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Bernhard Riemann
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Plan of the Investigation.

It is known that geometry assumes, as things given, both the notion of
space and the first principles of constructions in space. She gives definitions
of them which are merely nominal, while the true determinations appear in
the form of axioms. The relation of these assumptions remains consequently
in darkness; we neither perceive whether and how far their connection is
necessary, nor a priori, whether it is possible.

From Euclid to Legendre (to name the most famous of modern reform-
ing geometers) this darkness was cleared up neither by mathematicians nor
by such philosophers as concerned themselves with it. The reason of this
is doubtless that the general notion of multiply extended magnitudes (in
which space-magnitudes are included) remained entirely unworked. I have
in the first place, therefore, set myself the task of constructing the notion of
a multiply extended magnitude out of general notions of magnitude. It will
follow from this that a multiply extended magnitude is capable of different
measure-relations, and consequently that space is only a particular case of
a triply extended magnitude. But hence flows as a necessary consequence
that the propositions of geometry cannot be derived from general notions of
magnitude, but that the properties which distinguish space from other con-
ceivable triply extended magnitudes are only to be deduced from experience.
Thus arises the problem, to discover the simplest matters of fact from which
the measure-relations of space may be determined; a problem which from the
nature of the case is not completely determinate, since there may be several
systems of matters of fact which suffice to determine the measure-relations of
space—the most important system for our present purpose being that which
Euclid has laid down as a foundation. These matters of fact are—like all
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matters of fact—not necessary, but only of empirical certainty; they are hy-
potheses. We may therefore investigate their probability, which within the
limits of observation is of course very great, and inquire about the justice
of their extension beyond the limits of observation, on the side both of the
infinitely great and of the infinitely small.

I. Notion of an n-ply extended magnitude.

In proceeding to attempt the solution of the first of these problems, the
development of the notion of a multiply extended magnitude, I think I may
the more claim indulgent criticism in that I am not practised in such under-
takings of a philosophical nature where the difficulty lies more in the notions
themselves than in the construction; and that besides some very short hints
on the matter given by Privy Councillor Gauss in his second memoir on
Biquadratic Residues, in the Göttingen Gelehrte Anzeige, and in his Jubilee-
book, and some philosophical researches of Herbart, I could make use of no
previous labours.

§ 1. Magnitude-notions are only possible where there is an antecedent
general notion which admits of different specialisations. According as there
exists among these specialisations a continuous path from one to another or
not, they form a continuous or discrete manifoldness; the individual special-
isations are called in the first case points, in the second case elements, of the
manifoldness. Notions whose specialisations form a discrete manifoldness are
so common that at least in the cultivated languages any things being given
it is always possible to find a notion in which they are included. (Hence
mathematicians might unhesitatingly found the theory of discrete magni-
tudes upon the postulate that certain given things are to be regarded as
equivalent.) On the other hand, so few and far between are the occasions for
forming notions whose specialisations make up a continuous manifoldness,
that the only simple notions whose specialisations form a multiply extended
manifoldness are the positions of perceived objects and colours. More fre-
quent occasions for the creation and development of these notions occur first
in the higher mathematic.

Definite portions of a manifoldness, distinguished by a mark or by a
boundary, are called Quanta. Their comparison with regard to quantity is
accomplished in the case of discrete magnitudes by counting, in the case of
continuous magnitudes by measuring. Measure consists in the superposition
of the magnitudes to be compared; it therefore requires a means of using
one magnitude as the standard for another. In the absence of this, two
magnitudes can only be compared when one is a part of the other; in which
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case also we can only determine the more or less and not the how much. The
researches which can in this case be instituted about them form a general
division of the science of magnitude in which magnitudes are regarded not as
existing independently of position and not as expressible in terms of a unit,
but as regions in a manifoldness. Such researches have become a necessity for
many parts of mathematics, e.g., for the treatment of many-valued analytical
functions; and the want of them is no doubt a chief cause why the celebrated
theorem of Abel and the achievements of Lagrange, Pfaff, Jacobi for the
general theory of differential equations, have so long remained unfruitful. Out
of this general part of the science of extended magnitude in which nothing is
assumed but what is contained in the notion of it, it will suffice for the present
purpose to bring into prominence two points; the first of which relates to the
construction of the notion of a multiply extended manifoldness, the second
relates to the reduction of determinations of place in a given manifoldness
to determinations of quantity, and will make clear the true character of an
n-fold extent.

§ 2. If in the case of a notion whose specialisations form a continuous
manifoldness, one passes from a certain specialisation in a definite way to
another, the specialisations passed over form a simply extended manifold-
ness, whose true character is that in it a continuous progress from a point is
possible only on two sides, forwards or backwards. If one now supposes that
this manifoldness in its turn passes over into another entirely different, and
again in a definite way, namely so that each point passes over into a definite
point of the other, then all the specialisations so obtained form a doubly
extended manifoldness. In a similar manner one obtains a triply extended
manifoldness, if one imagines a doubly extended one passing over in a definite
way to another entirely different; and it is easy to see how this construction
may be continued. If one regards the variable object instead of the deter-
minable notion of it, this construction may be described as a composition of
a variability of n + 1 dimensions out of a variability of n dimensions and a
variability of one dimension.

§ 3. I shall show how conversely one may resolve a variability whose region
is given into a variability of one dimension and a variability of fewer dimen-
sions. To this end let us suppose a variable piece of a manifoldness of one
dimension—reckoned from a fixed origin, that the values of it may be compa-
rable with one another—which has for every point of the given manifoldness
a definite value, varying continuously with the point; or, in other words,
let us take a continuous function of position within the given manifoldness,
which, moreover, is not constant throughout any part of that manifoldness.
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Every system of points where the function has a constant value, forms then a
continuous manifoldness of fewer dimensions than the given one. These man-
ifoldnesses pass over continuously into one another as the function changes;
we may therefore assume that out of one of them the others proceed, and
speaking generally this may occur in such a way that each point passes over
into a definite point of the other; the cases of exception (the study of which
is important) may here be left unconsidered. Hereby the determination of
position in the given manifoldness is reduced to a determination of quantity
and to a determination of position in a manifoldness of less dimensions. It
is now easy to show that this manifoldness has n − 1 dimensions when the
given manifold is n-ply extended. By repeating then this operation n times,
the determination of position in an n-ply extended manifoldness is reduced
to n determinations of quantity, and therefore the determination of position
in a given manifoldness is reduced to a finite number of determinations of
quantity when this is possible. There are manifoldnesses in which the deter-
mination of position requires not a finite number, but either an endless series
or a continuous manifoldness of determinations of quantity. Such manifold-
nesses are, for example, the possible determinations of a function for a given
region, the possible shapes of a solid figure, &c.

II. Measure-relations of which a manifoldness of n dimensions is capable on
the assumption that lines have a length independent of position, and

consequently that every line may be measured by every other.

Having constructed the notion of a manifoldness of n dimensions, and
found that its true character consists in the property that the determina-
tion of position in it may be reduced to n determinations of magnitude, we
come to the second of the problems proposed above, viz. the study of the
measure-relations of which such a manifoldness is capable, and of the condi-
tions which suffice to determine them. These measure-relations can only be
studied in abstract notions of quantity, and their dependence on one another
can only be represented by formulæ. On certain assumptions, however, they
are decomposable into relations which, taken separately, are capable of geo-
metric representation; and thus it becomes possible to express geometrically
the calculated results. In this way, to come to solid ground, we cannot, it is
true, avoid abstract considerations in our formulæ, but at least the results of
calculation may subsequently be presented in a geometric form. The foun-
dations of these two parts of the question are established in the celebrated
memoir of Gauss, Disqusitiones generales circa superficies curvas.

§ 1. Measure-determinations require that quantity should be independent
of position, which may happen in various ways. The hypothesis which first
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presents itself, and which I shall here develop, is that according to which
the length of lines is independent of their position, and consequently every
line is measurable by means of every other. Position-fixing being reduced to
quantity-fixings, and the position of a point in the n-dimensioned manifold-
ness being consequently expressed by means of n variables x1, x2, x3, . . . , xn,
the determination of a line comes to the giving of these quantities as functions
of one variable. The problem consists then in establishing a mathematical
expression for the length of a line, and to this end we must consider the quan-
tities x as expressible in terms of certain units. I shall treat this problem
only under certain restrictions, and I shall confine myself in the first place to
lines in which the ratios of the increments dx of the respective variables vary
continuously. We may then conceive these lines broken up into elements,
within which the ratios of the quantities dx may be regarded as constant;
and the problem is then reduced to establishing for each point a general
expression for the linear element ds starting from that point, an expression
which will thus contain the quantities x and the quantities dx. I shall sup-
pose, secondly, that the length of the linear element, to the first order, is
unaltered when all the points of this element undergo the same infinitesimal
displacement, which implies at the same time that if all the quantities dx
are increased in the same ratio, the linear element will vary also in the same
ratio. On these suppositions, the linear element may be any homogeneous
function of the first degree of the quantities dx, which is unchanged when
we change the signs of all the dx, and in which the arbitrary constants are
continuous functions of the quantities x. To find the simplest cases, I shall
seek first an expression for manifoldnesses of n − 1 dimensions which are
everywhere equidistant from the origin of the linear element; that is, I shall
seek a continuous function of position whose values distinguish them from
one another. In going outwards from the origin, this must either increase in
all directions or decrease in all directions; I assume that it increases in all
directions, and therefore has a minimum at that point. If, then, the first and
second differential coefficients of this function are finite, its first differential
must vanish, and the second differential cannot become negative; I assume
that it is always positive. This differential expression, of the second order
remains constant when ds remains constant, and increases in the duplicate
ratio when the dx, and therefore also ds, increase in the same ratio; it must
therefore be ds2 multiplied by a constant, and consequently ds is the square
root of an always positive integral homogeneous function of the second order
of the quantities dx, in which the coefficients are continuous functions of the
quantities x. For Space, when the position of points is expressed by rectilin-

ear co-ordinates, ds =
√∑

(dx)2; Space is therefore included in this simplest
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case. The next case in simplicity includes those manifoldnesses in which the
line-element may be expressed as the fourth root of a quartic differential ex-
pression. The investigation of this more general kind would require no really
different principles, but would take considerable time and throw little new
light on the theory of space, especially as the results cannot be geometrically
expressed; I restrict myself, therefore, to those manifoldnesses in which the
line element is expressed as the square root of a quadric differential expres-
sion. Such an expression we can transform into another similar one if we
substitute for the n independent variables functions of n new independent
variables. In this way, however, we cannot transform any expression into any
other; since the expression contains 1

2
n(n+1) coefficients which are arbitrary

functions of the independent variables; now by the introduction of new vari-
ables we can only satisfy n conditions, and therefore make no more than n of
the coefficients equal to given quantities. The remaining 1

2
n(n − 1) are then

entirely determined by the nature of the continuum to be represented, and
consequently 1

2
n(n−1) functions of positions are required for the determina-

tion of its measure-relations. Manifoldnesses in which, as in the Plane and
in Space, the line-element may be reduced to the form

√∑
dx2, are therefore

only a particular case of the manifoldnesses to be here investigated; they re-
quire a special name, and therefore these manifoldnesses in which the square
of the line-element may be expressed as the sum of the squares of complete
differentials I will call flat. In order now to review the true varieties of all
the continua which may be represented in the assumed form, it is necessary
to get rid of difficulties arising from the mode of representation, which is ac-
complished by choosing the variables in accordance with a certain principle.

§ 2. For this purpose let us imagine that from any given point the system
of shortest limes going out from it is constructed; the position of an arbitrary
point may then be determined by the initial direction of the geodesic in which
it lies, and by its distance measured along that line from the origin. It can
therefore be expressed in terms of the ratios dx0 of the quantities dx in this
geodesic, and of the length s of this line. Let us introduce now instead of the
dx0 linear functions dx of them, such that the initial value of the square of the
line-element shall equal the sum of the squares of these expressions, so that
the independent varaibles are now the length s and the ratios of the quantities
dx. Lastly, take instead of the dx quantities x1, x2, x3, . . . , xn proportional
to them, but such that the sum of their squares = s2. When we introduce
these quantities, the square of the line-element is

∑
dx2 for infinitesimal

values of the x, but the term of next order in it is equal to a homogeneous
function of the second order of the 1

2
n(n − 1) quantities (x1 dx2 − x2 dx1),

(x1 dx3 − x3 dx1) . . . an infinitesimal, therefore, of the fourth order; so that
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we obtain a finite quantity on dividing this by the square of the infinitesimal
triangle, whose vertices are (0, 0, 0, . . .), (x1, x2, x3, . . .), (dx1, dx2, dx3, . . .).
This quantity retains the same value so long as the x and the dx are included
in the same binary linear form, or so long as the two geodesics from 0 to x and
from 0 to dx remain in the same surface-element; it depends therefore only
on place and direction. It is obviously zero when the manifold represented
is flat, i.e., when the squared line-element is reducible to

∑
dx2, and may

therefore be regarded as the measure of the deviation of the manifoldness
from flatness at the given point in the given surface-direction. Multiplied
by −3

4
it becomes equal to the quantity which Privy Councillor Gauss has

called the total curvature of a surface. For the determination of the measure-
relations of a manifoldness capable of representation in the assumed form
we found that 1

2
n(n − 1) place-functions were necessary; if, therefore, the

curvature at each point in 1
2
n(n−1) surface-directions is given, the measure-

relations of the continuum may be determined from them—provided there be
no identical relations among these values, which in fact, to speak generally, is
not the case. In this way the measure-relations of a manifoldness in which the
line-element is the square root of a quadric differential may be expressed in a
manner wholly independent of the choice of independent variables. A method
entirely similar may for this purpose be applied also to the manifoldness in
which the line-element has a less simple expression, e.g., the fourth root
of a quartic differential. In this case the line-element, generally speaking,
is no longer reducible to the form of the square root of a sum of squares,
and therefore the deviation from flatness in the squared line-element is an
infinitesimal of the second order, while in those manifoldnesses it was of the
fourth order. This property of the last-named continua may thus be called
flatness of the smallest parts. The most important property of these continua
for our present purpose, for whose sake alone they are here investigated, is
that the relations of the twofold ones may be geometrically represented by
surfaces, and of the morefold ones may be reduced to those of the surfaces
included in them; which now requires a short further discussion.

§ 3. In the idea of surfaces, together with the intrinsic measure-relations
in which only the length of lines on the surfaces is considered, there is al-
ways mixed up the position of points lying out of the surface. We may,
however, abstract from external relations if we consider such deformations
as leave unaltered the length of lines—i.e., if we regard the surface as bent
in any way without stretching, and treat all surfaces so related to each other
as equivalent. Thus, for example, any cylindrical or conical surface counts
as equivalent to a plane, since it may be made out of one by mere bend-
ing, in which the intrinsic measure-relations remain, and all theorems about

7



a plane—therefore the whole of planimetry—retain their validity. On the
other hand they count as essentially different from the sphere, which cannot
be changed into a plane without stretching. According to our previous in-
vestigation the intrinsic measure-relations of a twofold extent in which the
line-element may be expressed as the square root of a quadric differential,
which is the case with surfaces, are characterised by the total curvature. Now
this quantity in the case of surfaces is capable of a visible interpretation, viz.,
it is the product of the two curvatures of the surface, or multiplied by the
area of a small geodesic triangle, it is equal to the spherical excess of the
same. The first definition assumes the proposition that the product of the
two radii of curvature is unaltered by mere bending; the second, that in the
same place the area of a small triangle is proportional to its spherical excess.
To give an intelligible meaning to the curvature of an n-fold extent at a given
point and in a given surface-direction through it, we must start from the fact
that a geodesic proceeding from a point is entirely determined when its initial
direction is given. According to this we obtain a determinate surface if we
prolong all the geodesics proceeding from the given point and lying initially
in the given surface-direction; this surface has at the given point a definite
curvature, which is also the curvature of the n-fold continuum at the given
point in the given surface-direction.

§ 4. Before we make the application to space, some considerations about
flat manifoldness in general are necessary; i.e., about those in which the
square of the line-element is expressible as a sum of squares of complete
differentials.

In a flat n-fold extent the total curvature is zero at all points in every
direction; it is sufficient, however (according to the preceding investigation),
for the determination of measure-relations, to know that at each point the
curvature is zero in 1

2
n(n−1) independent surface directions. Manifoldnesses

whose curvature is constantly zero may be treated as a special case of those
whose curvature is constant. The common character of those continua whose
curvature is constant may be also expressed thus, that figures may be viewed
in them without stretching. For clearly figures could not be arbitrarily shifted
and turned round in them if the curvature at each point were not the same in
all directions. On the other hand, however, the measure-relations of the man-
ifoldness are entirely determined by the curvature; they are therefore exactly
the same in all directions at one point as at another, and consequently the
same constructions can be made from it: whence it follows that in aggregates
with constant curvature figures may have any arbitrary position given them.
The measure-relations of these manifoldnesses depend only on the value of
the curvature, and in relation to the analytic expression it may be remarked
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that if this value is denoted by α, the expression for the line-element may be
written

1

1 + 1
4
α

∑
x2

√∑
dx2.

§ 5. The theory of surfaces of constant curvature will serve for a geometric
illustration. It is easy to see that surface whose curvature is positive may
always be rolled on a sphere whose radius is unity divided by the square root
of the curvature; but to review the entire manifoldness of these surfaces, let
one of them have the form of a sphere and the rest the form of surfaces of
revolution touching it at the equator. The surfaces with greater curvature
than this sphere will then touch the sphere internally, and take a form like
the outer portion (from the axis) of the surface of a ring; they may be rolled
upon zones of spheres having new radii, but will go round more than once.
The surfaces with less positive curvature are obtained from spheres of larger
radii, by cutting out the lune bounded by two great half-circles and bringing
the section-lines together. The surface with curvature zero will be a cylinder
standing on the equator; the surfaces with negative curvature will touch the
cylinder externally and be formed like the inner portion (towards the axis) of
the surface of a ring. If we regard these surfaces as locus in quo for surface-
regions moving in them, as Space is locus in quo for bodies, the surface-
regions can be moved in all these surfaces without stretching. The surfaces
with positive curvature can always be so formed that surface-regions may
also be moved arbitrarily about upon them without bending, namely (they
may be formed) into sphere-surfaces; but not those with negative-curvature.
Besides this independence of surface-regions from position there is in surfaces
of zero curvature also an independence of direction from position, which in
the former surfaces does not exist.

III. Application to Space.

§ 1. By means of these inquiries into the determination of the measure-
relations of an n-fold extent the conditions may be declared which are neces-
sary and sufficient to determine the metric properties of space, if we assume
the independence of line-length from position and expressibility of the line-
element as the square root of a quadric differential, that is to say, flatness in
the smallest parts.

First, they may be expressed thus: that the curvature at each point is
zero in three surface-directions; and thence the metric properties of space are
determined if the sum of the angles of a triangle is always equal to two right
angles.
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Secondly, if we assume with Euclid not merely an existence of lines in-
dependent of position, but of bodies also, it follows that the curvature is
everywhere constant; and then the sum of the angles is determined in all
triangles when it is known in one.

Thirdly, one might, instead of taking the length of lines to be independent
of position and direction, assume also an independence of their length and
direction from position. According to this conception changes or differences
of position are complex magnitudes expressible in three independent units.

§ 2. In the course of our previous inquiries, we first distinguished between
the relations of extension or partition and the relations of measure, and found
that with the same extensive properties, different measure-relations were
conceivable; we then investigated the system of simple size-fixings by which
the measure-relations of space are completely determined, and of which all
propositions about them are a necessary consequence; it remains to discuss
the question how, in what degree, and to what extent these assumptions are
borne out by experience. In this respect there is a real distinction between
mere extensive relations, and measure-relations; in so far as in the former,
where the possible cases form a discrete manifoldness, the declarations of
experience are indeed not quite certain, but still not inaccurate; while in the
latter, where the possible cases form a continuous manifoldness, every deter-
mination from experience remains always inaccurate: be the probability ever
so great that it is nearly exact. This consideration becomes important in the
extensions of these empirical determinations beyond the limits of observation
to the infinitely great and infinitely small; since the latter may clearly become
more inaccurate beyond the limits of observation, but not the former.

In the extension of space-construction to the infinitely great, we must
distinguish between unboundedness and infinite extent, the former belongs
to the extent relations, the latter to the measure-relations. That space is
an unbounded three-fold manifoldness, is an assumption which is developed
by every conception of the outer world; according to which every instant
the region of real perception is completed and the possible positions of a
sought object are constructed, and which by these applications is for ever
confirming itself. The unboundedness of space possesses in this way a greater
empirical certainty than any external experience. But its infinite extent by
no means follows from this; on the other hand if we assume independence of
bodies from position, and therefore ascribe to space constant curvature, it
must necessarily be finite provided this curvature has ever so small a positive
value. If we prolong all the geodesics starting in a given surface-element,
we should obtain an unbounded surface of constant curvature, i.e., a surface
which in a flat manifoldness of three dimensions would take the form of a

10



sphere, and consequently be finite.
§ 3. The questions about the infinitely great are for the interpretation of

nature useless questions. But this is not the case with the questions about
the infinitely small. It is upon the exactness with which we follow phe-
nomena into the infinitely small that our knowledge of their causal relations
essentially depends. The progress of recent centuries in the knowledge of me-
chanics depends almost entirely on the exactness of the construction which
has become possible through the invention of the infinitesimal calculus, and
through the simple principles discovered by Archimedes, Galileo, and New-
ton, and used by modern physic. But in the natural sciences which are still
in want of simple principles for such constructions, we seek to discover the
causal relations by following the phenomena into great minuteness, so far as
the microscope permits. Questions about the measure-relations of space in
the infinitely small are not therefore superfluous questions.

If we suppose that bodies exist independently of position, the curvature
is everywhere constant, and it then results from astronomical measurements
that it cannot be different from zero; or at any rate its reciprocal must be an
area in comparison with which the range of our telescopes may be neglected.
But if this independence of bodies from position does not exist, we cannot
draw conclusions from metric relations of the great, to those of the infinitely
small; in that case the curvature at each point may have an arbitrary value
in three directions, provided that the total curvature of every measurable
portion of space does not differ sensibly from zero. Still more complicated
relations may exist if we no longer suppose the linear element expressible
as the square root of a quadric differential. Now it seems that the empirical
notions on which the metrical determinations of space are founded, the notion
of a solid body and of a ray of light, cease to be valid for the infinitely small.
We are therefore quite at liberty to suppose that the metric relations of space
in the infinitely small do not conform to the hypotheses of geometry; and we
ought in fact to suppose it, if we can thereby obtain a simpler explanation
of phenomena.

The question of the validity of the hypotheses of geometry in the infinitely
small is bound up with the question of the ground of the metric relations of
space. In this last question, which we may still regard as belonging to the
doctrine of space, is found the application of the remark made above; that
in a discrete manifoldness, the ground of its metric relations is given in the
notion of it, while in a continuous manifoldness, this ground must come
from outside. Either therefore the reality which underlies space must form
a discrete manifoldness, or we must seek the gound of its metric relations
outside it, in binding forces which act upon it.

The answer to these questions can only be got by starting from the con-
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ception of phenomena which has hitherto been justified by experience, and
which Newton assumed as a foundation, and by making in this conception
the successive changes required by facts which it cannot explain. Researches
starting from general notions, like the investigation we have just made, can
only be useful in preventing this work from being hampered by too narrow
views, and progress in knowledge of the interdependence of things from being
checked by traditional prejudices.

This leads us into the domain of another science, of physic, into which
the object of this work does not allow us to go to-day.
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Synopsis.

Plan of the Inquiry:

I. Notion of an n-ply extended magnitude.

§ 1. Continuous and discrete manifoldnesses. Defined parts of a man-
ifoldness are called Quanta. Division of the theory of continuous
magnitude into the theories,

(1) Of mere region-relations, in which an independence of magni-
tudes from position is not assumed;

(2) Of size-relations, in which such an independence must be as-
sumed.

§ 2. Construction of the notion of a one-fold, two-fold, n-fold extended
magnitude.

§ 3. Reduction of place-fixing in a given manifoldness to quantity-
fixings. True character of an n-fold extended magnitude.

II. Measure-relations of which a manifoldness of n-dimensions is capable on
the assumption that lines have a length independent of position, and
consequently that every line may be measured by every other.

§ 1. Expression for the line-element. Manifoldnesses to be called Flat
in which the line-element is expressible as the square root of a sum
of squares of complete differentials.

§ 2. Investigation of the manifoldness of n-dimensions in which the line
element may be represented as the square root of a quadric dif-
ferential. Measure ofits deviation from flatness (curvature) at a
given point in a given surface-direction. For the determination
of its measure-relations it is allowable and sufficient that the cur-
vature be arbitrarily given at every point in 1

2
n(n − 1) surface

directions.

§ 3. Geometric illustration.

§ 4. Flat manifoldnesses (in which the curvature is everywhere = 0)
may be treated as a special case of manifoldnesses with constant
curvature. These can also be defined as admitting an indepen-
dence of n-fold extents in them from position (possibility of motion
without stretching).

§ 5. Surfaces with constant curvature.
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III. Application to Space.

§ 1. System of facts which suffice to determine the measure-relations
of space assumed in geometry.

§ 2. How far is the validity of these empirical determinations probable
beyond the limits of observation towards the infinitely great?

§ 3. How far towards the infinitely small? Connection of this question
with the interpretation of nature.
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