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A geometric model of a charge is constructed by defining several geometries on the same spacetime 
manifold. A Riemannian geometry describes the vacuum. On the same spacetime, two Weyl geometries 
are constructed for the charge description. The geometries are constrained by a variational principle. 
Energy conservation requires the equality of active and passive mass. Chargeless particles have essentially 
no mass. The treatment of radiation relies on the approximate nature of the wave equation. Variable mass 
terms in the wave equation cause the 2S-2P levels in hydrogen to separate by 30 000 Mhz. This 
unobserved transition together with the lack of spin sets a limit to the correspondence of the model to real 
electrons. 

I. INTRODUCTION 

The general theory of relativity provided support for 
the viewpoint that the course of events which physiCS 
describes can most simply be expressed as the result of 
geometric constraints on a spacetime manifold. This re­
port extends the geometry and the constraints so that 
the geometry itself provides the physical description of 
charges. 

Basic to the model is the observation that several dif­
ferent geometries can be constructed on the same mani­
fold. On spacetime a Riemannian geometry is defined to 
describe the classical gravitational vacuum. Several 
WeyP geometries can then be defined to describe the 
charges, We use two Weyl geometries per charge, The 
metrics of the Weyl geometries are conformal to the 
metric of the Riemannian geometry. The conformal fac­
tor is essentially the density of the charge, Since char­
ges in matter are localized, nonzero lengths in the Weyl 
geometries occur locally. Thus the Weyl geometries are 
trivial except in the neighborhood of the charge. The 
only geometry to have long range effects is the vacuum 
Riemannian geometry 0 

The number of Weyl geometries per charge was de­
termined by the effects in our theory caused by gauge 
dependence, The notion of gauge and of gauge invariance 
was introduced by Weyl and is implicit in his geometry. 
Our theory relies heavily on the gauge dependence of the 
field equations, This dependence requires a unique 
gauge to be determined by the physical interpretation. 
Gauge variables are present in both the form of the 
electromagnetic current and the form for the mass. The 
current is linear in the gauge terms and the mass is 
quadratic, The phYSical interpretation requires the 
gauge terms in the mass formula to remain, but the 
terms in the current must vanish. To do this, we use 
two Weyl geometries to describe the charge, their 
gauge terms being additive inverses. This device gets 
rid of the unwanted terms in the current since they are 
linear, and cancel, yet keeps the required quadratic 
terms in the mass formula. Therefore, to have the 
proper phYSical interpretation, two Weyl geometries 
are required to describe a single charge, 

The conformal scalar curvatures of the Weyl geome­
tries must be modified to use in the variational prinCiple, 
The field equations consist of a Klein-Gordon type equa-

tion for the charge motion and the source equations for 
gravity and electromagnetism, Conservation of energy 
and charge follow from identities, All the equations are 
covariant, but none are gauge invariant. 

Inherent in the construction of a Weyl geometry is an 
electromagnetic vector potential. This is assumed to 
contribute additively to the total potential of the vacuum. 
To avoid self-energy problems, the potentials of the 
charge geometry is assumed to be due to other sources, 
Thus radiation is carried away by a different potential. 
These assumptions are not time reversal invarianL 
Furthermore, radiation and conservation of energy to­
gether require a change in the state of the charge, since 
energy radiated must be lost by the charge, By assump­
tion, only the external vector potential can change the 
state of the charge. Therefore, to treat radiation, we 
must assume the wave equation is not exact, relying in­
stead on the source equation and conservation of energy 
equation to describe the radiation, 

The usual concept of mass includes two separate no­
tions: mass as the source of gravity and mass as inertia, 
known as active and passive mass, respectively. 2 Pas­
sive mass enters in the wave equation; active mass oc­
curs in the energy equation of gravity, Each type has a 
rest mass which is a constant in the theory 0 Their 
equality arises as follows, The energy an atomic elec­
tron absorbs from the external field changes its active 
mass, The amount of energy lost in radiation can be 
found from the conservation of energy equation and the 
electromagnetic source equation. These two energies 
must be equal if an atom that absorbs radiation and sub­
sequently emmits radiation is not a source or sink of 
energy, The formula for the radiated energy contains 
the ratio of active rest mass to passive, This ratio must 
be one if the atom is not a source or sink of energy 0 

This is a theory of electromagnetic charges, i, e" 
electrons. But the theory is spinless, so the charges do 
not reproduce the behavior of electrons. The question of 
many charge statistics is tied to spin, so we treat only 
the single charge. The fine structure of spectra is also 
linked to spin so the details of spectroscopy cannot be 
reproduced. Further evidence of this failure is the pre­
diction of a 30 000 Mhz shift in the 2S-2P levels of hy­
drogen. This shift is due to variable mass terms in the 
wave equation. 
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The difference with previous geometric models of 
charge are apparent. We avoid singularities by spread­
ing out the charge as in wave mechanics, Geometric 
models of point charges have used unusual topologies to 
represent the inherent singularities of point sources, 
for example, the multiconnected topology due to 
Wheeler. 3 Breaking gauge invariance is basic to our 
approach. Weyl4 required this invariance in his theory 
of electromagnetism, FlintS used the conformal factor 
in a Weyl geometry as the square of the wavefunction, 
but failed to employ the concept of many geometries on 
the same surface. 

Weyl's geometry has appeared to conflict with funda­
mental atomic phenomena, Given an atomic clock and 
the speed of light, a well-defined unit of length is de­
termined, Weyl's geometry rests on a concept of inde­
terminate length, The way to avoid this conflict is to 
introduce several geometries: In one atomic lengths are 
fundamental; in the others Weyl's geometry holds. In 
our theory, the Riemannian geometry of the vacuum 
measures atomic lengths, and the Weyl geometries are 
localized to atomic dimensions, as discussed above, 
Dirac6 has used two metrics: one measuring length with 
the atomic standard, one to which Weyl's theory applies. 
He uses the Weyl geometry to describe effects of the 
large numbers hypothesis. 

Since Weyl's geometry may be unfamiliar, we provide 
a quick derivation of the results needed here, Following 
this is the variational principle and the discussion of the 
field equations, 

II. GEOMETRY 

Riemannian geometry in the limit of zero curvature 
reduces to Euclidean geometry, In particular, vectors 
of equal components have equal lengths, Weyl's geo­
metry retains curvature in the limit of a Euclidean 
metric, The lengths of two vectors located at points on 
the manifold separated by coordinate differences, dx', 
differ according to the formula 

dl= l(a o dx), (1 ) 

where a' is a vector and 1 is the Riemannian length of 
the vectors, Thus, even when the Riemannian curvature 
is zero, the affine connections cannot be null. The vec­
tor a' was interpreted by Weyl as the electromagnetic 
vector potential. 

To derive the affine connections, recall that, in 
Riemannian geometry with metric g",a, the equation 
d(l2) = 0 suffices. For a vector with components V', this 
means 

(a.g ",a) V"'Vadx' + g o<a[a.(V" va) ]dx' = O. (2) 

In Weyl's theory, 

d(12) = 12(2ao dx) = 2a.g ",a V"'Vadx" 0 (3) 

If (- 2a. + a .)g ",a replaces a.g aa in the formula for the 
Christoffel connections C;y, we have the affine connec­
tions r;y of the Weyl geometry. 

Weyl did not want a conformal transformation of the 
metric to affect the intrinsic geometry of the manifold. 
It is clear from the above derivation that the following 
leaves the affine connections unchanged, 
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(4) 

That follows because 

U(-2a.+il.)g",a=(-2a.+il.)gaa, (5) 

and the factor U cancels out of (3). 

Calculating the Weyl scalar curvature W, using the 
affine connections r;r with the metric g <>a yields 

W=R+6a2 _6((_g)1/2a.),. /(_g)1/2 (6) 

where7 g=det(g aa) and R is the Riemannian scalar cur­
vature of g a8' In terms of the metric g aa the quantities 
become 

and 

Combining equations to obtain the conformal scalar 
curvature, we have 

-_W 6a2 6{(_g)1/2a·),. 
R- U--U+ (_g)1/2 

(7) 

(8) 

The last term on the right becomes a divergence in the 
action principle integral; thus it has no affect on the 
field equations and is dropped from the following 
equations. 

Assuming the vector a' has pure imaginary compo­
nents, and aO has an imaginary part, R is kept real by 
replacing the following: 

2 I 12 -2 1_1 2 
d' 0 a - a , a - a , an a;. = , (9) 

Altogether, 

R= (1/U)(R +61a1 2 
- 61al\ (10) 

where R is the scalar curvature of the metric gaa' 

The last formula for R must be modified to serve as 
Lagrangian, To do this, use the replacement, 

71. = a. + a .In I u I-a. = a. + a .lnu, 

where lu 12 = U. 

(11) 

Therefore, R with this change is the scalar curvature 
when u is real. 

The modification can be described in another way 0 

Notice that 71. is the result of a conformal transforma­
tion from the vacuum metric to the charge metric. The 
inverse should give the vector potential that the charge 
would predict for the vacuum, call it avo' 

av.=71. - a.ln lu I =a. +a.lnu - a.lnlu I =a. 

+ilmil.lnu, 

where i=)=-Tand ImX=(X -X*)/2i. (12) 

If we take avo as the vector potential of the vacuum, 
the modification is to replace the a. in the term 6a2

/ U 
by (a

v
• - ilmil.lnu), in (10), From this point of view it is 

clear R is no longer the scalar curvature since we use 
two different gauges for the same potential in the formu­
la for R. To emphasize the change, we define 

S=(1/U)(R+6Iav I
2 -61(11 2

). (13) 
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Notice that if a Weyl geometry and the Lagrangian S 
are used for the vacuum, then the constraints on the 
vacuum metric are unchanged if 11 = 1, since then S = R. 
Furthermore, this is a rigorous way of introducing a 
vacuum vector potential to the geometry 0 The total vec­
tor potential in the vacuum CPa is assumed to be the sum 
of the charge geometry potential plus a vacuum geome­
try contribution yo 

(14) 

The field equations depend on which form of ao is varied 
in the Lagrangian; we chose avo' 

The vector ao of Weyl's theory must be allowed only 
purely imaginary numerical components, To justify this 
assumption, consider a point charge electron in circular 
orbit about a point charge proton. 9 Calculate the change 
in length after one revolution, Select those orbits for 
which there is no change, 

#dl/ l = 27Tni, where n is an integer. (15) 

For the case considered, ao has only a time component, 
- ke/ r, where k is constant, e is the proton charge, and 
r is the distance from the proton. Then, applying clas­
sical mechanics to cancel radial forces and using (1), 
we find 

(16) 

If k=± ie/fl, 10 then the radii selected are those of Bohr's 
model of the hydrogen atom. This is the justification for 
assuming ao is purely imaginary 0 

III. FIELD EQUATIONS 

The field equations result from a variational principle 
constructed from the scalar curvature R of the 
Riemannian geometry, the modified forml! S of the 
curvatures in the Weyl geometries, and the square 
of the electromagnetic field. Only the case of one charge 
is derived; thus two Weyl geometries are needed, la­
beled by a preindex. The Lagrangian is 

L=(R+cf2)(-g)'/2+tb .5(- .g)1!2 (17) 
• j::.1 J J , 

where c and b are constants, and f",~ = cp""s - cp~. "" where 
cpo is the total potential in vacuum. 

The field equations are covariant, but not gauge in­
variant, This last property is used in the physical in­
terpretation. Specifically, the equations are written 
with these substitutions: 

jU =jvexp{i jP'x) and jav=a~-ijPO for j=1,2, (18) 

where the vectors jP are constant, and a~ is the same 
for both particle component geometries. A more com­
plete description may require a more general transfor­
mation, Each jU may be thought of as an amplitude mod­
ulated plane wave, The field equations are labeled by 
the function varied, 

ju*Eq.: O=(R/6+ Ijav!2)jV 

+ (_g)-i/2 (a~ + il",)gC>!~(_ g)1/2(a~ + (
8

) jV, 

(19) 
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where q=3bi/47TCk, 

gEq.: O=(1+EbP)G"8_87TCk2T~! 

where 

2 

+ b6{(g"'SDp _P;";S) 
jd 

+ 6 jU(jP" jpS + 2ia' ("'Im(il 8) In jll) 

_ il ("In jv*aS)ln jt') - 3 jU g"'S 

X [(jp)2 + 2ia'. Imaln jV _ laIn jt' 12]), 

DU=U;o;a' FC>!8==1"'8/k, GC>!"=RC>!"_iRg C>!6, and 

(20) 

(21) 

T~!=- (1/47T)(F"'~F~0 - tg"SF2), (22) 

We have kept the notation jU because jU = I jV 12. The 
jU* equation may be rewritten in a simpler form, 

(23) 

The charge density of the source is spread out over a 
volume of space as a glance at (20) shows. If one sec­
tion of this density were to be repelled by another sec­
tion of the charge density, there are no external forces 
which could hold it together, It must be assumed that the 
charge reacts to that part of the vector potential which 
has other charges as its source. Accordingly , a'a is 
assumed to be the external vector potential and yo is 
assumed to be the vector potential arising from the 
charge itself. This assumption destroys the time inver­
sion symmetry of the theory, If a charge absorbs energy 
from the field corresponding to a' 0' the inverse process 
is the emission of energy from the charge to the field 
due to a'o' This means Yo and a'o are the same. But 
then a' 0 has the charge as part of its source and the 
charge blows up. Therefore, time inversion symmetry 
fails. 

There are two identities which must be satisfied. 
Since FC>!~ is antisymmetric, the divergence of the cur­
rent j" is identically zero, 

2 

j". =O=6Im(u*D .u). (24) 
• (] j=1 J J 

Together with the jU* equation, this implies 
2 

j;1(jU ja~);o = O. (25) 

Care must be exercised so that jU and Pvo satisfy this 
equation. 

The divergence of G"s is identically zero, so 

2 

0=- 87TCk2T"s + b6 [U (G"s + R"'s + .p Ot .pB 
em; 8 j=l J '!3 1 1 

- i gC>!S(jp)2) + 6i ofC>!S ImC1'*ila jV) 

- 6i jU' "a" Im(illn jV) _ 6(0 ('" j1'*( 8 ) j1' 

- %gOt~ 1 0 jt' 1\8]' (26) 

IV. MASS AND CHARGE 

The mass M and charge - e are defined as the volume 
integrals of the time components of the particle stress­
energy tensor T;8 and the current vector j", respec­
tively: 
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M= J T~od3X and - e= J jOd3x, 

where 

(27) 

(28) 

Since the amount of mass and charge is defined in terms 
of one component of a tensor and vector, the result de­
pends on the coordinate system of the observer, The 
only well-defined coordinate system is the rest frame 
of the charge. Therefore, we assume the expectation 
value of momentum is zero. However, the kinetic ener­
gy of the charge need not be zero, for example, if the 
charge is the electron in a one-electron atom. The 
treatment is further simplified by considering the 
wavefunctions jt' to be eigenstates of energyo Equation 
(25) will then be satisfied if (I' 0 has only a time compo­
nent. The mass is spread out over a volume much lar­
ger than the Schwarz schild limit. This is obvious, since 
nuclei are the tightest binders, and atomic electrons 
are spread out over volumes of radius many times big­
ger than the Schwarz schild radius, Thus we assume 
g"S is the flat space metric and 

(29) 

Before evaluating the mass and charge, certain prob­
lems with the form of the current must be eliminated. 
If the particle at rest is to have no current, the follow­
ing terms of (20) must be zero: 

(30) 

Assuming equal normalization of components, we have 

(31) 

By thinking of jll as amplitude modulated plane waves, 
the carrier waves are complex conjugates of each other. 
Thus, 

J 71* ud 8'(= r v* vexp(2i p' x)d 3x. (32) 
1 2 ..., 1 2 2 

The wavelength of the plane wave will turn out to be 
roughly tnl m, which is 10-2 A for electrons. Changes in 
,1'* 21) are on the order of angstroms, so the integral is 
approximately zero. This near orthogonality mimics 
that of the spin components in elementary quantum 
mechanics. Here, however, the wave equation (19) does 
not mix spin components, so there are no spin effects, 

Returning to the mass and charge evaluation, using 
(31), and assuming bp and R negligible, one finds 

M = (3b vi 47T)(pn)2 + (3bl 47T) J/,*Ll. / d 3x. (33) 

where tV=J.Ud3x, (pn)2=(jpn)2, Ll.v=v;n;n, and the sur­
face of the vblume of integration is far from the charge 
so that divergences in T~o integrate ouL The constant 
term on the right in (33) is the active rest mass Mo' 

,VIo = (3b vi 47T)(pn)2. (34) 

Keeping only the lowest order terms in (19) implies 

(35) 

The charge is approximately 

-e=tV(,w+ 2w). (36) 

Multiplying by (,W- 2W) implies lW=2W=W, 

To evaluate the constants of the theory, assume (19) 
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is an approximate form of the Klein-Gordon equation 

(37) 

where Ao is the electromagnetic vector potential. There­
fore, 

(38) 

Note that this value for k agrees with the Bohr atom 
treatment in Sec. II. Comparison of Eq. (21) with the 
general relativity result for electromagnetism, shows 
ck2 = - 1. Now the constants can be determined: 

w=±mlli, bV= ±47Tn2/3m, (pn)2=±mMoln2,ck2=_1, 

k= - ie/n, and (P0)2 =w2 + (pn)2 = (m 2In 2)(1 ± Maim), 

where m > O. (39) 

Notice that negative w implies negative rest mass M o, 

since (pn)2> O. Antiparticles are well known to exist, 
and can be interpreted as negative energy states. To 
include such species, we need only expand the two Weyl 
geometry theory to four, two having positive wand two 
negative. Wave components with opposite w's can be 
considered orthogonal in many cases. 

Jv* Vd3X =Jexp(2i wt), 
1 3 3 

(40) 

where J is a function of position and time, t. If the 
function J does not change appreciably in the span of 
time on the order of II w = 1O-2os, then, averaged over 
a few such time spans, (40) shows the effective ortho­
gonality of components with opposite w's. 

A four component wave function is most natural to 
describe charge. The need for a two-component theory 
can now be seen to arise because the constant vector 
po is needed so that the rest mass of the charge is non­
zero, (34), but yet the electromagnetic source cannot 
have a constant part essentially independent of the 
wavefunction, (20). The mass depends on the square of 
po, and the constant part of the current is linear in po. 
Thus, having two components with vectors jPO of equal 
magnitudes, but opposite directions, cancels the unwant­
ed terms in the current, but retains nonzero rest mass, 
Two more components are needed to include antiparti­
cles in the description. 

Two rest masses, m and M o, appear in the equations; 
one is the source of a gravitational field, the other 
measures the inertial resistance to applied force in the 
wave equation. The difference in these two masses has 
nothing to do with the Eotvos-Dicke experiment and the 
equivalence principle. In the absence of electromag­
netic and gravitational forces, it is evident from (19) 
that charges follow straight line paths. Covariance of 
the equations requires that in the absence of electro­
magnetic forces, charges follow geodesics. Thus the 
path of a charge unaffected by electromagnetism is in­
dependent of any intrinsic characteristlc of the charge, 
These predictions are the content of the equivalence 
principle supported by experiment. Thus, first, the 
theory obeys the equivalence principle. Secondly, the 
"gravitational mass" mg arises from Newton's equation 

mi{l=m~/r, (41 ) 

where K is constant and r is the distance from the 
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gravitational source. It may be argued that miJ the 
inertial mass, is the mass m. But the active mass M 
is a factor in K, and is definitely not mr 

For a bound charge, (33) can be put in the form 

M==Mo -2{k.e.), 

1 2 . (n2 ~ where (k.e.)= -vL]J v* --2 Ll. jvd 3x, 
1=' j m 

(42) 

For a one electron atom, the vector potential may be 
assumed to have only a time component, which is in­
versely proportional to the distance from the nucleus. 
Application of the virial theorem implies 

M==Mo- 2E, where E is the binding energy, (43) 

Discussion of this effect will be delayed until radiation 
has been treated, 

The discussion of mass would be incomplete without 
noticing that chargeless particles are essentially mass­
less in this theory, This follows because charge null 
implies k null implies java null, so 

m == n(R/6)' /2. (44) 

Mesons are "strongly" charged even if neutral electro­
magnetically. A discussion of strong charges lies be­
yond the scope of this report, so (44) does not contra­
dict observation. 

V. RADIATION 

The conservation of energy equation is (26) with ex = 0, 
which we use in the nonrelativistic limit, (29). By using 
(20), (22), and (30), two of the terms combine, 

2 

87TTOB. +L]6bi f OSIm (.v*av)=(87T/k)j (j0S_ fOS) 
em,8 j:l ° J S 1 S ° 

(45) 

where rf <>B = y<>, e. _ yB, ", and r T~~ is the electromagnetic 
stress-energy tensor (22) calculated with rFIXB 

== (l/k)rf IXB , In the derivation of (45), we used the re­
sult that a; is sourceless, as previously discussed, The 
cancellation involves the rate of doing work on the 
charge by the field due to a' a' and the rate that energy 
is lost by the field. To see this notice that the term 
OfOB

JB is the Lorentz force. The energy balance between 
charge and field due to a' 0 occurs in detaiL 

Of more interest is the energy emitted from the re­
gion of space containing the charge. So we integrate 
over space, assuming the volume of integration large 
enough so that certain surface integrals vanish. The 
expression for the rate of change of energy in the field 
due to Yo' in the volume of integration becomes 

pO~ - ~t ~ J [.U(eOO + ROO + 6(.pO? _ 3g00p2 
r 87T i=1 dt J J 

- 6igOOa"Im(illn jV)) - 6ao jV*ilo jV + 3gD° I a jV nd 3x. 

(46) 

To simplify this, use (23) multiplied by - 3 jV*, (30), 
assume jV is negligible on the surface of the volume of 
integration, and 

(47) 
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All this implies 

po= -.k.t.!!J [6 .U((pO)2 _ w2)]d 3x 
r 87T j.l dt J 

M o ~ d J Ud 3 
= - V f;f dt j x, 

(48) 

If jV satisfy (19), then d/ dt(fPd 3x) =0, implying no 
radiation. This argument requires more faith in the 
wave equation than is justified. Terms for the spin must 
be added before the equation can be regarded as exact. 
We do not consider it accurate enough to deny the deli­
cate process of radiation to proceed. With the assump­
tion that the coefficients in an eigenfunction expansion 
of the wavefunction depend on time, we explore the con­
sequences of the source equation (20). 

Assume a two-level system, 

jV = [c,y,exp(iE,f) + C2Y2eXP(iE2t) ]exp(iwt), (49) 

where cn are real and Yn are orthogonal energy eigen­
states of (19) normalized to V/2. Then ci+c~=1, so 
define 8 such that 

c, =sin8, c2 ==cos8, (:, = Bc2 , and (;2 ==- Bc,• (50) 

Even when radiating, the charge of the electron in an 
atomic system should have a constant part, 

(51) 

Therefore, 

(52) 

and 

(53) 

Integrating over all time, the energy liberated is 
(Mo/m)n(E, -E2), In order that the atom not be a source 
or sink of energy, this value must agree with (43), 
Therefore, noticing that V changes in (34), 

(54) 

An evaluation of the current shows the emitted radi­
ation has frequency lEI - E21. It is well known that ab­
sorption of energy from radiation occurs at the same 
frequency. The total energy absorbed and the total emit­
ted in radiative transitions divided by the frequency of 
the radiation is constant, h. Electromagnetic radiation 
from atomic electrons appears in quantized energy pac­
kets, in agreement with this result, 

VI. AN ENERGY LEVEL SHIFT 

The effect of the extra mass terms in (19), p' a' and 
a12

, may be treated as a small perturbation, Their ef­
fect is greatest when a; is the largest. Therefore, as­
sume a one-electron atom. To first order the energy 
change will be 

h 2 2 

!:!..E=- 2mV fjJpa'2 d3 x • (55) 
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The term linear in pcr is zero by (30). If a'cr has only a 
time component, - kef r, then 

6.E= e4Z2(~), where Ils) = ~~ f14.d 3x. (56) 
2m r \r V'];1 r 

Assuming both wave components are the eigenfunction 
belonging to the same level in hydrogen yields a differ­
ence in 6.E for the 2S-2P levels 

6.Es - 6.Ep = mZ4 a,4j12, where Cl! = e2/fi, (57) 

The equivalent frequency shift is 3 xl 04 Mhz. A shift of 
this magnitude is not observed. We conclude that the 
theory does not represent the details of atomic spec­
troscopy accurately. This is not such a bad failure for 
a spinless geometric theory of charge. 

VII. CONCLUSION 

This paper has discussed a specific geometric theory 
of charge, conceived from the viewpoint that geometry 
itself most simply describes physical events. The sim­
pliCity of the geometry is compromised by the necessary 
modification of the Weyl scalar curvatures. The physics 
lacks spin and related concepts. Yet the theory de­
scribes, with some accuracy, phenomena ranging from 
the astronomical, with general relativity as a limit, to 
the minute with a treatment of electromagneitc 
radiation. 
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