)

δψ1 − �ψ0 = (μ − 4γ )ψ0 + 2(β + 2τ)ψ1 − 3σψ2 − 3S1φ0φ̄1 + 3S0φ0φ̄2

+ �[−2βφ0φ̄1 + 2σφ1φ̄1 + 2εφ0φ̄2 − 2κφ1φ̄2 − φ̄2Dφ0 + φ̄1δφ0], (B.5e)

δψ2 − �ψ1 = −νψ0 + 2(μ − γ )ψ1 + 3τψ2 − 2σψ3 − S2φ0φ̄1 − 2S1φ1φ̄1 + 2S0φ1φ̄1

+ S̄1φ0φ̄2 + 2
3 �[−(γ + μ)φ0φ̄1 + τφ1φ̄1 + σφ2φ̄1 + (π + α)φ0φ̄2

− ρφ1φ̄2 − κφ2φ̄2 + φ̄1δφ1 − φ̄2Dφ1] + 1
3 �[φ̄1�φ0 − φ̄2δ̄φ0], (B.5f )

δψ3 − �ψ2 = −2νψ1 + 3μψ2 + 2(τ − β)ψ3 − σψ4 − 2S2φ1φ̄1 − S1φ2φ̄1 + S0φ2φ̄2

+ 2S̄1φ1φ̄2 + 2
3 �[−νφ0φ̄1 − μφ1φ̄1 + (β + τ)φ2φ̄1 + λφ0φ̄2 + πφ1φ̄2

− (ε + ρ)φ2φ̄2 + φ̄1�φ1 − φ̄2δ̄φ1] + 1
3 �[φ̄1δφ2 − φ̄2Dφ2], (B.5g)

δψ4 − �ψ3 = −3νψ2 + 2(2γ + 2μ)ψ3 + (τ − 4β)ψ4 − 3S2φ2φ̄1 + 3S̄1φ1φ̄2

+ �[−2νφ1φ̄1 + 2γφ2φ̄1 + 2λφ1φ̄2 − 2αφ2φ̄2 + φ̄1�φ2 − φ̄2δ̄φ2]. (B.5h)

Appendix C. Reissner–Nordström spacetime

To justify our choice of gauge and show that the choice made by [10] is too restrictive, we
shall show here how a simple spacetime, namely the Reissner–Nordström solution, appears in
our gauge. The physical metric is

ds̃2 =
(

1 − 2m

r̃
+

Q2

r̃2

)
dt2 −

(
1 − 2m

r̃
+

Q2

r̃2

)−1

dr̃2 − r̃2 d�2, (C.1)

where Q is the charge and d�2 = dθ2 +sin2 θ dφ2. In the standard conformal compactification
of the Reissner–Nordström spacetime one introduces the ‘tortoise coordinate’ r∗ and the
advanced time v by

dr̃ =
(

1 − 2m

r̃
+

Q2

r̃2

)
dr∗,

v = t + r∗.
(C.2)

In these coordinates the physical metric acquires the form

ds̃2 =
(

1 − 2m

r̃
+

Q2

r̃2

)
(dv2 − 2 dv dr∗) − r̃2 d�2. (C.3)

We compactify it by defining the coordinate

r = r̃−1 (C.4)

and the conformal factor

� = r. (C.5)
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The unphysical metric then reads

ds2 = r2(1 − 2 m r + Q2 r2) dv2 + 2 dv dr − d�2. (C.6)

Comparing this with (31)–(34), we find the metric functions to be

H = 1

2
r2 − m r3 +

1

2
Q2 r4,

CI = 0,

P 2 = 1√
2
,

P 3 = i√
2 sin θ

.

(C.7)

From the metric the other geometrical quantities follow. The spin coefficients are all zero,
except for

ε = − 1
2 r + 3

2 m r2 − Q2 r3, α = −β = − 1
2
√

2
cot θ. (C.8)

The non-zero components of the Weyl and Ricci tensor read

ψ2 = m − Q2 r,


11 = 1
2 − 3

2 m r + 3
2 Q2 r2, (C.9)

� = 1
2 m r − 1

2 Q2 r2.

The electromagnetic 4-potential and corresponding electromagnetic tensor in these
coordinates are

Aμ = (Q r, 0, 0, 0), Fμν = −Qεμν 2 3. (C.10)

The only non-vanishing NP component of Fμν is

φ1 = Q, (C.11)

as one would expect. All these results are in accordance with results obtained in the text. On
the other hand, the gauge condition � = 0 everywhere, imposed in [10], leads to a periodic
unphysical metric only if m = 0, i.e. flat spacetime. This can be seen as follows: we need to
rescale the metric (C.6) say to

ĝab = �−2gab

so that, by (A.15),

�̂ = �−2
(
�� + 1

4 ��
) = 0,

where the boundary conditions on � are that � = 1 on r = 0 and, say, v = 0 (in order to
preserve the conditions that ρ = 0 on r = 0, μ = 0 on v = 0 and � = 1 on v = r = 0). With
the metric (C.6), this wave equation on � becomes

2∂v∂r� = ∂r(A∂r�) − L2� − 2(mr − Qr2)�, (C.12)

with A = r2(1 − 2mr + Q2r2) and

L2� = 1

sin θ

∂

∂θ

(
∂�

∂θ

)
+

1

sin2 θ

∂2�

∂θ2
.

Now from (C.12) evaluated at r = 0, we calculate ∂v∂r� = 0 so that ∂r� is constant on I−,
but it vanishes at v = 0 so it is zero for all v. Then from (C.12) again at I−,

∂v∂
2
r � = −m.

Thus � cannot be periodic in v unless m = 0, in which case the physical metric is flat.
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