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Abstract

We construct hadronic axion models in the framework of the anomaly-mediated
supersymmetry breaking scenario. If the Peccei-Quinn symmetry breaking is related
to the supersymmetry breaking, mass spectrum of the minimal anomaly-mediated
scenario is modified, which may solve the negative slepton mass problem in the min-
imal anomaly-mediated model. We find several classes of phenomenologically viable
models of axion within the framework of the anomaly mediation and, in particu-
lar, we point out a new mechanism of stabilizing the axion potential. In this class
of models, the Peccei-Quinn scale is related to the messenger scale. We also study
phenomenological aspects of this class of models. We will see that, in some case,
the lightest particle among the superpartners of the standard-model particles is stau
while the lightest superparticle becomes the axino, the superpartner of the axion.
With such a unique mass spectrum, conventional studies of the collider physics and
cosmology for supersymmetric models should be altered.
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1 Introduction

In modern particle physics, symmetries play extremely significant roles in solving prob-
lems related to various fine tunings. Among them, in this paper, we consider two serious
problems, that is, the strong CP problem and the gauge hierarchy problem.

Taking account of the instanton effect, the Θ-parameter in QCD, which is given by#1

L =
g23

64π2
ΘǫµνρσGa

µνG
a
ρσ, (1.1)

with g3 being the gauge coupling constant for SU(3)C and Ga
µν the field strength of the

gluon, is constrained to be smaller than 10−9 [1]; otherwise, the electric dipole moment of
the neutron becomes too large to be consistent with the experimental constraint. Such a
smallness is, however, unnatural in the standard model, since Θ is just a parameter in the
Lagrangian. One smart solution to this problem is to introduce the Peccei-Quinn (PQ)
symmetry [2, 3, 4, 5], which is a spontaneously broken global abelian symmetry which is
anomalous under QCD. With such a symmetry, which we call U(1)PQ, Nambu-Goldstone
boson (called “axion” a) shows up and couples to the gluon as

L =
g23

64π2

(
Θ+

a

fa

)
ǫµνρσGa

µνG
a
ρσ, (1.2)

where fa is the decay constant of the axion. In this case, the Θ parameter is promoted to
a dynamical variable. Minimizing the potential of the axion, Θeff ≡ Θ + a/fa → 0, and
hence there is no strong CP problem in this case. Since the PQ symmetry solves the strong
CP problem very beautifully, it is desirable to implement the PQ symmetry in models of
new physics beyond the standard model.

Another serious fine-tuning in the standard model is related to the stability of the
electroweak scale against radiative corrections; in the standard model, radiative corrections
to the Higgs mass parameter quadratically diverge and hence the electroweak scale is
expected to be as large as the cutoff scale. Taking the cutoff at the gravitational scale, we
need more than 30 orders of magnitude of fine tuning.

Once the supersymmetry (SUSY) is introduced, quadratic divergences cancel between
bosonic and fermionic diagrams. Thus, SUSY is currently regarded as one of the most
promising candidate of the solution to the naturalness problem, and we consider axion
model in supersymmetric framework.#2 Among various models, in this paper, we consider
the anomaly-mediated SUSY breaking model [7]. Interestingly, the anomaly-mediated
model may solve the SUSY CP and FCNC problems without fine tuning, since in this
model, all SUSY breaking parameters are well controlled by the super-Weyl (SW) anomaly.
In addition, this model may provide solutions to cosmological difficulties such as gravitino
problem and cosmological moduli problem [8, 9]. Thus, we will study how axion models

#1 The Θ parameter here is defined in the bases where all the quark masses are real.
#2 For early attempts to construct axion models in the supersymmetric models, see Refs. [6]
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SU(3)C SU(2)L U(1)Y U(1)PQ
X 1 1 0 1
Qi 3 1 −1/3 −1/2
Li 1 2 1/2 −1/2
Q̄i 3̄ 1 1/3 −1/2
L̄i 1 2̄ −1/2 −1/2

Table 1: Particle content of the model. The index i is the flavor index which runs from 1
to N5.

can be constructed in the framework of the anomaly-mediated models. In particular, in
some class of the axion model, we will emphasize that the axion multiplet changes the
prediction of the minimal anomaly-mediated model and that the negative slepton mass
problem may be solved. We will show that, in this case, the resulting superparticle mass
spectrum is similar to that of the deflected anomaly mediation [10].

Organization of this paper is as follows. In Section 2, we introduce several models of
axion in the framework of the anomaly-mediated SUSY breaking. Then, in Section 3, we
study phenomenology of models introduced in Section 2. We summarize our results in
Section 4.

2 Model

Let us discuss the framework of our model. Although our mechanism works in a large
class of models with various particle content, we consider a model with N5-pairs of 5 and
5̄ representations in the SU(5) as an example. The particle content of our model is given
in Table 1, where the representations for the standard-model gauge groups as well as the
charge for the U(1)PQ are also shown. In our model, the lowest component of X acquires
a vacuum expectation value (VEV) and it breaks the U(1)PQ symmetry. Thus, we call X
as the axion multiplet.

In addition to the fields in the observable sector, we also introduce hidden-sector field
which is responsible for the SUSY breaking. We denote the hidden-sector field as z. In our
model, we adopt the sequestered structure:#3

K = −3 log
[
ζ(z†, z) + ξ(X†, X)

]
, (2.1)

which may arise, for example, when the hidden and observable sectors are geometrically
separated [12].

Once the sequestered structure is assumed, phenomenology in the observable sector is
insensitive to how the SUSY is broken in the hidden sector since the effect of the SUSY

#3 The function ξ also depends on the observable sector fields such as quark, lepton, and Higgs multiplets.
Such fields are irrelevant in studying the axion potential, and we omit these fields in the expressions.
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breaking is mediated to the observable sector only by the SW anomaly. Thus, we only
assume that the SUSY is somehow broken in the hidden sector. In this framework, SUSY
breakings in the observable sector are only from couplings to the compensator field Φ,
whose VEV is given by

Φ = 1 + FΦθ
2. (2.2)

Here, FΦ is an auxiliary field in the gravitational multiplet, and its VEV is given by,
assuming vanishing cosmological constant,

FΦ =
1

M2
∗

(
W +

1

3

∂K

∂z
Fz

)
, (2.3)

where M∗ ≃ 2.4 × 1018 GeV is the reduced Planck scale. With this compensator field,
relevant part of the supergravity Lagrangian has the following form [13]:

L ≃
∫

d4θΦ†Φe−K/3 +
[∫

d2θΦ3W + h.c.
]

≃
∫

d4θΦ†Φ
[
ζ(z†, z) + ξ(X†, X)

]
+
[∫

d2θΦ3W + h.c.
]
. (2.4)

Soft SUSY breaking parameters in the observable sector are obtained by expanding the
above Lagrangian in the background with non-vanishing FΦ.

Now, let us consider the potential of X and study how the PQ symmetry can be
broken.#4 As we will see below, there are a couple of different approaches, each of which
have different consequences on the mass spectrum of the squarks and sleptons. Thus, we
will study each of them separately.

Importantly, because of the U(1)PQ symmetry, the function ξ in the Kähler potential
depends on the combination X†X . At the tree level, expanding ξ around |X| = 0, we
express

ξtree(X
†, X) = M2

∗

∞∑

p=1

cp

(
X†X

M2
∗

)p

= c1X
†X +

c2
M2

∗

(X†X)2 + · · · , (2.5)

where cp are constants. Notice that, as we will see below, radiative correction to the
function ξ becomes significant in some case. In addition, the axion multiplet X is coupled
to other fields in the superpotential as

WX5̄5 = λQXQ̄Q+ λLXL̄L. (2.6)

Due to this superpotential, the axion multiplet X couples to the field strength of the gluon
multiplet, and the imaginary part of the lowest component of X becomes the axion.

#4 We use the same expression for the chiral superfield and its bosonic (lowest) component.
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At the tree level, and with the simplest Kähler potential of ξ = c1X
†X , VEV of X is

undetermined. Indeed, after the rescaling

X̂ ≡ ΦX, Q̂ ≡ ΦQ, · · · , (2.7)

all the compensators in Eq. (2.4) are absorbed in the “hatted” superfields. (Hereafter,
“hatted” superfields denote superfields after the rescaling with the compensator Φ, like
Eq. (2.7).) In this case, no potential is generated for X̂ . Taking account of the higher
dimensional operators and/or radiative corrections, however, non-trivial potential for X̂ is
generated. In the following subsections, we study several cases.

2.1 Model 1

The first approach is to use the radiative correction to the wave function renormalization
factor of X and the higher dimensional terms in the Kähler potential. Taking account of
the wave function renormalization, at the loop level, we expect the function ξ to become

ξ(X†, X) = c1ZX(X
†, X)X†X +

c2
M2

∗

(X†X)2 + · · · . (2.8)

The X-dependence of the wave function renormalization factor ZX is from the scale de-
pendence; below the scale of the VEV of X , all the particles coupled to X decouple and
ZX does not run. Thus, we obtain

ZX(X
†, X) =

∑

n

1

Γ(n+ 1)

[
dnZX

d(logµ)n

]

µ=Λ

(
1

2
log

X†X

Λ2

)n

= ZX(Λ) + Z ′
X(Λ)

(
1

2
log

X†X

Λ2

)
+

1

2
Z ′′

X(Λ)

(
1

2
log

X†X

Λ2

)2

+ · · · , (2.9)

where Λ is an arbitrary scale, and the “prime” represents derivative with respect to log µ.
Taking account of these effects, the supergravity Lagrangian given in (2.4) becomes,

after the rescaling (2.7),

L ≃
∫
d4θZX

{

1 +
1

2

Z ′
X

ZX

log
X̂†X̂

Φ†Φ
+

1

8

Z ′′
X

ZX

(
log

X̂†X̂

Φ†Φ

)2

+ · · ·


 X̂†X̂

+
c2
M2

∗

(X̂†X̂)2

Φ†Φ
+ · · ·

}
, (2.10)

where we performed an X-independent rescaling of X , and the potential for X̂ is given by

V (X†, X) ≃ −1

4

[
d2ZX

d(logµ)2

]

µ=λX

|FΦ|2X̂†X̂ − c2
M2

∗

|FΦ|2(X̂†X̂)2 + · · ·

≃ m2
XX̂

†X̂ − c2
M2

∗

|FΦ|2(X̂†X̂)2 + · · · . (2.11)
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With the superpotential given in Eq. (2.6), the mass for the X field is given by, at the
one-loop level,

m2
X(X

†, X) = −1

4

[
d2ZX

d(log µ)2

]

µ=λX

|FΦ|2

= −
(

1

16π2

)2

N5

[ (
16g23 +

4

3
g21

)
λ2
Q +

(
6g22 + 2g21

)
λ2
L

−N5(3λ
2
Q + 2λ2

L)
2 − 2(3λ4

Q + 2λ4
L)

]
|FΦ|2

≃ −
(

1

16π2

)2

N5

[
16g23 − 5(5N5 + 2)λ2

]
λ2|FΦ|2, (2.12)

where, in the last equality, we used the approximations g3 ≫ g2 and g1, and λ ≡ λQ ∼ λL.
Hereafter, we adopt these approximations for simplicity. Our results are qualitatively
unchanged even if we use the exact formula.

For the spontaneous breaking of the PQ symmetry, m2
X should become negative. This

happens when the gauge coupling constants are larger than the Yukawa couplings λQ

and λL. Such a situation can be naturally realized by assuming relatively small values
of the coupling constants λQ and λL. Of course, for a realistic model of SUSY and PQ

symmetry breakings, potential of X̂ should be somehow stabilized. Pomarol and Rattazzi
[10] proposed to use the inverted hierarchy mechanism [11] to stabilize the potential; if
m2

X changes its sign at some scale with dm2
X/d logµ > 0, the potential of X̂ has stable

minimum at the scalem2
X = 0. Such a scenario is possible when there exists asymptotically-

free gauge interaction with relatively large gauge coupling constant. We found, however,
that the SU(3)C gauge interaction cannot play this role since its gauge coupling constant
is not large enough to realize the inverted hierarchy mechanism. We checked that this
is always the case, by solving renormalization group equations numerically. Pomarol and
Rattazzi suggested to gauge (some part of) the flavor symmetry to introduce a new gauge
interaction for the stabilization. Unfortunately, it does not work for the axion model since,
once Q and Q̄ (and/or L and L̄) have non-trivial gauge quantum numbers under extra
gauge interaction, the axion potential is modified and the strong CP problem cannot be
solved.

In our model, we do not rely on the inverted hierarchy mechanism, since there is another
simple way to stabilize the potential. As suggested in Eq. (2.11), the higher dimensional
terms in the Kähler potential naturally exist which result in quartic and higher order terms
in the scalar potential. Assuming the negativity of c2, the potential given in Eq. (2.11) has
a minimum, and the VEV of X̂ is given by

f 2
a ≡ 〈|X̂|2〉

N2
5

=
m2

X

2c2|Fφ|2N2
5

M2
∗ ≃

[
g3λ

4π2

√
1

2|c2|N5

M∗

]2
, (2.13)

where we assumed g3 ≫ λ. As one can see, the PQ scale is suppressed by the loop factor,
and it decreases as the coupling constant λ becomes smaller. Even with λ ∼ O(10−1), fa
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is O(1015 GeV), and fa becomes O(1012 GeV) when λ ∼ O(10−4). Phenomenological and
cosmological implications of this fact will be discussed later.

Next, let us discuss the mass spectrum of the superparticles in the MSSM sector. Since
the X field couples to the chiral multiplets which have standard-model quantum numbers,
it affects the soft SUSY breaking parameters in the observable sector at the loop level.
Indeed, at the scale of the VEV of X , the chiral superfields Q, Q̄, L and L̄ decouple.
Then, the running effects from the cutoff scale Λ to the scale of the VEV of X is via the
combination log(X†X/Λ2) = log(X̂†X̂/Λ2Φ†Φ). Since the VEV of the highest component
of X̂ (i.e., the axion multiplet after the rescaling), which is denoted as FX̂ , vanishes, we

obtain FΦ dependence from log(X̂†X̂/Λ2Φ†Φ). Expanding this logarithm, we obtain the
SUSY breaking parameter at the messenger scale

Mλ(Mmess) = −bi −N5

4π
αi(Mmess)FΦ, (2.14)

m2
f̃
(Mmess) =

1

(4π)2

[
2Cf

i (bi −N5)α
2
i (Mmess)

−Nuαt(Mmess)

{
13

15
α1(Mmess) + 3α2(Mmess) +

16

3
α3(Mmess)

−6αt(Mmess)

}]
|FΦ|2, (2.15)

Af (Mmess) = −yf (Mmess)

4π

∑

fields∈f

[
2Cf

i αi(Mmess)−Nuαt(Mmess)

]
FΦ, (2.16)

where the messenger scale is given by

Mmess = λ〈X〉, (2.17)

and αt is top-quark Yukawa coupling, αi are gauge coupling constants (i runs over the
MSSM gauge groups.), b = (−33

5
,−1, 3), and Cf is the second-order Casimir. (For the

fundamental representations of SU(3)C and SU(2)L, C
f
3 = 4

3
and Cf

2 = 3
4
, and for U(1)Y ,

Cf
1 = 3

5
Y 2 with Y being the hypercharge quantum number.) In addition, Nu = (1, 2, 3) for

q̃3rdL , t̃R, and hu and Nu = 0 for other particles.
Contrary to the conventional scenario, there is another important particle in our model,

that is, the axino which is the superpartner of the axion. The axino may become the LSP
in our model which has significant implications for collider physics and cosmology. Axino
mass arises from the Lagrangian (2.10); expanding the Lagrangian, the axino mass is given
by

mã = −1

4

d2ZX

d(logµ)2
〈X†〉
〈X〉 F

†
Φ ≃ g23λ

2

16π4
N5FΦ, (2.18)

where we neglected unimportant phase in the second equality. As one can see, the axino
mass arises at the two-loop level and is much smaller than the masses of the superparticles
in the MSSM sector. Thus, in the model 1, the axino becomes the LSP.
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Interactions of the axino with the observable sector fields depend on the PQ charges of
the Higgs (and other) fields. The charge assignment is model-dependent, and in particular,
the charge assignment is related to how the µH- and Bµ-parameters are generated. This
issue will be discussed later.

2.2 Model 2

It is also possible to break the PQ symmetry by higher dimensional operators in the super-
potential. For this purpose, we introduce extra chiral multiplet Y . With this superfield,
we write down the following superpotential

W = WX5̄5 +
1

ΛpX+pY −3
XpXY pY , (2.19)

where pX and pY are positive integers, and Λ is some mass parameter which is assumed to
be of order the Planck scale. Obviously, this superpotential is U(1)PQ invariant assigning
the PQ charge −pX/pY to Y .

In the background with non-vanishing FΦ, the scalar potential is given by

V =
∣∣∣∣

1

ΛpX+pY −3

∣∣∣∣
2 [

p2X

∣∣∣X̂pX−1Ŷ pY
∣∣∣
2
+ p2Y

∣∣∣X̂pX Ŷ pY −1
∣∣∣
2
]

+(pX + pY − 3)
[

FΦ

ΛpX+pY −3
X̂pX Ŷ pY + h.c.

]
.

(2.20)

Minimizing this potential, we obtain

pY |〈X̂〉|2 = pX |〈Ŷ 〉|2 = C
∣∣∣FΦΛ

pX+pY −3
∣∣∣
2/(pX+pY −2)

, (2.21)

where

C =

(
pX + pY − 3

pX + pY − 1

)2/(pX+pY −2)

p
(pY −2)/(pX+pY −2)
X p

(pX−2)/(pX+pY −2)
Y , (2.22)

which is a constant of O(1). Thus, we obtain

fa ∼
|〈X̂〉|
N5

∼ |〈Ŷ 〉|
N5

∼ |FΦΛ
p−3|1/(p−2)

N5

, (2.23)

and

FX̂

X̂
= −p− 3

p− 1
FΦ, (2.24)

where p = pX + pY . In this case, the PQ scale is determined by the relative size of FΦ

and Λ. Taking Λ ∼ M∗, for example, and FΦ ∼ 100 TeV, we obtain fa ∼ O(1010 GeV),
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O(1013 GeV), and O(1014 GeV), for p = 4, 5, and 6, respectively. Especially, in the case
of p = 4, N5

>∼ 10.
With the VEV given in Eq. (2.24), we obtain

Mλ(Mmess) = −bi −N5

4π
αi(Mmess)FΦ, (2.25)

m2
f̃
(Mmess) =

1

(4π)2

[
2Cf

i

(
bi −

4(p− 2)

(p− 1)2
N5

)
α2
i (Mmess)

−Nuαt(Mmess)

{
13

15
α1(Mmess) + 3α2(Mmess) +

16

3
α3(Mmess)

−6αt(Mmess)

}]
|FΦ|2, (2.26)

Af (Mmess) = −yf (Mmess)

4π

∑

fields∈f

[
2Cf

i αi(Mmess)−Nuαt(Mmess)

]
FΦ. (2.27)

One important difference between this model and the model 1 is the axino mass. In this
model, axino is a linear combination of the fermionic component in the chiral superfields
X and Y . The mass matrix for these fermions are, after relevant phase rotation to remove
unwanted phases,

Maxino = C(pX+pY )/2p
(2−pY )/2
X p

(2−pX)/2
Y

(
pX − 1

√
pXpY√

pXpY pY − 1

)
|FΦ|. (2.28)

As one can easily see, both fermions acquire masses as large as |FΦ|, which is of order
10 − 100 TeV. Thus, in this model, axino mass is much heavier than the masses of the
superparticles in the MSSM sector and hence the axino cannot be the LSP.

2.3 Model 3

In the previous models, the PQ symmetry is unbroken in the supersymmetric limit. In some
case, however, the PQ symmetry can be spontaneously broken even if the supersymmetry
is preserved. Let us finally consider such a case.

The simplest superpotential realizing such a situation is

W = WX5̄5 + κY ′(X̄X −N2
5
f 2
a ), (2.29)

where fa here is some constant, and Y ′, whose U(1)PQ charge is 0, is a chiral superfield
which is singlet under SU(5). Contrary to the previous models where the PQ scale fa is
somehow related to the SUSY breaking parameter FΦ, fa is an input parameter in this
case. As one can see, the PQ symmetry is broken solving the condition for the vanishing
F -component of Y ′: ∂W/∂Y ′ = 0.

In this model, in fact, the PQ symmetry is broken but the masses of the squarks and
sleptons are not modified. This can be easily seen by solving the equations of motion.

8



After the rescalings X̂ = ΦX and so on, we obtain 〈 ˆ̄XX̂〉 = f 2
aΦ

2, by solving ∂W/∂Ŷ ′ = 0.

At this stage, the relative size of X̂ and ˆ̄X is undetermined since it corresponds to a flat
direction in the supersymmetric limit. The relative size is determined taking account the
effect of the SUSY breaking. With non-vanishing FΦ, Ŷ

′ acquires a VEV as

κ〈Ŷ ′〉 ≃ FΦ, (2.30)

which gives equal masses to X̂ and ˆ̄X . Then, the VEVs of these chiral superfields become
the same and

〈 ˆ̄X〉 = 〈X̂〉 = N5faΦ, (2.31)

up to an irrelevant phase. Thus, substituting this VEV into log(X̂†X̂/Λ2Φ†Φ), effect of
the SUSY breaking disappears, and hence the axion multiplet does not modify the masses
of the superparticles. In this case, extra mechanism should be introduced to solve the
negative slepton mass problem, and we do not pursue this direction anymore.

2.4 The µH- and Bµ-Parameters

Before closing this section, let us comment on the µH- and Bµ-parameters. The µH- and
Bµ-parameters can be generated by slightly modifying the model by Pomarol and Rattazzi
[10]. The new superpotential we introduce is

W = λSTXSTX + λSSTS
2T + λTHHTHuHd, (2.32)

where S and T are chiral superfield which are singlet under the SU(5), whose PQ charges
are +1 and −2, respectively. Notice that we also assigned the PQ charge −1 for the up-
and down-type Higgses.

As in the case of the model by Pomarol and Rattazzi, kinetic mixing between X and
S appears at the one-loop level:

Lmix =
∫

d4θΦ†ΦZSX(µ = |λX|)SX† + h.c. (2.33)

In addition, once X acquires a VEV, S and T becomes massive and these fields can be
integrated out. In particular, by solving the condition ∂W/∂T = 0, we obtain

S = −λTHH

λSTX

HuHd

X
, (2.34)

and substituting Eq. (2.34) into Eq. (2.33), we obtain

Lmix = −λTHH

λSTX

∫
d4θZSX(µ = |λX̂/Φ|)X̂

†

X̂
ĤuĤd + h.c. (2.35)

9



The model 1 The model 2 (p = 4 case)

ẽ1 144 ẽ2 265
τ̃1 104 τ̃2 270
ν̃e 253 ν̃τ 248

d̃1 686 d̃2 732

b̃1 648 b̃2 695
ũ1 690 ũ2 728

t̃1 579 t̃2 737
χ̃±
1 306 χ̃±

2 615
χ̃0
1 299 χ̃0

2 319
χ̃0
3 528 χ̃0

4 616
h0 117 H0 332
A0 333 H± 345
g̃ 941 − -

ẽ1 167 ẽ2 460
τ̃1 104 τ̃2 462
ν̃e 453 ν̃τ 447

d̃1 1675 d̃2 1735

b̃1 1623 b̃2 1664
ũ1 1677 ũ2 1733

t̃1 1512 t̃2 1691
χ̃±
1 706 χ̃±

2 1458
χ̃0
1 702 χ̃0

2 711
χ̃0
3 1192 χ̃0

4 1458
h0 130 H0 712
A0 716 H± 721
g̃ 2538 − -

Table 2: Mass spectra of the model 1 and 2 in units of GeV. We take tanβ = 30, Mmess =
1012GeV and 1011GeV, N5 = 7 and 13 for the model 1 and 2, respectively. The Wino mass
M2 is taken to be 600 GeV for the model 1 and 1450 GeV for the model 2.

In Model 1 where FX̂ = 0, expanding the above Lagrangian, we obtain the µH- and Bµ-
parameters to be

µH = − λTHH

2λSTX

[
dZSX

d logµ

]

µ=λX

F †
Φ, (2.36)

Bµ = − λTHH

4λSTX

[
d2ZSX

(d logµ)2

]

µ=λX

|FΦ|2. (2.37)

3 Phenomenology

Here we would like to discuss phenomenological issues of the models we presented. As we
mentioned earlier, our models have superparticle masses identical to those in the deflected
anomaly mediation. Some of our results were already discussed in Refs. [10, 14].

3.1 Mass Spectrum

Let us first consider the model 1. In this model, the soft masses are given in Eqs. (2.14),
(2.15) and (2.16), which are parameterized by the scale of the SUSY breaking FΦ, the
messenger scale Mmess and the number of the messenger fields N5. In addition, we have the
µH and Bµ parameters. Here we do not take any particular mechanism to generate them.
µH is solely determined so as to reproduce the correct electroweak scale, and Bµ is related
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Figure 1: Lower bound on the messenger scale Mmess as a function of the number of
messengers N5. The light-shaded region is excluded by tachyonic slepton for tan β = 5.
The lower limit for tanβ = 30 is also shown as a solid line. The dark-shaded region is
excluded because the gauge coupling constants blow up below the GUT scale.

to tan β, the ratio of the vacuum expectation values of the two Higgs in the MSSM. Thus
the superparticle mass spectrum is specified by FΦ, Mmess, N5 and tan β.

To obtain a realistic mass spectrum (positive slepton masses etc.), the number of the
messenger should be large enough. In fact for N5 = 3, the gluino mass vanishes, resulting
in an unrealistic mass spectrum. For N5 = 4, we found that the sleptons are too light
to survive the experimental mass bounds, unless the SUSY breaking scale is very high.
This is disfavored, because the other superparticle masses will exceed 1 TeV, causing the
fine-tuning problem. Thus we will consider the case N5 ≥ 5. In Fig. 1, we show the lower
bound on the messenger scale Mmess as a function of N5. The bound comes from the two
requirements: (i) the positive slepton mass squared (ii) the perturbativity of the gauge
coupling constants up to the GUT scale. The former requirement is severer for smaller N5,
while the latter is severer for larger N5. One finds that the messenger scale Mmess must be
larger than ∼ 109 GeV.#5

In Figs. 2 and 3, the masses of some superparticles are shown for Mmess = 1012 and
1014 GeV, respectively. One finds that the lightest superparticle among the MSSM particles

#5In Fig. 1, we require that all the soft SUSY breaking mass squared parameters for sleptons be positive
to make the figure being independent of FΦ. Notice that such a constraint is slightly different from the
actual experimental constraint based on the mass eigenvalues. (See Figs.2 and 3.) Constraint on Mmess

is, however, almost unchanged.
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Figure 3: Same as Fig. 2, except Mmess = 1014 GeV and M2 = 500 GeV.
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is almost always a stau, the superpartner of the tau lepton. Note that in the model 1, the
stau is not stable since the axino is the lightest superparticle and the stau decays to the
axino. We will discuss phenomenological and cosmological implications to the stau decay.
In addition, it is also notable that the slepton masses are more enhanced relative to the
gauginos if we adopt larger value of Mmess.

In Table 2, we show the superparticle mass spectrum for some typical cases.#6 As we
mentioned, the lightest superparticle in the MSSM sector is the stau. The spectrum is
rather compact, and squarks and gluinos are much lighter for the same stau mass than in
the case of gauge mediation [14]. Another interesting point is that the lightest neutralino is
higgsino-like, which is not achieved in many scenarios of supersymmetry breaking, including
the minimal supergravity model with all the SUSY particles being lighter than ∼ 1 TeV.#7

In fact, one sees that the lightest and the second lightest neutralinos and the lighter chargino
are quite degenerate in mass, indicating that they are higgsino-like.

In the minimal anomaly mediation, the sign of the gluino mass is opposite to that of
the Wino mass. This causes a potential conflict between the muon anomalous magnetic
moment aµ and Br(b → sγ) [15]. The result reported by the Brookhaven E821 experiment
[18] suggests a deviation from the standard model prediction, indicating a new contribution
from new physics. If this is real, the new physics should give a positive contribution to aµ,
which constrains the sign of µHM2 (> 0) in the context of SUSY. This choice also fixes
the sign of µHM3 (< 0 in the minimal anomaly mediation). This sign plays an important
role in the SUSY contributions to b → sγ. With this choice, the charged Higgs loop
and the chargino/stop loop give the contributions with the same sign, conflicting with the
experimental constraints. One of the advantages of our scenario is that the gluino mass
has the same sign as the Wino mass as far as N5 > 3, and thus the two constraints can be
simultaneously satisfied.

Figs. 4 and 5 depict the SUSY contribution to aµ in the model 1 for Mmess = 1012 and
1014 GeV. (For the formula for the SUSY contribution to aµ, see [19], and for recent works
see [20].) In general, for a fixed value of of the gaugino mass, the stau mass decreases as
tan β increases. Furthermore, as mentioned before, slepton mass relative to the gaugino
mass becomes smaller as we adopt smaller value of the messenger scale. As a result, for
relatively small Mmess, we obtain an upper bound on tanβ to evade the experimental
upper bound on the stau mass, unless the overall scale of the SUSY breaking is large
enough. (End points of the lines in Fig. 4 correspond to such points.) One consequence
of this fact is that, when the messenger scale is low, the SUSY contribution to the muon
anomalous magnetic moment is constrained to be relatively small, in particular, compared
to the deviation observed by the E821 experiment. Once the messenger scale is pushed up,
however, the stau mass can be large enough and one finds that the requisite contribution
of O(10−9) is easily realized. Notice that, for Mmess = 1014 GeV, fa = (1014 − 1015) GeV

#6The Higgs masses are computed by using the effective potential at one loop level. Higher order
corrections will somewhat reduce the h0 mass.
#7In the focus point scenario of the supergravity model [15, 16], however, the lightest neutralino becomes

higgsino-like [17].
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is required since the parameter λ has to be smaller than O(0.1) in our model. (See Eq.
(2.17).) For such a large value of fa, energy density of the axion field becomes larger than
the critical density if the standard evolution of the Universe is assumed [21]. For a possible
cosmological scenario in this case, see the next subsection.

We also studied the superparticle mass spectrum for the model 2. A typical mass
spectrum in this case is given in Table 2 as well. The lightest superparticle in the MSSM
sector is again the stau. Because the axino is heavy in the model 2, the stau becomes the
LSP in the whole theory. Since such a charged LSP is ruled out cosmologically [22], it must
decay through R-parity violation. Furthermore the superparticle masses are somewhat
spread compared to the previous case, which may cause the naturalness problem. Thus we
conclude that the model 2 is less attractive than the model 1.

3.2 Other Issues

Let us return to the model 1, and consider the effects of the stau decay into the axino.
The axion-multiplet coupling to the matter is suppressed by the decay constant fa. Since
we are considering the hadronic axion, the axion coupling to leptons vanishes at tree level.
In fact, it arises at two-loop order, which originates from the anomalous coupling of the
axion to two photons. Equivalently one can compute this coupling by using the superfield
techniques. The axion coupling is then contained in the field dependent wave function
renormalization of the lepton multiplet. The same technique enables us to compute the
axino-lepton-slepton coupling in a simple matter as in Ref. [14]. Their result is given for
the right-handed slepton

Lãll̃ = Cl
FΦ

〈X〉 ãll̃
† + h.c., (3.1)

where

Cl =
1

8π2

2N5(N5 + 33/5)

11

[
α2
1(Mmess)− α2

1(mZ)
]
. (3.2)

It follows from this that the lifetime of the stau is approximately

ττ̃ = N2
5

(
〈X〉/1013GeV

)2
(200GeV/mτ̃ )

3 sec. (3.3)

Thus in collider experiments, the staus do not decay inside detectors, and they are prac-
tically regarded as stable particles. Thus highly ionized tracks produced by the heavy
charged particles will be a signature of this scenario [23].

Cosmological implications of our model are also interesting since there exist various
exotic particles in our model, like axion, axino, and saxino, which may affect evolution of
the Universe. In particular, in the model 1, saxino may significantly affect the cosmology,
contrary to the conventional scenario. Therefore, let us comment on this point.

In the model 1, there are two relatively light scalar fields, which are axion and saxino.
The initial amplitude of these fields are in general displaced from the minimum of the
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potential and they start to oscillate as the Universe expands. As a result, we should worry
about cosmological difficulties possibly caused by these coherent oscillations. The effects
of the axion field have been extensively studied.

The effects of the saxino is quite different from those of the axion, since in our model the
saxino is much heavier than the axion. Consequently, the lifetime of the saxino becomes
much shorter than that of axion, and hence the saxino may decay before the present epoch.
The saxino σ dominantly decays into the axion pair, and the lifetime is calculated as

τσ =

[
1

64π

m3
X

〈X〉2
]−1

≃ 10 sec× c−1
2 λ−1

(
Fφ

100 TeV

)−3 (N5

8

)−1/2

, (3.4)

where we approximated that the mass of the saxino is comparable to mX . The lifetime is
much longer than 1 sec as far as λ ≪ 1 and FΦ

<∼ 100 TeV. As a result, if the coherent
oscillation exists in the early Universe, it decays after the big-bang nucleosynthesis (BBN)
starts. Therefore, if the energy density of σ is too large at the time of the BBN, it spoils
the great success of it. Assuming that the initial amplitude of the saxino field as ∼ fa, the
saxino energy density normalized by the entropy density is estimated as

ρσ
s

∼ m
1/2
X f 2

a

M
3/2
∗

∼ 1× 106 GeV× λ5/2
(

FΦ

100 TeV

)1/2 (N5

8

)−3/2

. (3.5)

Notice that this ratio is independent of time.
Important constraint on the saxino abundance is from the overproduction of 4He. If

the saxino energy density is too large at the time of the neutron decoupling, it boosts
up the expansion rate of the Universe and increases the freeze-out temperature of the
neutron. If this happens, the neutron number density after the freeze out becomes larger,
resulting in an overproduction of 4He. To avoid this problem, the ratio ρσ/s should be
much smaller than the ratio ρrad/s at the time of the neutron decoupling, and we obtain
an upper bound on λ of ∼ O(10−4), corresponding to Mmess

<∼ 109 GeV. As seen in Fig. 1,
with the messenger scale lower than ∼ 109 GeV, a large number of the messenger multiplet
should be introduced in order to avoid the tachyonic sfermion mass, which makes the gauge
coupling constants non-perturbative below the GUT scale. One might think that we may
have a consistent scenario of cosmology if Mmess ∼ 109 GeV. In this case, however, the
lifetime of the saxino is as long as ∼ 105 sec and hence the saxino decays after dominating
the Universe. Since the saxino dominantly decays into the axions, energy density of the
axion becomes 2 − 3 orders of magnitude larger than that of the radiation and hence there
exists large extra energy density in the form of the relativistic matter (i.e., the axion).
First, this fact changes the epoch of the radiation-matter equality to z ∼ 10. In addition,
the axion is a very weakly interacting particle and hence the cosmic density fluctuation for
the scale which enters the horizon before the equality is washed out by the effect of the free-
streaming. These effects cause a serious difficulty in the galaxy formation. Furthermore,
some part of the saxino will decay into the pion pair through the QCD anomaly. Such
pions dissociate the light elements produced by the BBN and spoil the great success of the
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standard BBN. Thus, we should conclude that the scenario with Mmess ∼ 109 GeV does
not work. Therefore, if we assume the conventional scenario of cosmology, our model has
a serious cosmological disaster.

This problem is, however, easily solved if a large amount of entropy is produced after
the onset of the saxino oscillation. With a large entropy production, the energy density of
the saxino field is diluted and the ratio ρσ/s becomes much smaller than the value given in
Eq. (3.5). In the anomaly-mediated models, the moduli fields may be heavy and they can
become a natural source of the late-time entropy production. It is also important to point
out that, if a large late-time entropy production occurs, axinos are also diluted. Thus,
the axino relic density becomes much smaller than the present critical density even if the
axinos are thermally produced in the early Universe. In addition, if the entropy production
occurs after the QCD phase transition, coherent oscillation of the axion field is also diluted
and the cosmological bound on the axion scale fa can be relaxed [24]. In this case, fa much
larger than 1013 GeV becomes possible. This fact may be of some help if a relatively large
value of the SUSY contribution to the muon magnetic moment is required, as mentioned
in the previous subsection. It should be also noted that the relic staus are also diluted by
the entropy production. Thus, the relic staus do not significantly affect the BBN even if
their lifetime is longer than ∼ 1 sec. The scenario with the late-time entropy production by
the modulus decay may be tested by precisely measuring the cosmic microwave anisotropy
since the decay of the modulus field may generate correlated mixture of the adiabatic and
isocurvature fluctuations [25].

In the model 2, the axino and saxino are as heavy as ∼ O(FΦ). As a result, they are
short-lived, and irrelevant in cosmology.

4 Summary

In this paper, we have considered hadronic axion models in the supersymmetric theory
where SUSY breaking is mediated by the super-Weyl anomaly. SUSY breaking plays an
important role in determining the VEV of the axion multiplet X which spontaneously
breaks U(1)PQ symmetry. We constructed three models in each of which the role of the
SUSY breaking is different. The first model has no superpotential for X and thus the scalar
potential solely comes from SUSY breaking. In fact, the VEV of X is determined by the
balance between the two terms: one is the negative soft SUSY breaking mass generated
by the super-Weyl anomaly, and the other is from the higher order term in the Kähler
potential. In the second model, the PQ symmetry would not be broken in the absence
of the SUSY breaking. Once the SUSY breaking is switched on, the potential minimum
shift to the vacuum with the symmetry breaking. In the third model, the PQ symmetry is
already broken in the exact SUSY limit, but the vacuum is degenerate along a non-compact
flat direction. It is then the effect of the SUSY breaking that lifts the flat direction, thus
fixing the PQ scale. In all three models, the PQ scale can be adjusted to the allowed range
by appropriate choice of the coupling constants.
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In the first two models, the PQ multiplet possesses non-trivial SUSY breaking, and
thus it mediates SUSY breaking to the MSSM sector via a mechanism similar to the
gauge mediation. Then soft SUSY breaking masses are deflected from those from the pure
anomaly mediation. Our models provide a realization of the deflected anomaly mediation
advocated in Ref. [10]. On the other hand, in the model 3 the X field has trivial SUSY
breaking, and thus it does not affect the mass spectrum of the superparticles in the MSSM.
Therefore the sleptons remain tachyonic unless some other mechanism lifts up the slepton
masses.

Phenomenological issues of the models 1 and 2 are briefly discussed. In these models,
the stau becomes the lightest superparticle in the MSSM sector. In collider experiments,
charged tracks due to the stau will be an important signature of the models. We also com-
puted the SUSY contribution to the muon anomalous magnetic moment. We found that,
despite relatively heavy Winos, the contribution from the SUSY sector can be comparable
to or even larger than that from the weak interaction sector. Thus it can easily explain the
possible discrepancy from the standard model prediction reported by the E821 experiment.

One of the crucial differences between the two models is the mass of the axino. In the
model 1, the axino is light and becomes the lightest superparticle of the whole theory. In
this case, the stau is no longer stable, but decays to the axino, with lifetime typically larger
than 1 sec. In the model 2, the axino acquires mass at the tree level and thus it is as heavy
as the gravitino. In this case, the stau will be the LSP of the whole sector and so we need
R-parity violation to avoid the charged stable particle.

We also discussed cosmology of the models. In model 1, the saxino is light and long-
lived. We argued that its coherent oscillation would spoil the success of the BBN. To
avoid it, we invoke the late time entropy production, and thus cosmological evolution of
the model 1 should differ from the standard thermal history of the Universe. On the other
hand, in model 2, the saxino has a mass comparable to FΦ, and thus is heavy. Thus it is
short-lived, and cosmologically harmless.
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