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Abstract: We give a complete classification of all connected isometry groups, together
with their actions in the asymptotic region, in asymptotically flat, asymptotically vacuum
space–times with timelike ADM four–momentum.

1. Introduction

In any physical theory a privileged role is played by those solutions of the dynami-
cal equations which exhibit symmetry properties. For example, according to a current
paradigm, there should exist a large class of isolated gravitating systems which are
expected to settle down towards a stationary state, asymptotically in time, outside of
black hole regions. If that is the case, a classification of all such stationary states would
give exhaustive information about the large–time dynamical behavior of the solutions
under consideration. More generally, one would like to understand the global structure
of all appropriately regular space–times exhibiting symmetries. Now the local structure
of space–times with Killing vectors is essentially understood, the reader is referred to
the book [20], a significant part of which is devoted to that question. However, in that
reference, as well as in most works devoted to those problems, the global issues arising
in this context are not taken into account. In this paper we wish to address the ques-
tion, what is the structure of the connected component of the identity of the group of
isometries of space–times which are asymptotically flat in space–like directions, when
the condition of time–likeness of the ADM four–momentumpµ is imposed? Recall that
the time–likeness ofpµ can be established when the Einstein tensor satisfies a positivity
condition, and when the space–time contains an appropriately regular spacelike surface,
see [4] for a recent discussion and a list of references. Thus the condition of time–
likeness ofpµ is a rather weak form of imposing global restrictions on the space–time
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under consideration. The reader should note that we do not requirep0 to be positive,
so that our results also apply to space–times with negative mass, as long as the total
four–momentum is time–like.

In asymptotically flat space–times one expects Killing vectors to “asymptotically
look like” their counterparts in Minkowski space–time – in [4, Proposition 2.1] we
have shown thatat the leading orderthis is indeed the case (see also Proposition 2.1
below). This allows one to classify the Killing vectors into “boosts”, “translations”, etc.,
according to their leading asymptotic behavior. There exists a large literature concerning
the case in which one of the Killing vectors is a time–like translation –e.g., the theory
of uniqueness of black holes – but no exhaustive analysis of what Killing vectors are
kinematically allowed has been done so far. This might be due to the fact that for Killing
vector fields with a rotation–type leading order behaviour, the next to leading order terms
are essential to analyse the structure of the orbits, and it seems difficult to control those
without some overly restrictive hypotheses on the asymptotic behaviour of the metric.
In this work we overcome this difficulty, and prove the following (the reader is referred
to Sect. 2 for the definition of a boost–type domain, and for a detailed presentation of
the asymptotic conditions used in this paper):

Theorem 1.1. Let (M, gµν) be a space–time containing an asymptotically flat boost–
type domain�, with time–like (non–vanishing) ADM four momentumpµ, with fall–off
exponent1/2 < α < 1 and differentiability indexk ≥ 3 (see Eq. (2.2) below). We
shall also assume that the hypersurface{t = 0} ⊂ � can be Lorentz transformed to a
hypersurface in� which is asymptotically orthogonal topµ. Suppose moreover that the
Einstein tensorGµν of gµν satisfies in� the fall–off condition

Gµν = O(r−3−ε), ε > 0 . (1.1)

Let Xµ be a non–trivial Killing vector field on�, let φs[X] denote its (perhaps only
locally defined) flow. ReplacingXµ by an appropriately chosen multiple thereof if nec-
essary, one has:

1. There existsR1 ≥ 0 such thatφs[X](p) is defined for allp ∈ ΣR1 ≡ {(0, ~x) ∈ � :
r(~x) ≥ R1} and for alls ∈ [0, 1].

2. There exists a constanta ∈ R such that, in local coordinates on�, for all xµ = (0, ~x)
as in point 1 we have

φµ
1 [X] = xµ + apµ + Ok(r−α) .

3. If a = 0, thenφ1[X](p) = p for all p for whichφ1[X](p) is defined.

The reader should notice that Theorem 1.1 excludes boost-type Killing vectors. This
feature is specific to asymptotic flatness at spatial infinity, see [6] for a large class of
vacuum space–times with boost symmetries which are asymptotically flat in light–like
directions. The theorem is sharp, in the sense that the result is not true ifpµ is allowed
to vanish or to be non–time–like.

When considering asymptotically flat space–times with more than one Killing vector,
it is customary to assume that there exists a linear combination of Killing vectors the
orbits of which are periodic (and has an axis — see below). However no justification
of this property of Killing orbits has been given so far, except perhaps in some special
situations. Theorem 1.1 allows us to show that this is necessarily the case. While this
property, appropriately understood, can be established without making the hypothesis of
completeness of the orbits of the Killing vector fields, the statements become somewhat
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awkward. For the sake of simplicity let us therefore assume that we have an action of a
connected non–trivial groupG0 on (M, gµν) by isometries. Using Theorem 1.1 together
with the results of [4] we can classify all the groups and actions. Before doing that we
need to introduce some terminology. Consider a space–time (M, gµν) with a Killing
vector fieldX. Then (M, gµν) will be said to be:

1. Stationary, if there exists an asymptotically Minkowskian coordinate system{yµ}
on (perhaps a subset of)�, with y0 — a time coordinate, in whichX = ∂/∂y0.
When the orbits ofX are complete we shall require that they are diffeomorphic to
R, and thatΣR ≡ {t = 0, r(~x) ≥ R} intersects the orbits ofX only once, at least
for R large enough.

2. Axisymmetric, if Xµ has complete periodic orbits. MoreoverXµ will be required to
have an axis, that is, the set{p : Xµ(p) = 0} 6= ∅.

3. Stationary-rotating(compare [14]), if the matrixσµ
ν = limr→∞ ∂νXµ is a rotation

matrix, that is,σµ
ν has a timelike eigenvectoraµ, with zero eigenvalue1. Let φt[X]

denote the flow ofX. We shall moreover require that there existsT > 0 such that
φT [X](p) ∈ I+(p) for p in the exterior asymptotically flat 3-regionΣext.

4. Stationary–axisymmetric, if there exist onM two commutingKilling vector fields
Xa, a = 1, 2, such that (M, gµν) is stationary with respect toX1 and axisymmetric
with respect toX2,

5. Spherically symmetric, if, in an appropriate coordinate system on�, SO(3) acts on
M by rotations of the spheresr = const,t = const′ in �, at least fort = 0 andr
large enough.

6. Stationary–spherically symmetric, if (M, gµν) is stationary and spherically symmet-
ric.

We have the following:

Theorem 1.2. Under the conditions of Theorem 1.1, letG0 denote the connected com-
ponent of the group of all isometries of(M, gµν). If G0 is non–trivial, then one of the
following holds:

1. G0 = R, and(M, gµν) is either stationary, or stationary–rotating.
2. G0 = U (1), and(M, gµν) is axisymmetric.
3. G0 = R × U (1), and(M, gµν) is stationary–axisymmetric.
4. G0 = SO(3), and(M, gµν) is spherically symmetric.
5. G0 = R × SO(3), and(M, gµν) is stationary–spherically symmetric.

We believe that the condition that� be a boost–type domain is unnecessary. Recall,
however, that this condition is reasonable for vacuum space–times [9], and one expects
it to be reasonable for a large class of couplings of matter fields to gravitation, including
electro–vacuum space–times. We wish to point out that in our proof that condition is
needed to exclude boost–type Killing vectors, in Proposition 2.2 below, as well as to
exclude causality violations in the asymptotic region. We expect that it should be possible
to exclude the boost–type Killing vectors purely by an initial data analysis, using the
methods of [4]. If that turns out to be the case, the only “largeness requirements” left
on (M, gµν) would be the much weaker conditions2 needed in Proposition 2.3 below.

1 If σµ
ν has a timelike eigenvectoraµ, we can find a Lorentz frame so thataµ = (a, 0, 0, 0). In that frame

σµ
ν satisfiesσ0

ν = σµ
0 = 0, so that it generates space–rotations, if non–vanishing.

2 Those global considerations of the proof of Theorem 1.2 which use the structure of� can be carried
through under the condition (2.15), provided that the constantsC1 andĈ1 appearing there are replaced by
some appropriate larger constants. The reader should also note that these considerations are unnecessary when
ΣR is assumed to be achronal.
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Let us also mention that in stationary space–times with more than one Killing vector
all the results below can be proved directly by an analysis of initial data sets, so that no
“largeness” conditions on (M, gµν) need to be imposed — see [3].

Let us finally mention that the results here settle in the positive Conjecture 3.2 of
[13], when the supplementary hypothesis of existence of at least two Killing vectors is
made there.

We find it likely that there exist no electro–vacuum, asymptotically flat space–times
which have no black hole region, which are stationary–rotating and for whichG0 = R. A
similar statement should be true for domains of outer communications of regular black
hole space–times. It would be of interest to prove this result. Let us also point out that the
Jacobi ellipsoids [7] provide a Newtonian example of solutions with a one dimensional
group of symmetries with a “stationary–rotating” behavior.

2. Definitions, Proofs

Let W be a vector field, throughout we shall use the notationφt[W ] to denote the
(perhaps defined only locally) flow generated byW .

Consider a subset� of R4 of the form

� = {(t, ~x) ∈ R × R3 : r((t, ~x)) ≥ R, |t| ≤ f (r(~x))} , (2.1)

for some constantR ≥ 0 and some functionf (r) ≥ 0, f 6≡ 0. We shall consider only
non–decreasingfunctionsf . Here and elsewhere, by a slight abuse of notation, we write

r((t, ~x)) = r(~x) =

√√√√ 3∑
i=1

(xi)2 .

Let α be a positive constant;� will be calleda boost–type domainif f (r) = θr + C for
some constantsθ > 0 andC ∈ R (cf. also [9]).

Let φ be a function defined on�. For β ∈ R we shall say thatφ = Ok(rβ) if
φ ∈ Ck(�), and if there exists a functionC(t) such that we have

0 ≤ i ≤ k |∂α1 · · · ∂αi
φ| ≤ C(t)(1 + r)β−i .

We writeO(rβ) for O0(rβ). We say thatφ = o(rβ) if lim r→∞,t=constr
−βφ(t, x) = 0. A

metric on� will be said to be asymptotically flat if there existα > 0 andk ∈ N such
that

gµν − ηµν = Ok(r−α) , (2.2)

and if there exists a functionC(t) such that

|gµν | + |gµν | ≤ C(t) , (2.3)

g00 ≤ −C(t)−1, g00 ≤ −C(t)−1 , (2.4)

∀Xi ∈ R3 gijX
iXj ≥ C(t)−1 ∑

(Xi)2 . (2.5)

Here and throughoutηµν is the Minkowski metric.
Given a set� of the form (2.1) with a metric satisfying (2.2)–(2.5), to every slice

{t = const} ⊂ � one can associate in a unique way the ADM four–momentum vector
pµ (see [10, 2]), provided thatk ≥ 1, α > 1/2, and that the Einstein tensor satisfies the
fall–off condition (1.1). Those conditions also guarantee thatpµ will not depend upon



Isometry Groups of Space–Times 589

which hypersurfacet = const has been chosen. The ADM four–momentum of� will
be defined as the four–momentum of any of the hypersurface{t = const} ⊂ �.

We note the following useful result:

Proposition 2.1. Consider a metricgµν defined on a set� as in (2.1) (with a non–
decreasing functionf ), and suppose thatgµν satisfies (2.2)–(2.5) withk ≥ 2 and
0 < α < 1. Let Xµ be a Killing vector field defined on�. Then there exist numbers
σµν = σ[µν] such that

Xµ − σµ
νxν = Ok(r1−α) , (2.6)

with σµ
ν ≡ ηµασαν . If σµν = 0, then there exist numbersAµ such that

Xµ − Aµ = Ok(r−α) . (2.7)

If σµν = Aµ = 0, thenXµ ≡ 0.

Proof. The result follows from Proposition 2.1 of [4], applied to the slices{t = const},
except for the estimates on those partial derivatives ofX in which ∂/∂t factors oc-
cur. Those estimates can be obtained from the estimates for the space–derivatives of
Proposition 2.1 of [4] and from the equations

∇µ∇νXα = Rλ
µναXλ , (2.8)

which are a well known consequence of the Killing equations. �

The proofs of Theorems 1.1 and 1.2 require several steps. Let us start by showing that
boost–type Killing vectors are possible only if the ADM four–momentum is spacelike
or vanishes:

Proposition 2.2. Let gµν be a twice differentiable metric on a boost–type domain�,
satisfying (2.2)–(2.5), withα > 1/2 and withk ≥ 2. Suppose that the Einstein tensor
Gµν of gµν satisfies

Gµν = O(r−3−ε), ε > 0 .

LetXµ be a Killing vector field on�, set

σµ
ν ≡ lim

r→∞
∂Xµ

∂xν
(2.9)

(those limits exist by Proposition 2.1). Then the ADM four–momentumpµ of � satisfies

σµ
νpµ = 0 . (2.10)

Proof. If σµ
α = 0 there is nothing to prove, suppose thus thatσµ

α 6= 0. Let�µ
ν be a

solution of the equation
d�µ

ν

ds
= σµ

α�α
ν .

It follows from Proposition 2.1 that the flowφt[X](p) is defined for allt ∈ [−α, α]
and for allp ∈ ΣR1 ≡ {t = 0, r(p) ≥ R1} ⊂ � for some constantsα andR1. By [11,
Theorem 1], in local coordinates we have

φµ
t [X] = �µ

ν(t)xν + Ok(r1−α) ,
∂φµ

t [X]
∂xν = �µ

ν(t) + Ok−1(r1−α) .
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The error terms above satisfy appropriate decay conditions so that the ADM four–
momentum

pµ(φt[X](ΣR1)) =
∫

φt[X](ΣR1)
Uαβ

µ dSαβ

is finite and well–defined. HeredSµν = ι∂µ
ι∂ν

dx0 ∧ . . . ∧ dx3, ιX denotes the inner
product of a vectorX with a form, and (cf., e.g., [11])

Uαβ
µ = δ[α

λ δβ
ν δγ]

µ ηλρηγσ∂ρg
νσ .

As is well known (see [11] for a proof under the current asymptotic conditions,cf. also
[5, 1]), under boosts the ADM four–momentum transforms like a four–vector, that is,

pµ(φt[X](ΣR1)) = �µ
ν(t)pν(ΣR1) . (2.11)

On the other hand, theφµ
t [X]’s are isometries, so that

gαβ(φµ
t [X](x))

∂φα
t [X]

∂xµ
(x)

∂φβ
t [X]

∂xν
(x) = gµν(x) ,

which gives

Uµν
α (φµ

t [X](x))�σ
µ(t)�ρ

ν(t) = �γ
α(t)Uρσ

γ (x) + O(r−1−2α) . (2.12)

Equations (2.11) and (2.12) give, for allt,

�σ
µ(t)pσ = pµ , (2.13)

and (2.10) follows byt–differentiation of Eq. (2.13). �

Suppose, now, that the ADM four–momentumpµ of the hypersurface{t = 0} is
timelike. If � is large enough we can find a boost transformation3 such that the hyper-
surface3({t = 0}) is asymptotically orthogonal topµ. It then follows by Proposition
2.2 that the matrixσ defined in Eq. (2.9) has vanishing 0-components in that Lorentz
frame, and therefore generates space rotations. We need to understand the structure of
orbits of such Killing vectors. This is analysed in the proposition that follows:

Proposition 2.3. Let gµν be a metric on a set� as in Eq. (2.1), and suppose thatgµν

satisfies the fall-off condition (2.2) with0 < α < 1 andk ≥ 2. Let Xµ be a Killing
vector field defined on�, and suppose that

Zµ∂µ ≡ Xµ∂µ − ωi
jx

j∂i = o(r) , ∂σZµ = o(1) , (2.14)

with ωi
j — a (non–trivial) antisymmetric matrix with constant coefficients, normalized

such thatωi
jω

j
i = −2(2π)2. (It follows from Proposition 2.1 that there exist constants

C1, Ĉ1 such that|X0| ≤ C1r
1−α + Ĉ1 on{t = 0} ⊂ �.) Suppose that the functionf in

(2.1) satisfies
f (r) ≥ C2r

1−α + Ĉ1 , (2.15)

whereC2 is any constant larger thanC1. Letφs denote the flow ofXµ. Then:

1. There existsR1 ≥ R such thatφs(p) is well defined forp ∈ ΣR1 ≡ {t = 0, r ≥
R1} ⊂ � and fors ∈ [0, 1]. For those values ofs we haveφs(ΣR1) ⊂ �.
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2. There exist constantsAµ such that, in local coordinates on�, for all xµ ∈ ΣR1 we
have

φµ
1 = xµ + Aµ + Ok−1(r−α) . (2.16)

3. If Aµ = 0, thenφ1(p) = p for all p for whichφ1(p) is defined.

Remark.The hypothesis that limr→∞ ∂iX
0 = 0, which is made in (2.14), is not needed

for points 2 and 3 above to hold, provided one assumes that the conclusions of point 1
hold.

Proof. Point 1 follows immediately from the asymptotic estimates of Proposition 2.1
and the defining equations forφµ

s ,

dφµ
s

ds
= Xµ ◦ φµ

s .

To prove point 2, letRi
j(s) be the solution of the equation

dRi
j

ds
= ωi

kRk
j ,

with initial conditionRi
j(0) = δi

j , setR0
0(s) = 1, R0

i(s) = 0. We have the variation–
of–constants formula

φµ
s (x) = Rµ

ν(s)xν +
∫ s

0
Rµ

ν(s − t)Zν(φt(x))dt,

from which we obtain, in view of Proposition 2.1,

∂φµ
1

∂xν − δµ
ν = Ok−1(r−α), (2.17)

φµ
1 − xµ = Ok(r1−α). (2.18)

Setyµ(x) = φµ
1 (x). As yµ(xν) is an isometry, we have the equations

∂2yα

∂xµ∂xν
= 0σ

µν(x)
∂yα

∂xσ
− 0α

βγ(y(x))
∂yρ

∂xµ

∂yγ

∂xν
. (2.19)

From (2.17)–(2.18) we obtain

∂2(yα − xα)
∂xµ∂xν

= 0α
µν(x) − 0α

µν(y(x)) + Ok−1(r−1−2α)

= (yρ(x) − xρ)
∫ 1

0
∂ρ0

α
µν(tx + (1− t)y(x))dt + Ok−1(r−1−2α)

= Ok−2(r−1−2α) . (2.20)

We can integrate this inequality inr to obtain

∂(yα − xα)
∂xµ

= Ok−1(r−2α) .

If 2α > 1, the Lemma the Appendix A of [11] shows that the limits limr→∞,t=0(yα −
xα) = Aα exist and we get

yα − xα = Aα + Ok(r1−2α) .
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Otherwise, decreasingα slightly if necessary, we may assume that 2α < 1, in which
case we simply obtain

yα − xα = Ok(r1−2α) .

If the last case occurs we can repeat this argument`−1 times to obtainO(r−1−(`+1)α) at
the right–hand–side of (2.20) until−1− (`+1)α < −2; at the last iteration we shall thus
obtainO(r−2−ε) there, with someε > 0. We can again use the Lemma of the Appendix
A of [11] to conclude that the limits limr→∞,t=0(yα − xα) = Aα exist. An iterative
argument similar to the one above applied to (2.20) gives then

ξα ≡ yα − xα − Aα = Ok(r−α) , (2.21)

which establishes point 2.
Suppose finally thatAµ vanishes. Equation (2.19) implies an inequality of the form∣∣∣∣∂2(yα − xα)

∂xµ∂xν

∣∣∣∣ ≤ C(|∂0||y − x| + |0||∂(y − x)|), (2.22)

for some constantC. A standard bootstrap argument using (2.22), (2.17) and (2.18)
shows that for allσ ≥ 0 we have

lim
r→∞[rσ|y − x| + rσ|∂(y − x)|] = 0. (2.23)

Define
F = rβ−2|y − x|2 + rβ |∂(y − x)|2. (2.24)

Choosingβ large enough one finds from (2.22) that

∂F

∂r
≥ 0. (2.25)

This implies
R2 ≤ r ≤ r1 ⇒ F (r1) ≥ F (r) ≥ 0. (2.26)

Passing withr1 → ∞ from (2.23) we obtainφ1(x) = x for x ∈ ΣR1. φ1 is therefore an
isometry which reduces to an identity on a spacelike hypersurface, and point 3 follows
from [12, Lemma 2.1.1]. �

We are ready now to pass to the proof of Theorem 1.1:

Proof of Theorem 1.1.Let yα(xβ) be defined as in the proof of Proposition 2.3, as it is
an isometry we have the equation:

gµν(y(x))
∂yµ

∂xα

∂yν

∂xβ
= gαβ(x) . (2.27)

Setξα = ηαβξβ , whereηαβ = diag(−1, 1, 1, 1), with ξ defined by eq. (2.21). Equa-
tions (2.21) and (2.27) together with the asymptotic form of the metric, Eq. (2.2), give

∂ξα

∂xβ
+

∂ξβ

∂xα
+ gαβ(xσ + Aσ + ξσ) − gαβ(xσ) = Ok−1(r−1−2α) . (2.28)

Suppose first thatAσ 6≡ 0; we have
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gαβ(xσ + Aσ + ξσ) − gαβ(xσ)

=
∂gαβ

∂xρ
(xσ)Aρ +

∫ 1

0

(
∂gαβ

∂xρ
(xσ + s(Aσ + ξσ))(Aρ + ξρ)) − ∂gαβ

∂xρ
(xσ)Aρ

)
ds

=
∂gαβ

∂xρ
(xσ)Aρ + O(r−1−2α) .

A similar calculation for the derivatives ofgαβ gives

gαβ(xσ + Aσ + ξσ) − gαβ(xσ) =
∂gαβ

∂xρ
(xσ)Aρ + Ok−2(r−1−2α) . (2.29)

In a neighbourhood ofΣR1 define a vector fieldY µ by

Y µ = ξµ + Aµ .

It follows from (2.28)–(2.29) thatY µ satisfies the equation

∇µYν + ∇νYµ = Ok−2(r−1−2α) .

By hypothesis we havek ≥ 3 and 2α > 1, we can thus use [4, Proposition 3.1] to
conclude thatAµ must be proportional topµ. The remaining claims follow directly by
Proposition 2.3. �

To prove Theorem 1.2 we shall need two auxiliary results:

Proposition 2.4. Under the hypotheses of Prop. 2.1, letW be a non–trivial Killing
vector field defined on�. Suppose that there existsR1 such that forp ∈ ΣR1 the orbits
φs[W ](p) are defined fors ∈ [0, 1], with φ1[W ](p) = p. Assume moreover that there
exists a non–vanishing antisymmetric matrix with constant coefficientsωi

j such that
Wµ∂µ − ωi

jx
j∂i = o(r). Then the set{p : W (p) = 0} is not empty.

Remark.The following half–converse to Proposition 2.4 is well known: Let W be a
Killing vector field on a Lorentzian manifoldM and suppose thatW (p) = 0. If there
exists a neighborhoodO of p such thatW is nowhere time–like onO, then there exists
T > 0 such that all orbits which are defined fort ≥ T are periodic.

Proof. Let φs denote the flow ofW on�, and forp ∈ ΣR1 define

t̄(p) =
∫ 1

0
t ◦ φs(p)ds, (2.30)

r̄(p) =
∫ 1

0
r ◦ φs(p)ds. (2.31)

Note that (φs)∗ asymptotes to the matrixRµ
ν(s) defined in the proof of Prop. 2.3, which

gives

∇r̄ =
∫ 1

0
(φs)∗(∇r) ◦ φs(p)ds ≈ ∇r + O(r−α).

Similarly
∇t̄ ≈ ∇t + O(r−α).

This shows that forR large enough the setsSR,T = {p : r̄(p) = R, t̄(p) = T} are
differentiable spheres. Moreover
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r̄ ◦ φs = r̄, t̄ ◦ φs = t̄, (2.32)

so thatW is tangent toSR,T . As every continuous vector field tangent to a two–
dimensional sphere has fixed points, the result follows. �
Proof of Theorem 1.2.Let g denote the Lie algebra ofG0. As is well known [19, Vol. I,
Chapitre VI, Theorem 3.4], to any elementh of g there is associated a unique Killing
vector fieldXµ(h), the orbit of which is complete.

Suppose first thatg is 1–dimensional. If the constanta of Theorem 1.1 vanishes,
(M, gµν) is axisymmetric by part 3 of Theorem 1.1 and by Proposition 2.4. Ifa does
not vanish there are two cases to analyse. Consider first the case in which∂µXν 6→ 0
asr → ∞. Let us perform a Lorentz transformation so that the new hypersurfacet = 0,
still denoted byΣR, is asymptotically normal topµ. By Proposition 2.2 we must have
limr→∞ ∂iX

0 = limr→∞ ∂0X
i = 0, hence Proposition 2.3 applies. AsM contains a

boost–type domain for anyT we can choosep ∈ ΣR1, with r(p) large enough, so that
φs[X](p) is defined for alls ∈ [0, T ], with φs[X](p) 6= p by (2.16). This shows that
G0 cannot beU (1), henceG0 = R, and (M, gµν) is stationary–rotating as claimed.
The second case to consider is, by Proposition 2.1, that in whichXµ → apµ = Aµ

as r → ∞ in �. We want to show thatΣR is a global cross–section forφs[X], at
least forR large enough. To do that, note that timelikeness ofAµ implies that we can
chooseR2 large enough so thatXµ is transverse toΣR2. Let (gij , Kij) be the induced
metric and the extrinsic curvature ofΣR2, and let (M̂, ĝµν) be the Killing development
of (ΣR2, gij , Kij) constructed using the Killing vector fieldXµ, see Sect. 2 of [4] for
details. Define9 : M̂ → MR2 ≡ ∪t∈Rφt[X](ΣR2) by 9(t, ~x) = φt[X](0, ~x). Then9

is a local isometry between̂M andMR2. 9 is surjective by construction, and there exists
a boost–type domain̂� in M̂ such that9|�̂ is a diffeomorphism between̂� and�.

Suppose that9 is not injective, let us first show that this is equivalent to the statement
that 9−1(ΣR2) is not connected. Indeed, letp = (t, ~x) and q = (τ, ~y) be such that
9(p) = 9(q), thenφ−t(9(p)) = φ−t(9(q)) so that9((0, ~x)) = 9((τ − t, ~y)), which leads
to (τ − t, ~y) ∈ 9−1(ΣR2).

Consider any connected componentΣ̂ of 9−1(ΣR2), as9 is a local isometryΣ̂ is
an asymptotically flat hypersurface in̂M . By [11, Lemma 1 and Theorem 1], we have

Σ̂ = {t = h(~x), ~x ∈ U ∈ R3} ,

whereU containsR3 \B(R3) for someR3 ≥ R2. Morever there exists a Lorentz matrix
3µ

ν such that
h(~x) = 30

iX
i + O(r1−α) .

Note that the unit normal tôΣ approaches, asr → ∞, the Killing vectorX, hence

3µ
νXν = Xµ ⇒ 30

i = 3i
0 = 0 .

It follows that h(~x) = O(r1−α), so that9((h(~x), ~x)) ∈ � for r(~x) ≥ R4 for some
constantR4 ≥ R3.

Consider a pointq ∈ ΣR4, then there exists a point (0, ~x) such that9(0, ~x) = q and
a point (h(~y), ~y) ∈ Σ̂ such that9(h(~y), ~y)) = q. This, however, contradicts that fact that
9|�̂ is a diffeomorphism between the boost-type domain�̂ and�. We conclude that
ψ is injective. It follows thatψ is a bijection, which implies that all the orbits through
p ∈ ΣR2 are diffeomorphic toR, and that they intersectΣR2 only once.
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Suppose next thatg is two–dimensional. Then there exist onM two linearly inde-
pendent Killing vectorsXµ

a , a = 1, 2. Propositions 2.2 and 2.3 lead to the following
three possibilites:

i) There exist constantsBµ
a , a = 1, 2 such thatXµ

a −Bµ
a = o(1). By [4, Prop. 3.1] we

haveBµ
a = aapµ for some constantsaa. It follows that there exist constants (α, β) 6= (0, 0)

such thatαXµ
1 + βXµ

2 = o(1). Proposition 2.1 implies thatαXµ
1 + βXµ

2 = 0, which
contradicts the hypothesis dimg = 2, therefore this case cannot occur. ii) There exist
constantsBµ andωi

j = −ωj
i such that

Xµ
1 − Bµ = o(1), Xµ

2 ∂µ − ωi
jx

i∂j = o(r) . (2.33)

Consider the commutator [X1, X2]. The estimates on the derivatives ofXµ
a of Propo-

sition 2.1 give [X1, X2]0 = o(1), [X1, X2]i = o(r), so that by Prop. 2.1 the commu-
tator [X1, X2] either vanishes, or asymptotes a constant vector with vanishing time–
component, hence spacelike. The latter case cannot occur in view of [4, Prop. 3.1],
hence [X1, X2] = 0. It follows thatφt[X2 + αX1] = φt[X2] ◦ φt[αX1]. Let apµ be the
vector given by Theorem 1.1 for the vector fieldXµ

2 . In local coordinates we obtain

φµ
1 [X2 + αX1] = xµ + apµ + αBµ + O(r−α) .

By [4, Prop. 3.1] we haveBµ ∼ pµ, so that we can chooseα so thatφµ
1 [X2 + αX1] =

xµ +O(r−α). By point 3 of Theorem 1.1 we obtainφ1[X2+αX1](p) = p, hence all orbits
of Xµ

2 + αXµ
1 are periodic with period 1. Aspµ is time–like, the orbits ofXµ

1 must be
time–like in the asymptotic region. As before, those orbits cannot be periodic because
the coordinates on� cover a boost–type region, hence they must be diffeomorphic to
R. As [X1, X2] = 0, we obtain thatG0 is the direct productR × U (1).

iii) For dim g = 2 the last case left to consider is that when there exist non–zero
constantsωa

ij ,a = 1, 2, such thatXµ
a ∂µ−ωa

ijx
i∂j = o(r). Suppose that the antisymmetric

matricesωa
ij do not commute, then by well known properties ofso(3) the matrices

ωa
ij together with the matrixω1

ijω
2
jk − ω2

ijω
1
jk are linearly independent. It follows that

[X1, X2] is a Killing vector linearly independent ofX1 andX2 near infinity, whence
everywhere in�. It is well known that the orbits of [X1, X2] are complete when those of
X1 andX2 are [19, Vol. I, Chapitre VI, Theorem 3.4], which implies thatG0 is at least
three–dimensional, which contradicts dimg = 2. If the matricesωa

ij commute they are
linearly dependent. Thus there exist constants (α, β) 6= (0, 0) such thatαXµ

1 + βXµ
2 =

o(r). By Proposition 2.1 the Killing vector fieldαXµ
1 + βXµ

2 is a translational Killing
vector, and the case here is reduced to point ii) above.

Let us turn now to the case of a three dimensional Lie algebrag. An analysis similar
to the above shows that this can only be the case if three Killing vector fieldsXµ

i ,
i = 1, 2, 3, onM can be chosen so thatXµ

i ∂µ − εijkxj∂k = o(r). Moreover we must
have [Xi, Xj ] = εijkXk. Theng is the Lie algebra ofSO(3), so thatG0 = SO(3), or its
covering groupSpin(3) = SU (2) [18, p. 117, Problem 7]. Integrating over the group as
in the proof of Proposition 2.4 (the integral

∫ 1
0 in Eqs. (2.30) –(2.31) should be replaced

by an integral over the groupG0 with respect to the Haar measure) one can pass to a
new coordinate system, defined perhaps only on a subset of�, such that the spheres
t = const,r = const′ are invariant underG0. G0 must beSO(3), asSO(3) is3 the largest
group acting effectively onS2. The proof of point 5) is left to the reader. �

3 This can be seen as follows: Any isometry is uniquely determined by its action at one point of the tangent
bundle. SinceSO(3) acts transitively onTS2, no larger groups can act effectively there.
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3. Concluding Remarks

Theorem 1.1 leaves open the intriguing possibility of a space–time which hasonly one
Killing vector which, roughly speaking, behaves as a spacelike rotation accompanied by
a time–like translation. We conjecture that this is not possible when the Einstein tensor
Gµν falls–off at a sufficiently fast rate, when global regularity conditions are imposed
and when positivity conditions onGµν are imposed.

One would like to go beyond the classification of groups given here, and consider the
whole group of isometriesG, not only the connected component of the identity thereof
G0. Recall,e.g., that a discrete group of conformal isometries acts on the critical space–
times which arise in the context of the Choptuik effect [8, 17]. Let us first consider the
case of time–periodic space–times. Clearly such space–times exist when no field equa-
tions or energy inequalities hold, so that the classification question becomes interesting
only when some field equations or energy–inequalities are imposed. In the vacuum case
some stationarity results have been obtained for spatially compact space–times by Gal-
loway [15]. In the asymptotically flat context non–existence of periodic non–stationary
vacuum solutions with an analytic Scri has been established by Papapetrou [21],cf.also
Gibbons and Stewart [16]. The hypothesis of analyticity of Scri is, however, difficult
to justify; moreover the example of boost–rotation symmetric space–times shows that
the condition of asymptotic flatness in light–like directions might lead to essentially
different behaviour, as compared to that which arises in the context of asymptotic flat-
ness in space–like directions. One expects that non–stationary time–periodic vacuum
space–times do not exist, but no satisfactory analysis of that possibility seems to have
been done so far.

Another set of discrete isometries that might arise is that of discrete subgroups of the
rotation group, time–reflections, space–reflections, etc. In those casesG/G0 is compact.
It is easy to construct initial data (gij , Kij) on a compact or asymptotically flat manifold
Σ which are invariant under a discrete isometry group, in such a way that the groupH
of all isometries ofgij which preserveKij is not connected. By [12, Theorem 2.1.4]
the groupH will act by isometries on the maximal globally hyperbolic development
(M, gµν) of (Σ, gij , Kij), and it is rather clear that in generic such situations the groups
G of all isometries of (M, gµν) will coincide with H. In this way one obtains space–
times in whichG/G0 is compact. It is tempting to conjecture that for, say vacuum,
globally hyperbolic space–times with a compact or asymptotically flat, appropriately
regular, Cauchy surface, the quotientG/G0 will be a finite set. The proof of such a
result would imply non–existence of non–stationary time–periodic space–times, in this
class of space–times.
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13. Chrúsciel, P.T.: “No Hair” Theorems – folklore, conjectures, results. In:Differential Geometry and
Mathematical PhysicsJ. Beem and K.L. Duggal, eds., vol.170, Providence, RI: American Mathematical
Society, 1994, pp. 23–49 gr-qc/9402032,
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