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I f  classical physics be regarded as comprising gravitation, source free elec- 
tromagnetism, unquantized charge, and unquantieed mass of concentrations 
of electromagnetic field energy (geons), then classical physics can be described 
in terms of curved empty space, and nothing more. No changes are made in 
existing theory. The electromagnetic field is given by the “Maxwell square 
root” of the contracted curvature tensor of Ricci and Einstein. Maxwell’s equa- 
tions then reduce, as shown thirty years ago by Rainich, to a simple statement 
connecting the Ricci curvature and its rate of change. In contrast to unified 
field theories, one then secures from the standard theory of Maxwell and Ein- 
stein an “already unified field theory.” This purely geometrical description of 
electromagnetism is traced out in detail. Charge receives a natural interpreta- 
tion in terms of source-free electromagnetic fields that (1) are everywhere 
subject to Maxwell’s equations for free space but (2) are trapped in the “worm 
holes” of a space with a multiply-connected topology. Electromagnetism in 
such a space receives a detailed description in terms of the existing beautiful 
and highly developed mathematics of topology and harmonic vector fields. 
Elementary particles and “real masses” are completely excluded from discus- 
sion as belonging to the world of quantum physics. 

“I transmit but I do not create; I am sincerely fond of the ancient.“-Con- 
fucius. 

I. IS THE SPACE-TIME CONTINUUM ONLY AN ARENA, OR IS IT ALL? CLASSI- 
CAL PHYSICS REGARDED AS COMPRISING GRAVITATION, ELECTROMAG- 
NETISM, UNQUANTIZED CHARGE, AND UNQUANTIZED MASS; ALL FOUR 
CONCEPTS DESCRIBED IN TERMS OF EMPTY CURVED SPACE WITHOUT 
ANY ADDITION TO ACCEPTED THEORY; THE ELECTROMAGNETIC FIELD 
AS THE “MAXWELL SQUARE ROOT” OF THE CONTRACTED CURVATURE; 
UNQUANTIZED CHARGE DESCRIBED IN TERMS OF SOURCE FREE MAX- 

* Part VI of a critique of classical field theory. Part V appeared in Phys Rev. 97, 51 (1956). 
t National Science Foundation Predoctoral Fellow. 
1 Holder for part of the period of this work of a John Simon Guggenheim Fellowship at 

the Lorents Institute of the University of Leiden. 
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WELL FIELD IN A MULTIPLY-CONNECTED SPACE; UNQUANTIZED MASS 
ASSOCIATED WITH COLLECTION OF ELECTROMAGNETIC FIELD ENERGY 
HELD TOGETHER BY ITS OWN GRAVITATIONAL ATTRACTION; HISTORY 
OF IDEAS OF PHYSICS AS GEOMETRY; SUMMARY OF PAPER 

Two views of the nature of physics stand in sharp contrast: 
(1) The space time continuum serves only as arena for the struggles of fields 

and particles. These entities are foreign to geometry. They must be added to 
geometry to permit any physics. 

(2) There is nothing in the world except empty curved space. Matter, charge, 
electromagnetism, and other fields are only manifestations of the bending of 
space. Physics is geometry. 
To understand how far one can go in regarding classical physics as geometry 
is the object of this paper. Nothing will be said here about the fascinating 
issue’ of quantizing this classical pure “geometrodynamics” (Table I). 

In describing classical physics (in the sense of Table I) as geometry, we invent 
no new ideas. We accept Maxwell’s 1864 electrodynamics of empty space, his 
formulation of the stress-momentum-energy tensor of the electromagnetic field, 
and Einstein’s forty-one-year old description of gravitation in terms of curved 
space. Restricting attention to classical concepts (Table I) we take as source 
of metric fields, gfiV , exclusively electromagnetic fields, Fap = (c2/G1”)j,g-and 
electromagnetic fields that are themselves free of all sources’: 

i See, however, Misner (1) and Wheeler (2) for a partial discussion of some features of 
this problem. 

2 We accept the following familiar conventions: Greek labels refer to four dimensional 
space; Latin labels refer to three dimensional space. The fourth coordinate, x0(= T = 
ct = “cotime” in flat space) receives the label 0 to prevent confusion with the occasional 
use in special relativity of x4 to designate ict. The proper distance, ds, or proper interval of 
cotime, dr, between two neighboring events is given by 

@s)~ = - (&)2 = gas dx” dxa. 

In flat space and Euclidean coordinates, the metric tensor is diagonal with -1, 1, 1,l in the 
diagonal. Many of the considerations of this article deal with space like manifolds, on which 
it is a great convenience to have a positive definite metric, as given by the present conven- 
tion (see also Pauli, Landau and Lifschite, Jauch and Rohrlich). The determinant, 1 gaB 1, 
of the metric in four space is designated by g, and the determinant, ( g;k 1, of the metric on 
a spacelike manifold is designated by 39. Other important quantities include the bending 
coefficients, 

rng,y = $5 @gdax~ + a&a28 - agae/ae ; 

the Riemann curvature tensor, with its twenty distinct components, R,,, , where 

R,Q~,, = ar,,p/ax” - ar,fl/ax’ + r~r,~q - r,,Mr,,v; 

the symmetric Ricci tensor or contracted Riemann tensor, 

R,, = R,“w; 
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(3!)-l[aPrsl(afs,/az6) = 0 (half of Maxwell’s equations), 

(-g)-“‘(a/asP)(-g)l’~~ = 0 (the other half), 

“Oga,? = R,,a - %sc& = 2jmajtt - %&s&j”‘) 

(1) 

(2) 

(curvature of metric by Maxwell stress-momentum-energy density). (3) 

These equations describe electromagnetism and gravitation as a coupled but 
closed dynamical system. 

Solve Eqs. (3) for the reduced electromagnetic field, f<, , in terms of the con- 
tracted curvature tensor, Ro,s . Substitute the resulting expressions into Maxwell’s 
equations. Thus re-express the content of the Maxwell-Einstein equations in a 
purely geometricalform. This program was carried out by Rainich in an important 
paper (zI)~ that has long lain neglected. The result is simple. (1) The symmetric 

the curvature invariant, R = Rmu; the generalization of the notion of d’hlembertian of 
the gravitational potentials, 

“Og,,” = R,. - %swR; 

and the electromagnetic potentials, A, , such that 

FOP = aAP18xu - aAJax@. 

The alternating quantity that is often written in the form e,ora is not a tensor and is here 
written in the form [C&S]. It changes sign on interchange of any two indices, and [0123] 
has thevalue unity. The dual, (*F),, , of an alternating tensor, Fe@ , is defined by the equa- 
tion 

(*F),,y = ?,~(-g)““G~~~]g~*g’“F.a . 

Associated with the geometrized electromagnetic field quantities, f.~ = (Gl’*/c2)F,~ , 
are the geometrized electromagnetic potentials, a, = (G1’2/~2)A, , which are dimension- 
less. In flat space and Euclidean coordinates, 

dxl = dxi = displacement in x-direction, 

dx” = -dx0 = interval of cotime, 

A1 = A, = x-component of usual vector potential, 

A0 = -A0 = usual scalar potential, V(es volts), 

Fx3 = -Faa = x-component of magnetic field, 

Flo = -Fol = x-component of electric field 

3 Even Rainich’s later book, (4) does not summarize this paper, primarily because he 
was motivated by a dierent view of classical physics than that under investigation in the 
present article. We undertook the problem of expressing (I), (2), and (3) in “already unified 
form”, and one of us (C. M.) independently derived Rainich’s results, before becoming 
aware of his valuable contribution. The possibility of such an “already unified theory” was 
first suggested to us by Dr. Hugh Everett. 
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TABLE I 

THE DISTINCTION BETWEEN CLASSICAL AND QUANTUM PHYSICS 
AS ENVISAGED IN THIS PAPER* 

Classical physics as 
defined here 

Description in terns of the geometry 
of empty curved space 

Quantum physics; not discussed in 
this paper 

Gravitation Defined by curving of geodesics Gravitons; photons; spin; neutri- 
in a Riemannian space nos; quantization of charge; 

Electromagnetism Determined by curvature, and qumtization of mass; electrons, 
its rate of change, in this same mesons and other particles; 
Riemannian space (Fig. 2) characteristic fields that do not 

Unquantised charge Manifestation of lines of force have zero rest mass, apparently 
trapped in a multiply con- associated with some of these 
nected topology (Fig. 3) particles; particle transforma- 

Unquantized mass Geons: semistable collection of tion processes; also all phenom- 
electromagnetic or gravita- ena where quantum fluctua- 
tional wave energy held to- tions in the metric are more 
gether by its owngravitational important than any static 
attraction gravitational fields. 

G = 6.67 X 10-a cm3/g sec2 and c define no char- G, c, and h define the characteristic units 
acteristic length, mass, or time. Electromag- first introduced by Planck: L* = 
netic field F,, (in gauss or electrostatic volts (hG/c3)“* = 1.63 X lo-33 cm; T* = 
per cm or (g/cm sec2)1/2) translated into L*/c; and M* = (he/G)“* = 2.18 x 
purely geometric quantities f,, (in units of 10-6 g. 
cm-i) by multiplication with G”z/c2 = 
l/3.49 X lot4 gauss cm. 

a The unquantieed classical charge and mass in the table have no direct relation what- 
soever with the elementary masses and charges that are seen in the quantum world of 
physics. 

Ricci tensor, R,o , can be expressed as the “Maxwell square”, as in Eq. (3), of an 
alternating tensor, .fV, , if and only if this tensor (Fig. 1) (a) has zero trace and 
(b) has a square which is a multiple of the unit matrix: 

R = R," = 0, 

R/R,' = 6,y(R,,R"r/4). 

We therefore demand these conditions of the Ricci tensor. (2) Then this con- 
tracted curvature tensor determines the local value of the reduced electromag- 
netic field tensor, jr7 , uniquely up to an arbitrary angle, CY, by way of an equation 
which we write symbolically in the form4 

4 We wish to express our appreciation to Professor V. Bargmann for bringing Eqs. (5) 
and (6) to our attention two years ago, noting that their gist had been independently dis- 
covered by several investigators, and expressing their content in essentially the above 
exceptionally simple form. An early proof is given by Rainich himself (5). The result is 
implicit in Theorem V of a study by Synge (6); see also Synge’s book (6), a paper by 
Bonnor (7), and the thesis of Louis Mariot (8), for which we are indebted to M. Mariot. 
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fc, = (&faxwellroot)ar cos a + ~~~~~~~~~~~~~~~~ sin a. (6) 

(3) The expression for the electromagnetic field in terms of the Ricci curvature 
is substituted into Maxwell’s equations. The laws of electrodynamics thereby 
take on the following purely geometrical character. First, out of the derivative 

FIG. 1. Simplification of the analysis of the Maxwell stress-momentum-energy tensor by 
passage to a locally Lorentz frame of reference in which E and H are parallel. Left: Electric 
and magnetic vectors in the original reference system. Calculate the energy flux, c(E X H)/ 
4~, and the energy density, (E2 + H2)/83r, and their ratio, the velocity, v. Right: View the 
fields in a frame of reference moving with this velocity. The energy flux must vanish. There- 
fore E’ and H’ must be parallel. Let their common direction be called the z’ axis. There 
is a Maxwell tension (E’2 + H’*) along this axis, and equally strong Maxwell pressures 
along the two perpendicular y’ and z’ axes. Therefore the stress-momentum-energy tensor 
has the form 

(P/8d 

where F’z is an abbreviation for the invariant 

F’a = E’2 + H’Z = [(E’Z - H’S)2 + 4(E’.H’)2]1/2 

= [(E* - Hz)2 + 4(E.H)21L’* = [(E* + H*)z - 4(E x H)2]i/*. 

This tensor has two important properties (1) its trace is zero (2) its square is a multiple of 
the unit matrix. Both features are invariant to change of coordinate system. They hold 
whether the Maxwell tensor is diagonal or not.-Conversely, consider a real symmetric 
tensor which enjoys the properties (1) and (2). One can find a coordinate system with a 
favored direction, z’, which puts it in the above diagonal form. In particular, one can find 
at once the invariant field magnitude, 

F’ = [(Sk Maxwell tensor)z/(unit matrix)]1’4. 

Then pick any angle a, and define vectors E’ and H’ that point in the favored direction, z’, 
with magnitudes 

E’ = F’ sin (Y, H’ = F’ eos CY. 

The vectors E’ and H’ are determined uniquely apart from the single freely disposable 
parameter, a. Transform the electromagnetic field so defined back to the original reference 
system. Operating on this field, the Maxwell prescription for the stress energy tensor will 
produce the symmetric tensor with which one started.-These proofs break down when the 
electromagnetic field is a null field, with E perpendicular to H and equal in magnitude to 
H. but the statement in the text is still true. 
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of the Ricci tensor form the vector CY, dejked by the equation 

a, = (- g)‘12[7XyV]RXB;“RB”/R~~R~*. (7) 

(The null-case where R,aRY6 vanishes requires special treatment). Second, de- 
mand that the curl of this vector shall vanish: 

%;rl - ffq;, = &,q - c&J,7 = 0. (8) 

(4) This diferential equation (8), plus the algebraic equations (4) and (5), sum- 
marize in complete geometrical form both the whole of source-free Maxwell electro- 
magnetism in curved space, and Einstein’s laws for the production of curvature by 
thisJieZd. These three equations, (4), (5), (8), comprise what we shall call “already 
unified field theory”. Electric and magnetic fields are not signals to invent a 
unified field theory or to introduce one or another new kind of geometry. The 
“already unified field theory” of Maxwell, Einstein, and Rainich, summarized 
in this paper, describes electric and magnetic fields in terms of the rate of change 
of curvature of pure Riemannian geometry, and nothing more. 

The nature of this unification can be stated in mathematical terms as follows: 
Maxwell’s equations are of the second order, and so are Einstein’s; the two sets 
of equations can be combined into one set of equations (8) of the fourth order. 
In more physical terms, the electromagnetic field leaves an imprint5 upon the 
metric that is so characberistic (Fig. 2), that from that imprint one can read 
back to find out all that one needs to know about the electromagnetic field. 

Given a purely metric field that satisfies Eqs. (4), (5), and (8) of already unified field 
theory, one finds the electromagnetic field as follows. First, calculate everywhere the vector 
field 01,, of Eq. (7). Second, from some standard point 0 calculate the integral 

Since alp is curl free, the integral is independent of path, so long as alternative paths are 
continuously deformable into one another. (When instead the space is multiply connected, 
new considerations will be needed.) We therefore have a dimensionless number or angle, o(, 
defined as a function of position, up to an additive constant, LYE . Finally, we substitute this 
angle into Eq. (6) to find the electric and magnetic field at every point in space. 

We find that long established theory has a well defined means to describe 
gravitation and electromagnetism in terms of empty curved space. What about 
charge? 

Einstein emphasized that the field equations of electromagnetism and general 
relativity have a purely local character. They relate conditions at one point to 
conditions at points an infinitesimal distance away. They tell nothing about the 
topology of space in the large. Einstein was led by Mach’s principle (9) to consider 

5 We are indebted for this phrase to Professor Peter Bergmann. 
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a space not topologically equivalent to Euclidean space, a spherical or nearly 
spherical universe. But Einstein confesses his indebtedness to a thinker who had 
still more far reaching ideas. Riemann6 in his famous inaugural lecture envisaged 

FIG. 2. Relation between the electromagnetic field and geometry, schematically repre- 
sented. Above: lines of force. Middle: Maxwell stress tensor due to these lines of force. This 
stress tensor serves as source of the gravitational field and equals the contracted curvature 
tensor of the space-time continuum, up to a multiplicative constant, according to Einstein. 
Below: The metric of four-space as distorted by this curvature. In brief, the electromagnetic 
field leaves its footprints on space. Moreover, these footprints on the metric are so specific 
and characteristic that from them one can work back and find out all that needs to be known 
about the electromagnetic field. One has a purely geometrical description of electromagne- 
tism. 

a connection between physics and a curvature of space that would be sensible 
not only at very great distances, but also at very small distances: I‘. . . es kann 
dann in jedem Punk& das Kriimmungsmass in drei Richtungen einen beliebigen 
Werth haben, wenn nur die ganze Kriimmung jedes messbaren Raumtheils 

6 In the opening passage of this lecture (10) Riemann declares that “the properties which 
distinguish space from other conceivable triply extended magnitudes are only to be deduced 
from experience.” (translation of Clifford (11)). 
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nicht merklich von Null verschieden ist; . . .” Dying of tuberculosis twelve years 
later, occupied with an attempt at a unified explanat,ion of gravity and electro- 
magnetism, Riemann communicated to Bet,ti his system of characterization of 
multiply-connected topologies’. What is the character of charge-free electromag- 
netism in a space endowed with such a multiply connected topology? 

One can outline a complete classification of the everywhere regular initial con- 
ditions for Maxwell’s equations in a closed space. This analysis forces one to 
consider situations-such as described by one of us (14) (Fig. 3)-where there 
is a net flux of lines of force through what topologists would call a handle of 
the multiply-connected space and what physicists might perhaps be excused 
for more vividly terming a “wormhole”. The flux of lines of force that emerge 
from the mouth of a small wormhole appears to an observer endowed with poor 
resolving power to come from an elementary electric charge. But there is nowhere 
that one can put his finger and say, “This is where some charge is located*.” 
Lines of force never end. This freedom from divergence by no means prevents 
changes in field strengths. Lines of forces which are not trapped into the topology 
can be continuously shrunk to extinction, as in familiar examples of electromag- 
netic induction and electromagnetic waves. However, lines of force which are 
trapped in wormholes cannot diminish in number. The flux out of the mouth of 
a wormhole cannot change with time, no matter how violent the disturbances in 
the electromagnetic field, no matter how roughly the metric changes, no matter 
how rapidly corresponding wormholes recede or approach, up to the moment 
when they actually coalesce and change the topology. Either Maxwell’s equa- 

7 Weyl (13) emphasizes that the field equations provide no means whatever to rule out 
either multiply-connected spaces, or spaces which are nonorientable, such as a Klein bottle. 
He notes (original German in 1927; translation and revision in 1949) “that a more detailed 
scrutiny of a surface might disclose that, what we had considered an elementary piece, in 
reality has tiny handles attached to it which change the connectivity character of the piece, 
and that a microscope of ever greater magnification would reveal ever new topological com- 
plications of this type, ad infinitum. The Riemann point of view allows, also for real space, 
topological conditions entirely different from those realized by Euclidean space. I believe 
that only on the basis of the freer and more general conception of geometry which had been 
brought out by the development of mathematics during the last century, and with an open 
mind for the imaginative possibilities which it has revealed, can a philosophically fruitful 
attack upon the space problem be undertaken.” Einstein and Rosen (IS) proposed in 1935 
to regard ordinary space as connected with a duplicated “mirror” space by short tubes. 
This topology is much more particular than anything contemplated here or in the follow- 
ing paper (2). Einstein and Rosen also took the electromagnetic field to have a negatiue- 
definite energy density, in contradiction to experience. We learn that Professor J. L. Synge 
also once mentioned in a lecture at Dublin in 1947 the idea of multiply connected space. 

8 In 1895 the great physicist Henry A. Rowland said, “. . . electricity no longer exists, 
for the name electricity as used up to the present time signifies at once that a substance is 
meant, and there is nothing more certain than that electricity is not a substance.” (Quoted 
by Darrow (15).) His words are apropos here! 
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FIG. 3. Symbolic representation of the unquantized charge of classical theory. For ease 
of visualization the number of space dimensions is reduced from three to two. However, the 
two dimensional curved and multiply-connected space is pictured as imbedded in a three 
dimensional Euclidean space. The third dimension, measured off the surface, has no physi- 
cal meaning. Of course the topology and geometry of the a-space receives its best mathe- 
matical formulation in intrinsic terms, without this imbedding of the manifold in a space 
of higher dimensionality. The 2-space is multiply-connected, but free of all singularities. An 
imaginary ant crawling over the surface and entering the tunnel or handle or “wormhole” 
finds there the same two dimensional space he experienced everywhere else. Electric lines of 
force that converge on the right-hand mouth of the tunnel continue to obey at each point 
Maxwell’s equation, div E = 0. The field is everywhere free of singularity. The lines of 
force have no escape but to continue through the tunnel. They emerge from the left-hand 
mouth. Outside the tunnel mouths the pattern of lines of force is identical with that due to 
equal positive and negative charges. An observer endowed with poor vision sees evidence 
for two point charges. He may even construct a boundary around the right-hand charge, 
determine the flux through this boundary, incorrectly apply the theorem of Gauss, and 
“prove” that there is a charge inside the boundary. He does not recognize that he has been 
making tacit and unjustified assumptions about the topology of space. He is not aware that 
his “boundary” does not bound any region interior to it. He assumes, either that Maxwell’s 
equations fail in the vicinity of the charge, or that there exists there some magic substance 
at which lines of force end and to which he gives the name “electricity”. But a closer in- 
spection discloses that the lines of force do not end. Neither is there any violation of Max- 
well’s equations for charge-free space. Nowhere can one place his finger and say, “Here 
there is some charge”. Such is the purely topological picture of unquantized electric charge 
which is adopted in this paper. This classical charge has no direct relation whatsoever to 
quantized electric charge. At this classical level there is a freedom of choice in the strength 
of the charge, and an individuality about the connection between one charge and another, 
that must be entirely changed in any proper quantum theory of electricity.-The distance 
along the wormhole from one mouth to the other need have no correspondence whatever 
with the distance in the open space between the same two mouths. The connection can be 
as short as the radius of the wormhole itself, for example, even when the openings are very 
far apart, in the upper space, as one sees by bending the upper space to bring the backs of 
t,he two holes into coincidence (diagram reproduced from Ref. 14). 
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tions, or Faraday’s equivalent physical picture of lines of force, plus the concep- 
tion of multiply connected space, force one to the conclusion that the wormhole 
flux remains invariant. This constant of the motion represents the charge. 

The charge or wormhole flux is unquantized. It can have one value as well as 
another. It has nothing whatsoever directly to do with the quantized charge 
observed on the elementary particles of quantum physics. This circumstance is 
not an objection to the concept of a classical unquantized charge. It is a warning 
that quantized charge is quite another concept. This distinction is not unaccept- 
able at a time when one has learned how great a difference there is between the 
“undressed” and “dressed” charge of quantum electrodynamics (16). To limit 
attention to purely classical unquantized charge will therefore not appear un- 
reasonable in an article that restricts itself to classical physics (Table I). 

Around the mouth of a wormhole lies a concentration of electromagnetic 
energy that gives mass to this region of space. Mass arises even in singly con- 
nected space, where there is no charge connected with the source-free Maxwell 
field. The equations of Maxwell and Einstein predict the possibility of a long- 
lived concentration of electromagnetic energy, or “geon”, held together by its 
own attraction. Both in the multiply-connected space and in the singly-connected 
continuum, the mass with which one has to do is classical, nonlocalized, and 
unquantized. It has nothing whatsoever directly to do with the quantized mass 
of elementary particles. 

Summarized in paradoxical form, the existing well-established already unified 
classical theory [Eqs. (4), (5), @)I 11 a ows one to describe in terms of empty 
curved space 

1. gravitation without gravitation 
2. electromagnetism without electromagnetism 
3. charge without charge 
4. mass without mass. 

It has nothing at all to contribute directly to an understanding of 
5. spin without spin 
6. elementary particles without elementary particles, 

or any other issues of quantum physics. Nevertheless, we would hardly have 
taken up the analysis of classical geometrodynamics if we did not hope ulti- 
mately to find out what, if anything, quantum geometrodynamics has to do with 
elementary particle physics. It is our long range objective to discover if quantum 
physics, like classical physics (Table I), can be expressed in terms of pure ge- 
ometry, and nothing more. 

It is not customary today to adopt either extreme view, either that space time 
is only an arena, or that it is everything. One analyzes the states of particles and 
fields into plane waves that move as foreign elements in a preassigned flat space. 
At the same time one thinks of the curvature of space, not as exactly zero, but 
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only as very small over distances short compared to the extension of the uni- 
verse. Einstein’s geometrical description of gravitation is taken seriously. His 
attempts at an equally geometric description of electromagnetism-by modijy- 
ing Riemannian geometry-are recognized to be incompatible (l?‘) with the 
well-tested Lorentz law of force and are rejected. Particles, and fields other than 
gravitation, are considered to be added to geometry, not as derived from ge- 
ometry. Nature can be said to be described today in a mixed fashion, partly in 
terms of pure geometry, partly in terms of foreign entities. 

To go to the logical extreme, however, and think of a purely geometrical 
description of nature, was not a new idea even before one knew enough to dis- 
tinguish between classical and quantum physics. The distinguished mathema- 
tician Clifford delivered a paper to the Cambridge Philosophical Society on Feb- 
ruary 21, 1870 “On the Space-Theory of Matter,” in which he proposed that 
“in the physical world nothing else takes place but this variation [of the curva- 
ture of space], subject (possibly) to the law of continuity;” and later he spoke of 
considerations “which indicate that distance or quantity may come to be ex- 
pressed in terms of position in the wide sense of the analysis situs;” and again 
about the finite volume of a uniformly curved space, but with the explicit state- 
ment that “The assumptions here made about the Zusammenhang of space 
are [merely] the simplest” (18). Before Einstein, Clifford, and Riemann-and 
Riemannian geometry-was there ever current anything like the concept of 
physics as geometry? What were Newton’s views of field theory and the idea 
that empty space is the universal building material? His letter to Bentley has long 
been known: “That one body may act upon another at a distance through a 
vacuum, without the mediation of anything else, by and through which their 
action and force may be conveyed from one to another, is to me so great an ab- 
surdity, that I believe no man, who has in philosophical matters a competent 
manner of thinking, can ever fall into it”g. Maxwell says, “We find in his ‘Optical 
Queries’ and in his letters to Boyle, that Newton had very early made the at- 
tempt to account for gravitation by means of the pressure of a medium, and that 
the reason he did not publish these investigations ‘proceeded from hence only, 
that he found he was not able, from experiment and observation, to give a satis- 
factory account of this medium, and the manner of its operation in producing 
the chief phenomena of Nature.’ ” 

New insight into Newton’s ideas and their origins comes from the recent 
scholarly and most interesting analysis by Fierz (20). Fierz cites especially 
Patrizzi (21), who writes of space as a substance, “Spacium ergo hoc, quod ante 
mundum fuit, et post quod mundus est, et quod mundum at capit, et excedit, 
quidnam tandem est. . . . Quid ergo substantia ne est? Si substantia est, id quod 
per substat, spacium maxime omnium substantia est.” Also some of the Vedas 

9 This and the following quotation come from notes of Cajori (19). 



536 MIGNER AND WHEELER 

of old India (22) suggestga that the idea is very old, that nature derives its whole 
structure and way of action from properties of space. 

Can space be regarded as a marvellous creation of all-encompassing proper- 
ties? Independent of the origins of this idea, both ancient and modern, let us now 
proceed to analyze it. 

In Sec. II we recapitulate in present day notation the derivation of the equa- 
tions of Rainich for already unified field theory. The starting point, the theory 
of Einstein and Maxwell, deals entirely with local properties and so does Rainich’s 
final system of equations. 

To pass from local to global or topological properties, and still to keep the 
discussion simple, we return in Sec. III to the more familiar dual language of 
metric plus field. We sketch out the necessary topological background, and 
introduce the theorem of Gauss and the theory of harmonic vector fields in the 
necessary generality. Much of the required mathematics is most readily expressed 
in terms of Cartan’s calculus of exterior differential forms. Most results we give 
both in this notation and in the familiar tensor form. A few conclusions would 
appear so complicated in the tensor formalism that we omit their transcription 
to the conventional notation. We prove that Maxwell’s equations demand the 

9% For very early ideas related to “physics is geometry” we have been referred by Pro- 
fessor G. L. Chandratreya to the Indian Vedas. In this connection we wish to thank Swami 
Nikhilananda who explains to us the relevant writings: “According to the Vedas, akasa 
(often translated as ‘space’ or ‘ether’) is the rudimentary first element from which the other 
elements, namely, air, fire, water, and earth, have evolved. These tive are the only material 
elements spoken of by the Vedas. Hindu philosophers populated five elements because a 
man reacts to the outside world in five ways: through his hearing, touch, sight, taste, and 
smell. . . . [quoting in this connection from Taittiriya Upanishad II. i. 3.1” Thus we find 
akasa as the primary element in this early (c. 700 B. C.) sketch of physics. (Brahman, al- 
though preceding akasa, is pure spirit, outside the realm of physics.) We can say that in 
this physics space was the primary element out of which all else was to have come, only if 
we can satisfy ourselves that akasa meant something like the current word space. In this 
connection we quote the most authoritative early commentators on the Upanishad just 
mentioned (29). SankaracMrya (A. D. 788-820) tells us “Akasa is that thing which has 
sound for its property and which affords space to all corporeal substances.” Then Sayana 
elucidates: “ . . . the power of akasa to afford space to all (corporeal) things constitutes its 
own peculiar nature . . . And it has sound for its property. The echo heard in mountain- 
caves etc., is supposed to be inherent in akasa and is therefore said to be the property of 
akasa.” Except for the curious references to sound, these explanations seem to corroborate 
a tentative identification of akasa with space: a physicist might write ‘space provides room 
for all things’ where the translator wrote ‘akasa affords space to all things’. The reference 
to sound is understood when we recall that the five elements were chosen to correspond to 
the five senses. Sanka&cMrya writes “Thence, i.e., from akasa, comes into being Vayu, 
the air, with two properties, the property of touch which is its own, and the property of 
sound belonging to akasa already evolved.” It is perhaps too much to expect that at such 
an early date men would know that sound is transmitted through the air, and not through 
empty space. 



CLASSICAL GEOMETRODYNAMICS 537 

conservation of flux through each wormhole independently, thus justifying the 
identification of this flux with charge. 

Section IV deals with specific examples of nonsingular multiply-connected 
metrics that manifest both charge and mass. First the Schwarzschild metric is 
written in nonsingular form, to put into evidence the special case of a space free 
of either charge or mass-in the conventional sense of those words-which never- 
theless exhibits mass. Next a nonsingular form of the Reissner Nordstrijm 
metric is exhibited. It describes a spherically symmetric space free of all “real” 
charge and mass which nevertheless exhibits both properties. Finally, a closed 
mathematical form is given for a class of metrics endowed with a plurality of 
wormhole mouths, each with its own charge and mass. The initial conditions 
being thus specified, the future evolution of the space with time is of course 
determined by the field equations. In other words, the arguments of Einstein, 
Infeld, and Hoffman apply to this situation. The entire dynamics of the system 
of singularity-free charges and masses becomes a matter of pure geometrody- 
namics. 

Section V outlines points that require further investigation to complete classical 
geometrodynamics and to extend its domain of application. 

II. RAINICH’S ALREADY UNIFIED FIELD THEORY: THE MAXWELL TENSOR; 
DUALITY; DUALITY ROTATIONS; INVARIANCE OF MAXWELL TENSOR TO 
DUALITY ROTATION; COMPLEXION OF FIELD DEFINED; SQUARE OF MAX- 
WELL TENSOR; THE ALGEBRAIC RELATIONS ON THE CURVATURE; THE 
REVERSE PROBLEM-FROM THE CURVATURE TO FIND THE FIELD; RE- 
SULTING DIFFERENTIAL EQUATIONS OF THE CURVATURE 

THE MAXWELL TENSOR 

We begin by recalling the relation between the electromagnetic field, FNy 
and the Maxwell stress-momentum-energy tensor TMy . This relation is purely 
algebraic. Hence we may concentrate our attention on a single point of space 
time and, when convenient, use coordinates that give the metric components, 
grv, their Minkowski values at that point. To keep geometry to the fore, we shall 
use instead of F the “geometrized” or “reduced” field strength, f = (G1”/c2) F, 
and instead of the electric and magnetic field strengths, E and H, the reduced 
field strengths, e= (G”2/~2)E and h = (G”2/~2)H (dimensions cm-‘). When the 
metric is Minkowskian, the reduced field tensor has the form 

-e, -e, -e, -e, -e, -e, 
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and the dual tensor, 

*fpv = !4 -s>““b~4f”8, (11) 
differs from f only by the interchange e * h, h ---f -e. Two familiar invariants 
form themselves out of the field tensor: 

f2 = >$S,Vf”’ ( =h2 - e2 in a Minkowski frame), 

f X f = $~fP#‘” ( = 2e ah in a Minkowski frame). 

The equations connecting the contracted curvature tensor with the stress 
tensor, and that in turn with the field, 

R,. - %gpvR = (8dW4>Tp = (87rG/c4)I(1/47r) @‘,A’,” - ~gJi’,@‘“B)l, 

= 2(.f/&OL - ~g,vfnLP> = X(f) 
(13) 

justify one in using interchangeably for the quantity on the right the terms “re- 
duced” or “geometrized” stress energy tensor, or contracted curvature tensor, 
insofar as one deals with pure geometrodynamics. In the Minkowski frame of 
reference, typical components of (13) are 

Roe = Roe = -Ro” = (e* + h’) = (87rG/c4)(energy density); 
-RIO = R1’ = Rf = 2e X h = (87rG/c4) (density of c times x-component of 

momentum) = (89rG/c4)(flow of electromagnetic energy per cm2 of 
area normal to x and per cm of elapsed cotime); 

RI1 = R” = R1’ = ( -e2= + e2, + e”, - h”, + h”, + h2,) = (8~G/c*) 
(pressure) = (8?rG/c4)(force exerted in x direction, per unit area 
normal to x, by electromagnetic fields in medium at x - E, acting 
on medium at x + E) ; 

RI2 = RI2 = R? = -2e,e, - 2h,h, = (8rG/c4)(shear) = (87rG/c4)(force exerted 
in x direction, per unit area normal to y, by electromagnetic forces 
due to medium at y - E acting upon medium at y + 8). (14) 

The invariance of the stress energy tensor under the interchange e + h, h -+ -e, 
is apparent from (14), but does not show itself clearly in (13). Therefore it is pref- 
erable to rewrite the reduced stress tensor, or the “Maxwell square of f”, on the 
right-hand side of (13) in the more symmetrical form 

5(f) = f,crj”a + *frro*fva, (144 

as follows from the identity” 

(15) 

DUALITY ROTATIONS* 

The stress tensor, or Maxwell square of f, shows a further symmetry. Note 
that the operation of taking the dual of f, twice repeated, leads back to -f, so 
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that the square of the operation * is the negative of the identity operation. Con- 
sider therefore an angle 01 and define the operation e*& by the equation 

e’“f = f cos c11 + *f sin (Y. 

In a Minkowski coordinate system this operation takes the form 

(16) 

h z new = h, cos CY + e, sin QI 

= - h, sin o! + e, cos (Y i 
(same for I, y, Z) (17) 

e, new 

This operation appears at first sight to be an ordinary rotation: applied to any 
linearly polarized monochromatic wave, with 1 e 1 = 1 h j and e 1 h, it turns 
the direction of polarization through the angle cy around the direction of propa- 
gation. However, when this operation is applied to less special fields, it produces 
no such simply describable result. Moreover, it treats all three space axes alike. 
It is not an ordinary rotation in 3-space. We shall therefore call it a duality 
rotation. It has the additivity property 

.a *p e e *@ *a =ee =e *ca+l9 
(18) 

and the special value 

e *r/z = *. 

The dual of the duality rotation yields the field tensor 

(19) 

*(e*“f) = -f sin a! + *f cos cy. (20) 

The duality rotation has the following important property as a consequence of 
(14), (16), and (20): The Maxwell square of a duality-rotated Jield is identical with 
the Maxwell square o.f the original jield: 

2(e*“lf) = 2(f). (21) 

The electric and magnetic fields individually are changed, but every component 
of the stress energy tensor is unaltered. In contrast (Table II) the duality rota- 

TABLE II 

CONTRAST BETWEEN PROPER LORENTZ TRANSFORMATIONS AND DUALITY ROTATIONS 

General proper 
Quantity Lorentz trans- Duality rotation 

formation 

Components of the Maxwell tensor or Maxwell square Transformed Unchanged 
of f 

The invariants, fZ and f X f Unchanged Transformed 
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tion alters the invariants of the field. Make the definition 

t = e-f @2) 

for a field which has undergone a duality rotation by the angle --a. Then the 
invariants transform as by a rotation through the angle -2~: 

t2 = (f cos Q: - *f sin CY)’ 

= f2 cos 2a - f X f sin 2a, (23) 

h x t: = f2 sin 2a + f x f cos 2ff. 

Assume that the invariants, f2 and f X f, of the original field do not both vanish. 
Then choose the angle cr so that the one invariant quantity, f X I, is zero: 

tan 2a = -(f X f)/f*. (24) 

Then solve for sin 2a and cos 2a up to a f ambiguity and evaluate the other 
invariant, finding 

t2 = *[(f2)2 + (f x f)*]“Y (25) 

Demand that the minus sign shall appear on the right, thus determining the 
angle 2cu uniquely up to a positive or negative additive integral multiple of 27r. 
Then the field tensor a represents a pure electric field along the x-axis, or a Lo- 
rentz transformation thereof (Table III). We say that the original field has 
received a duality rotation into an extremal field, or into an essentially electric 
Jield. In a preferred Lorentz system where this field has no magnetic components, 
and points along the x-axis, the field magnitude is 

ez “’ = [(h’ - e’)’ + (2e.h)2]L’4 

= [(h’ + e2)’ - 2(e X h)2]1’4 
WI 

THE COMPLEXION OF THE FIELD 

Referred to an extremal, or essentially electric field, F, as standard of reference, 
the actual field, f, evidently arises by a duality rotation through the angle a: 

f = era& 

TABLE III 
TRANSFORMATIONS OF THE GENERAL (NON-NULL) ELECTROMAGNETIC FIELD TENSOR 

f  = (e, h) IN A LOCALLY MINKOWSKIAN REFERENCE SYSTEM 

Field values At start After canonical duality rotation 

At start e, h e” and h” perpendicular, and 
e” greater than h” 

After canonicd Lorentz e’ and h’ parallel to each e parallel to z axis; h = 0 
transformation other and to the z-axis 
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Under a Lorentz transformation the components of the three tensors, f and f, 
and *t, transform alike. The angle Q! therefore remains unchanged. It is a signi& 
cant and Lorentz invariant scalar property of the jield, f. We shall call the angle CY 
the complexion of the electromagnetic field. 

When the field f is a null field, with 

(e.h)=O and h2-e2=0 

or 

f X f = 0 and f2 = 0 

then Eq. (24) for the angle (Y becomes indeterminate. Then the complexion is 
not definable on a purely local basis. 

THE SQUARE OF THE MAXWELL TENSOR AND THE ALGEBRAIC RELATIONS ON 
THE CURVATURE 

Now return to the case where the field is not a null field. Evaluate the Maxwell 
square-or stress energy tensor-of the original field by using its equality to the 
Maxwell square of the extremal field [see Eq. (21)] or the Maxwell square of the 
dual of the extremal field 

&i”(f) = S,“(E) = 2&l,r - 6,“(e), 
5,‘(f) = 2,‘( *t) = 2*C;n,*EYC + sl’(a”). 

(27) 

Now square the Maxwell square off by multiplying the first tensor by the second. 
The cross terms between t and *t that arise in the calculation reduce to zero by 
reason of the identity” 

2.5u*fKa = 4@u%&’ = 6,“(t x r> G-w 

and the extremal property, t X t; = 0. We also used in the evaluation the iden- 
tity (15). We find for the square the result 

%,“5,’ = 2@) (twr - *fa*t”7 - mZ,” 
= 6,‘(iy 
= 6,‘W + (f x VI (29) 
= 6,‘[(h2 - e2)’ + (2e.h)‘] 

= 6,‘[(h2 + e’)’ - (2e X h)‘]. 

The proof of the same result in the case of null a field is even simpler, 

lo A special case of the relation 

A,,B’” - *Ap~*B’OI = Ms,‘A,,B@, 

which is valid for every pair of antisymmetric tensors, A, B, in 4-space. 
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f X f = 0 and f* = 0 and the right-hand side of Eq. (29) vanishes. In summary, 
the square of the Maxwell stress-energy-momentum tensor is a multiple of the unit 
matrix. This beautiful and interesting relation is central in Rainich’s already 
unified field theory. In terms of curvature components, it has the form 

Spa&” = RraR,’ = 6,‘(~RaaRaa). (30) 

Here the value of the constant is obtained by comparing the traces of the two 
sides of the equation, To this relation he adds the vanishing of the trace of the 
reduced Maxwell tensor. 

S,” = R,” 3 R = 0, (31) 

[Eq. (4)], that follows directly from the equation of definition, (13), and the 
statement [Eq. (14)J that the electromagnetic energy density is positive definite: 

‘Go = Roe > 0. (32) 

In other words, for any time like vector v the quantity 

0”&3(f)v@ (33) 

is non-negative. Equations (30), (31), and (32) summarize the algebraic relations 
on the curvature in already unified field theory. 

It is necessary that the contracted curvature tensor R,” satisfy (30), (31), and 
(32) if it is to be representable as the Maxwell square of some antisymmetrical 
field tensor, f. Figure 1 derives the same conditions in a slightly different way. 

It is evident from Fig. 1 that a suitable Lorentz transformation puts the tensor 
R,v = ‘XPv associated with a non-null field, f, into a diagonal form, 

(34) 

The diagonal form necessarily has this appearance for any symmetric tensor 
with a zero trace and a square which is a nonzero multiple of the unit matrix. 
The tensor R,’ defines what in the language of Schouten is a two-bladed structure 
(~723) in space-time at the point in question.” A rotation in the yz plane about 
the x-axis leaves the tensor (34) unchanged; electric and magnetic fields remain 
parallel to the x-axis (Fig. 1). That picture of parallel field vectors is also left 
unchanged by any Lorentz transformation in the x, T plane. The yx plane and 
the XT plane are the two blades defined by the Maxwell tensor Z&‘(f), and there- 
fore in turn defined by f itself. 

In diagonal form the Maxwell tensor is characterized by a single parameter. 
To this parameter there are added only four additional parameters by the 

‘1 We are indebted tb Professor Schouten for several illuminating discussions. 
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TABLS IV 
PARTIAL CLASSIFICATION OF RIEMANNIAN GEOMETRY 

Feature Name Remarks 

R -0 %w - Uncurved space All such 3-spaces recently 
classified by L. Markus, in 
publication. 

R,, = 0 Pure gravitation field The 10 “local” components of 
R a~Ya are zero, but the 
other 10 “remote action” 
components of R-or8 have 
to be found by solving the 
differential equations 
R,, = 0 for the metric. No 
free components for R,, 

R"=(). 
R:“R,’ ’ 

Roe > 0; “Electromagnetic Rieman- Five free components for 
nian geometry” or “geo- R,, . Met.ric must be found 

= b,“(fR,JW) metrodynamics” by solving field equations 
= (h2 - e2)2 + (2e.h)* of already unified theory. 

R’=(). 
R:“R,’ I: 0 

Roe > 0; Null field; e.h = 0 and h* - R,, = Z,,,(f) = k,k. , where 
ea = 0; a special case of k is a null vector; only 
electromagnetism three free parameters in 

R,, . 

R,’ = 0; Go > 0; Static field; by a change of Extra non local (differential) 
R,“R,’ # 0; names (duality rotation) requirements imposed on 
(Y = constant for all space can be translated into a R,, in addition to the 

and time condition where there is an standard field equation of 
electric field but never any already unified field thoery 
magnetic field; another 
special case of electromag- 
netism 

R,, arbitrary Unrestricted 
geometry 

Riemannian No physical laws 

general &parameter proper Lorentz transformation, because rotations in the yz 

and XT planes have no effect. Therefore a total of five parameters characterize 
the contracted curvature tensor, Rpv , of “electromagnetic Riemannian geome- 
try” or “geometrodynamics” (Table IV)--this despite the fact that the general 
R,, has 10 distinct components, and despite the fact, that (29) and (31) can be 
said to constitute 10 conditions on these 10 components. Evidently these non- 
linear algebraic equations are not all independent. 

It is not only necessary-as previously shown-but also su@cient that the 
contracted curvature tensor R,, satisfy the Rainich conditions (30), (31), and (32) 
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in order that one be then able to represent R,, as the Maxwell square oj an electro- 
magnetic field tensor, .fPy . Moreover, this field tensor is unique up to a duality 
rotation. We call this field tensor the Maxwell root of the Ricci curvature tensor, 
Rsy . We give separately the proofs for the cases where RPv is not a null tensor 
and where it is a null tensor (RCyRPY = 0; only 3 free parameters left in R,,). 

(1) Form the “Ricci part” ETv“” of the Riemann curvature tensor 

&,F’ E >$i( - 6/R.,’ + ti/R’R,’ - &yR7’ 4- &‘R,‘). (35) 

It has the same symmetries as the Riemann curvature tensor, contracts to the 
same Ricci curvature tensor, 

E,,*’ = --35R,’ + 2R,’ - sSRTY + 2R,” 8, = R,’ = R,,*‘, (36) 

by virtue of the condition R,” = 0, and introduces the antisymmetry we need 
for taking the Maxwell root. (2) Defme the extremd Maxwell root & of the Ricci 
tensor-a pure electric field-up to a single f sign by the equation 

f,& = -%E,,,, - ~(R,BRaB)-li2E,,,a~,y6 . (37) 

Find any given component, ,$, up to a f sign by setting (u, 7) = (P, V) and 
taking the root of (37). Then use (37) to determine the relative sign of different 
components, & and & . The consistency of the magnitudes is guaranteed by 
the Rainich conditions. 

The prescription just given for the Maxwell square root is checked most easily 
in a Minkowskian reference system where the Ricci curvature tensor has the 
diagonal form 

i 

- (50J2 

R,’ = - (EoJ2 
+ &od2 

i 

, (38) 

+ (tod2 

where fol is a real positive number, known as soon as R,’ is known. Use this 
number to define an antisymmetrical extremal field tensor, f, of which all the 
components vanish in the present Lorentz system except to1 and .& = -lo1 . 
Then the dual of this tensor has all components zero except 

(*a*3 = -(*.i>az = -h . 

Thus the extremal field has the properties 

magnetic component of electric component of 2 = 
reduced extremal field reduced extremal field > 

= - f (R~,R,~)~/~; 
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t X t = 0 = (magnetic component). (electric component) ; 

(*02 = +kd2 = -t2; *( x *t = 0. (39) 

In this same Minkowski frame the only nonvanishing distinct components of 
the tensor E of (35) are 

EOlo’ = -%@1’ + Ro? = (tod2 

and 

E213 = - %(Rt + R,2) = - (~oI)' = - (*623)‘. (40) 

Therefore the general tensor component of E can be written in the covariant 
form 

E agya = -La&a - *Lll*tra . (41) 
The product of this tensor by itself has the value 

EczmE% = %od2(- EwYh" + *taa*6v) 

= uLJw2(- f&t" + *L9*tw) 
(42) 

by virtue of the properties (39) of the extremal field. Multiply (41) by -35 and 
(42) by -$$(R”R,)-“” and add, to cancel out the terms in the dual field. There 
results Eq. (37) for the components of the reduced extremal electromagnetic 
field tensor, Being a tensor equation true in the simple coordinate system, it 
must be true in all coordinate systems. So much for the machinery for taking 
the Lorentz square root when the Ricci tensor is non-null; that is, when its square 
is a nonzero multiple of the unit matrix. 

Consider now the other case where the contracted curvature tensor is a null 
tensor, 

R,,RpY = 0, (43) 
but a tensor which is not identically zero. As before, discuss the tensor in a 
Minkowski reference system, where the components, g,,” , of the metric tensor 
have their Lorenta values. The frame of reference is still free to the extent of a 
G-parameter Lorentz transformation. Make such a rotation in 3-space (3 parame- 
ters) as will diagonalize the 3 X 3, space-space part of R,, ; thus, RI2 = R23 = 
R31 = 0. The vanishing of the square of R,’ (Table IV), 

(P) x.otentzRpaR~v = 0, (44) 
then makes conditions of the form 

time-time : -Roe’ -I- RI: -I- Rzo” -t R3: = 0, (45) 

time-space : -RooRol + RolRn + 0 + 0 = 0, (46) 
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spacel-spacer : -Rot + R11" + 0 + 0 = 0, (47) 

spacel-space:, : -RmRoz + 0 + 0 + 0 = 0. (48) 
We conclude from equations of the type (48) that only one of the components, 
Rol , Ro2, Ro3, can differ from zero. Let this nonzero component be Rol, and let 
the sense of the x axis be so chosen that Rol is a negat’ive quantity, -2~~. Then 
R"' is positive, corresponding to a Poynting flux in the plus x direction. Then 
from Eqx. (45)-(48) plus the requirement, R 00 > 0, of positive definite energy 
density it follows that the Ricci curvature tensor has the form 

This tensor may be written 

R,, = 2k,kv , (50) 
where k is the null vector 

k, = (-K, K, 0, 0); 

k2 = k,lc" = 0. 
(51) 

Being covariant and true in one reference system, the decomposition (50) is 
valid in any reference system. 

There is no Lorentz transformation that will diagonalize a null Ricci tensor 
any more than there is a Lorentz transformation that will make a null vector 
time-like, or parallelize field vectors e and h that satisfy the null condition, 
(e-h) = 0, h2 - e2 = 0. The theorem that every symmetric tensor can be re- 
duced to diagonal form does not hold when the metric is indefinite, a circum- 
stance for the elucidation of which we are indebted to our colleague, Professor 
V. Bargmann. This feature in no way prevents taking t’he Maxwell root of (49): 

(52) 

or 

e = (O,K,O); h = (0, 0, K) (53) 
as one checks by direct substitution in formula (13) or (14) for the Maxwell 
square. The tensor (49) describes a flow of energy in the x-direction at the speed 
of light, and (52) or (53) decompose the Poynting flux into factors, e and h. 
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The polarization direction alone is free in the Maxwell square root. Application 
of a duality rotation of parameter (IL to the field (52) rotates the polarization 
vector by the angle a about the direction of propagation, leaving unaltered its 
Maxwell square, RPy . 

The prescription for the Maxwell square of a null Ricci tensor can be sum- 
marized in covariant form: (1) Take the “ordinary” square root, k, , according 
to Eq. (50). (2) Take a four vector v which (a) has unit magnitude, 

v” = v,v(l = 1 (54) 

and (b) stands normal to k, 

lc,va = 0 (55) 

and (c) in the special Minkowski frame of (49) and (52)-for example-has the 
components 

v = (0, 0, 1, 0). (56) 

(3) Form the antisymmetrical product 

f&w = kpvv - k”V, (57T) 

or-in the so-called intrinsic notation- 

f = khv. (571) 

(4) Then the reduced jield tensor (57) is a Maxwell square root of the null tensor 
R,, , and apart from a duality rotation, is the only Maxwell square root of RPv . 

The reduced field f is a null field in the Minkowski frame which we have used 
by preference, as one easily shows from (51), (54), and (55). Therefore it is a null 
field in any other frame of reference. The same is true of the field after it has 
experienced a duality rotation. 

The effect of a duality rotation on f can be stated in terms of the constituent 
factors of f; thus, k is left unchanged, and v is rotated about k. However, v is 
never uniquely determined by f: the new vector, v’ = v + (constant) k, gives 
the same field, f, and satisfies the conditions (54) and (55) as well as does v itself. 
Moreover, the descriptive word “polarization” should be taken cautiously, as 
indicating in the present context only the orientation of the mutually perpen- 
dicular pair of 3-vectors, e and h. It does not stand for the polarization of a 
monochromatic directed wave train, which could not be determined without a 
knowledge of the field at nearby points-even if one had a monochromatic 
directed wave to talk about! 

The Tpwo-Way Connection between Field and Curvature. 

In summary, any reduced electromagnetic field tensor, fey , null or not, pro- 
duces a Ricci curvature that satisfies the Rainich conditions. Conversely, any 
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Ricci curvature tensor, null or not, that satisfies the Rainich conditions, has a 
Maxwell square root, j<k . that is unique up to a duality rotation. In addition, in 
the non-null case the Ricci curvature-or the field-determines a structure with 
two blades, A and B, at each point in space time. 

The Blades Do Not Mesh. 

How is the geometric structure at one point in space-time related to that at a 
neighboring point? A geometrical description of the electromagnetic field has to 
answer this question. It therefore appeared useful to us to raise the issue, what 
happens when one moves in the local two dimensional surface, or tangent plane, 
of blade A to neighboring points where blade A is tilted at slightly different 
orientations. Will one arrive in this way at a well defined two dimensional 
surface, 

2” = x.~yu, v)? (58) 

Or will the pattern of the blades lead to structures like those in a spiral disloca- 
Con in a crystal, so that one can get from one point to any other point by mov- 
ing about on blades A via a suitably selected route? In this case no surface of the 
type (58) will exist. Does the demand that blades fit into a surface of type (58) 
lead to Maxwell’s equations? We investigated and found that this demand is too 
restrictive to be satisfied by the general solution of the equations of electromag- 
netism. Therefore we decided to let Maxwell’s equations speak for themselves. 
We expressed the electromagnetic field as the Maxwell root of the Ricci tensor, 
where 

.fpy = eroltpv , or f = eY$, 

[ = extremal Maxwell root of R,, , 

inserted into Maxwell’s equations, 

f”‘;” = 0, 

*f”” ;u - - 0, 

(59) 

and learned at first hand what Rainich had already learned before us about 
the true geometrical content of electromagnetism. 

Four of Maxwell’s Equations as Consequences of the Identities Satisfied by the 
Curvature or Stress Energy Tensor. 

The eight equations (60) of electrodynamics take the form 

0 =fpYGY = ({c”;y + *(“&~/ax’) cos (Y + (*4”y;y - ya(Y/ax’) sin ff, 

0 = *fcyiy = (- pviv - ~Q’aa/a~‘) sin LY + (*[pVzy - yacr/aq cos (y, 
(61) 
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or, by simple combination 

~~v;y + *Q”aa/ax” = 0, (6% 

*fb”;” - ~P”a~/ax” = 0. (63) 

We now combine these equations in such a way as to separate the information 
they give about t and about CL Multiply (62) by &,, and sum over p. Use the 
properties (39) of f and the identity 

fap*EP” = 0, (64) 

which, being true in a simple Minkowski frame, and being covariant, is true in 
any frame. We find the result 

&LPY;v = 0, (654 

and, by similar reasoning starting from (63), 

*&#*(c”;” = 0. (65b) 

Only four of the eight Eqs. (65a), (65b) are independent, as may be seen by 
going to the simple coordinate system where to1 and *& = -& are the only 
nonvanishing components of h. In these coordinates we see that the eight Eqs. 
(65a), (65b) are equivalent to the four independent equations 

SwtL”;” + *Lp*SC”;” = 0. 6-w 

The identity” 

and a similar equation for *f in place of r puts Eq. (66) in the form 

$f&pS’” + *Eap*SP”);” = 0. (67) 

The quantity in parentheses is the Maxwell stress tensor. This quantity is to be 
identified with the Ricci curvature, whose trace, R, is zero so that (67) can be 
written in the form 

[R," - $@,"R];" = 0. 033) 

However, this condition is no requirement at all. Bianchi proved that the Ricci 
tensor calculated from an ar6itrary metric tensor will satisfy (68) identically. It 

l2 The second line of this identity is a special case of the identity 

%A=Vr.+ + B.o:r + B8& = *A,m*Ba?~ 

which is valid for any two antisymmetrical tensors in 4-space. 
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has long been known that half of Maxwell’s equations are given by these Bianchi 
identities. Now what have the other half of Maxwell’s equations to say about the 
curvature of space? 

Maxwell’s Other Four Equations Demand That a Certain Vector Combination of 
the Curvature and Its First Derivative Shall Have Zero Curl. 

Multiply (62) by *fb,, and (63) by ,$, , sum over P, use (15), and find the result 

%3wY: Y + &9/&“;” + 6~‘~2aa/ax” = 0 

or 

acu/axa = aS, (69) 
where we make the dejkition 

%8 = - (*S;BlrY;” + &BP**f”‘:Y)/f2. (70) 

This vector expresses itself in terms of the Ricci curvature in the form 

‘yB = ( -g)1’21BX~y]RXY’~RRyY/Rr7R”‘. (71) 

For proof of (71), recall the expression (41) for the Ricci part (35) of the Rie- 
mann curvature tensor in terms of the extremal field, 5; and form the first con- 
tracted covariant derivative of t,his tensor: 

Er6?, = -&5’;7 - *~yS+?7 - [y’;T~5* - qY8;r~~5r 

= >$‘(-g’@R6’ + gy’R”B - gb’RyB + g”‘R”);, (72) 

= $$(R@:Y _ RY@:“). 

Here we use the fact that every component of the covariant derivative of gy” 
vanishes, and employ the Bianci identities, Rari7 = 0, to annul all but two terms 
among the eight that arise from the differentiation. Define 
Km:= %X-g>““h&4%?’ 

= f5( --s)“‘[r~~~l (- 4q9t”’ - *.ha*t”‘) 

= -&@*h + *L&s 
= +&( -g)“‘[r&w]+$( -60”RBy + 8oryRBp - +*Rp” + 68’Rrry) (73) 

= )/i(-g)l’z[ySw] (S,‘R/ - s;R/). 

Finally, form the product 

FUSYsET8”;7 = -4T2(*&9P;7 + ta5*E5’;r) 

= M( -g)1’2[$pv] (6,‘Rp’ - 6avRR,“)R68’ ’ (74) 

= fG( - g)1’2[c&p]R68’ ‘R/. 
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The equation 

which follows from [ X t = 0 by differentiation, as well as the identity (64)) were 
used in computing (74) from (72) and (73). Now divide (74) by a(&” = >$R,,R”’ 
to obtain (71), as was to be proven. 

The vector ap of (71) has a well defined existence in any Riemannian space 
where the Ricci curvature tensor R,, is non-null and differentiable. From such 
general Riemannian spaces the geometry of the Einstein-Maxwell theory is dis- 
tinguished by the circumstance that this vector-as shown by Rainich-is not 
arbitrary, but is the gradient of the complexion, a, of the electromagnetic field. 
Consequently it follows that the curl of cup must vanish: 

cQ;r - a!?;B = cYg,y - cYr,p = 0. (75) 

Conversely, when the curl (75) vanishes, then the line integral of the vector LYE 
of (71) from some selected point 0 to any arbitrary point 5’ defines a scalar com- 
plexion, 

(7’3 

up to an additive constant, (~0, provided that the region of space under con- 
sideration is simply connected, and provided that the line of integration does 
not include any point where R,,R”’ vanishes. For a multiply-connected space 
it is necessary to replace (75) by the demand that the line integral of “0 around 
any closed path shall be an integral multiple of 2a, 

! ‘q9 dx’ = 27rn (77) 

provided the line of integration does not touch any null points. This condition, 
plus the algebraic requirements of Rainich 

R,” = 0; Roo 3 0; R,‘RPP = &!(~R,,R”‘), (78) 

gives the necessary and su$.cient conditions that a Riemannian geometry shall 
reproduce the physics of Einstein and Maxwell, provided that the curvature 
R,, is non-null. It may well be that trivial changes in the statement of the theo- 
rem will cover the case of null fields, but this point remains to be investigated. 

WHY RAINICH-RIEMANNIAN GEOMETRY? 

We shall give the name Rainich-Riemannian geometry to any 4-space with 
signature - + + + which satisfies (77) and (78). The question poses itself 
insistently to find a point of view which will make Rainich-Riemannian geometry 
seem a particularly natural kind of geometry to consider. Presumably a varia- 
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tional principle based on an appropriate scalar Lagrange density will prove the 
most natural starting point to discuss this question. Whatever the deeper sim- 
plicities may be, it is extraordinarily beautiful that the Rainich-Riemannian 
geometry (77), (78) of empty curved space reproduces all the standard machinery 
of Maxwell stresses, electromagnetic waves, and generation of gravitational 
forces by field energy. 

III. CHARGE AS FLUX IN MULTIPLY-CONNECTED SPACE: ELECTROMAG- 
NETISM WITHIN THE ARENA OF A PRESCRIBED METRIC; PLAN OF THIS 
SECTION; TOPOLOGY; DIFFERENTIAL GEOMETRY; MAXWELL’S EQUA- 
TIONS AND CHARGE 

A. ELECTROMAGNETISM WITHIN THE ARENA OF A PRESCRIBED METRIC 

“Already unified field theory” or geometrodynamics appears to consist en- 
tirely of differential equations and algebraic relations on the curvature (Eqs. 
75 and 78)-in other words, appears to have an exclusively local character-so 
long as space is assumed to be simply connected. As soon as the possibility is 
admitted of two or more topologically distinct routes to pass from one point to 
another (Fig. 3), then in addition one has to impose a periodicity condition 

aa dx’ = 2rrni 
ci 

for each topologically distinct closed circuit Ci that is free of null points. Only 
when this condition is satisfied will the electromagnetic field, f = eiut;, be a single 
valued function of position. The condition (79) has a nonlocal character. This 
circumstance forces us to ask, what additional features of a nonlocal character 
appear when Einstein-Maxwell physics goes on in a multiply-connected space? 

To recognize charge as a nonlocal manifestation of charge free electrodynamics in a 
multiply-connected space, we will find it helpful to revert from the ideas of the 
more familiar geometrodynamics to language of Maxwell theory in a preexisting 
space time continuum. In keeping close to the most easily visualized terminology, 
we will not deny that electrodynamics is intrinsically nonlinear. A field has an 
energy density that curves space. This curvature affects the propagation of the 
field. A field of twice the strength therefore propagates differently from the 
original field. This nonlinearity will remain hidden behind the Scenes in the 
following analysis. Attention will be limited to Maxwell’s equations and their 
consequences. However, these consequences will remain valid when Maxwell’s 
equations for the field are supplemented by Einstein’s equations for the metric. 

The concept of multiple connectedness is topological in character and logically 
precedes any idea of metric. Section B therefore summarizes the necessary topo- 
logical preliminaries, including the concepts of continuity, manifold, boundary, 
homology class, Betti number, differentiable manifold, and coordinate patches. 
No space topologically inequivalent to an open subset of Euclidean space can 
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be covered without singularity by a single nonsingular coordinate system. This 
circumstance makes the analysis of vectors, tensors, and other quantities by way 
of components-in the traditional spirit of tensor analysis-less appropriate than 
an intrinsic type of calculus, such as is familiar from vector analysis in S-space. 
Section C uses this intrinsic notation of Cartan side by side with the familiar 
notation to define the needed concepts of differential geometry in a space not yet 
endowed with any metric: vectors, alternating tensors, cross product, curl, 
Stokes theorem, the metric-free half of Maxwell’s equations, conservation of flux, 
charge, vector potential, de Rham’s theorem, and the issue of electric versus 
magnetic charges. The rest of Sec. C traces some of the more important additional 
consequences that flow from existence of a metric: duality, divergence, differen- 
tial operators, and relations and integral formulas involving these operators. 
Section D analyzes electric and magnetic fields on one or two space like surfaces 
as initial value data for Maxwell’s equations; the new feature of charge brought 
in by multiple connectedness; and the description of charge by way of the theory 
of harmonic vector fields. 

B. TOPOLOGY 

Topology and Point Sets. 

Topology13 is the study of a nonquantitative idea of “nearby”. This idea itself 
is not ordinarily axiomatized; instead, topology axiomatically defines what is 
meant by a neighborhood, an open set, or a closed subset of space. The relation- 
ship of these ideas to “nearby” may be suggested as follows: (1) A neighborhood 
of a point is a subset containing all points sufficiently near z. (2) An open 
subset is one which contains all points sufficiently near any of its points. (3) A 
closed subset C is one which contains every point that is arbitrarily close to C. 

Let two sets X1 , Xp be equivalent as sets, so that they also contain the same 
number of points. Then the two sets are equivalent as topological spaces, that 
is homeomorphic, if there is a l-l transformation h of X1 onto X2 , called a homeo- 
morphism, under which the open sets of X1 are in l-l correspondence with the 
open sets of X2 . The open sets define the notion of “nearby”. Therefore we may 
say that a homeomorphism h is a l-l onto correspondence of X1 and X2 which 
always makes nearby points in one space correspond to nearby points in the 
other, i.e., it is continuous, and so is its inverse. 

We have found outselves forced to consider spaces that are topologically more 
general than those usually treated in physics. Nevertheless, we shall restrict 
ourselves to a very special class of spaces, called manifolds: An n-manifold (27’) 
is a topological space which (1) is locally Euclidean of dimension n, (2) is Hausdw, 

13 A standard text on point set topology is one by Kelley (24). For a brief development 
of the theory see a book by Pontrjagin (26). Statements of definitions and theorems from 
point set topology which are most pertinent for a study of manifolds can be found in a book 
by Aleksandrov (26). 
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and (3) has a countable basis. (1) A space is locally Euclidean of dimension n if 
each point has a neighborhood homeomorphic to Euclidean n-space. (2) A space 
is Hausdofl if every two distinct points have disjoint neighborhoods. Effectively 
Hausdorff means that no two distinct points are arbitrarily close to each other, 
but this intuitive notion may also be made precise in other ways. (3) A space 
has a countable basis if there is a countable collection of open sets such that every 
open set is a union of open sets in this collection. This condition is imposed so 
that a manifold will not be uncomfortably large. 

Examples of Manifolds. 

The prime examples of manifolds are the Euclidean spaces. Euclidean n-space, 
R”, is the space of all n-tuples of real numbers, x = (x1, x2, v . . zn), with the 
topology customary in analysis. The open subset of R” defined by 

x*x = qxy < 1 WV 

is called the n-ball. It is also an n-manifold, and is in fact homeomorphic to R” 
by the transformation x -+ x(1 - x.x)-‘. Another familiar example of a mani- 
fold is the n-sphere S” which is a subspace of R”+* consisting of all points x 
satisfying the condition 

TL+1 

x.x = c (2y = 1. 
z=l 

(81) 

From S” we may obtain projective n-space P” by identifying antipodal points 
on S”; i.e., a point x of P” is an unordered pair (x, -x) of points x of Rn+l satis- 
fying X-X = 1. In general relativity, S3 and P3 have been used in cosmological 
models (28). Another manifold, the 3-torus T3, is encountered in theoretical 
physics in the frequent instances where one imposes periodic boundary condi- 
tions. The n-torus T” is a space whose points are families of points in R”, x = 
{X + 27rm) m where m ranges over all n-tuples of integers m = (ml , m2 , . . . , m,) . 
As a final example we construct a space IV, which illustrates in a simple way some 
of the topological possibilities which we are interested in investigating in relation 
to the idea of charge. Starting from the 3-sphere S3, we consider only those points 
x = (CC’, x2, x3, x4) which satisfy both x.x = 1 and j z4 / < 1 - E. We then iden- 
tify each point (x1, x2, x3, 1 - C) with (x1, x2, x3, - 1 + e). This may be called 
the pierced sphere, or W1 . By cutting out Ic pairs of antipodal balls (such as 
x4 > 1 - E and x4 < 1 + E above) around k pairs of points of X3 (such as x = 
(0, 0, 0, &l) above) and making similar identifications of the boundaries, we 
construct the k-pierced sphere Wk . (See Fig. 4.) 

Product Manifolds. 

When 9P is a p-manifold and amp a q-manifold, then we can construct from 
them a (p + q)-manifold 3np X YIZ’ whose points are pairs (x, y) where x is any 
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HOLLOW SPHERE CYLINDER AODED 
TOP AND BOTTOM CUT AWAY 

EDGES OF CUT IDENTIFIED 
TO JOIN TOP 

AND BOTTOM 
DOUBLY PIERCED 

SPHERE 

(b) 
FIG. 4. The pierced spheres. When the polar caps are excluded from a sphere and the 

resulting boundaries identified as indicated by the corresponding points A, B, in (a), there 
results a space which may be called a pierced sphere, Wr . The identification may be 
visualized by pulling the edges together through the center of the sphere as in (b), so that 
the resulting manifold is the surface of a ball with a hole drilled through the center. Drilling 
k such holes in a sphere, in such a way that the drill holes never intersect, gives the k-pierced 
sphere Wk . In (c) a view of WZ is shown. The figures show two dimensional manifolds, while 
the WI, in the text are 3-manifolds. 

point of %i~’ and y any point of ~2’. Euclidean 2-space R2 is, for example, the 
product R1 X RI, and similarly R” = R’ X R’ X . . . X R1 (n factors). We 
note that S’ and T’ are homeomorphic, 

(z + 27rnJ n -+ (x’, x”) with z’ + ix2 = e”“. WJ 

(We write T’ = S’ since we usually do not need to distinguish homeomorphic 
manifolds, unless the names of the points, i.e., (X + 2?m}, c T’ us (x1, x”) E S’, 
are needed in a construction.) Then T” is a product of n circles, T” = S’ X S1 X 
. . . X S’. It may also be seen that WI = S2 X S’. 

In the examples above we have not defined the topology, or in other words, 
we have not made the choice of open sets, since the appropriate choice is fairly 
obvious. 

Diferentiable Manifolds. 

To discuss differential geometry we need both a manifold, and a concept of 
dilerentiable junction on this manifold. Let a criterion be supplied which decides 
which functions defined on a manifold m are to be called differentiable. Then 
this criterion is called a differentiable structure on 311, and %? is called a difJer- 
entiable munijold. The class of differentiable functions is however subject to 
certain axioms (d7) : 

For every point 5 of Eli there exists an open neighborhood U of x, and n real valued 
functions 21(z), z2(5), . . z,(z) defined on U such that: 

(a) The transformation x -+ (zrl(z), x*(x), . . * x,(r)) of U into Rn is a homeomorphism 
of U onto an open set of Rn, so that every functionf defined in U can be expressed in terms 
of the xi , 

f(z) = f(G) 22 ‘.. 4. (83) 



556 MISNER AND WHEELER 

(b) A function f(z) is differentiable at a point of U if and only if it is defined in an open 
neighborhood W of that point, with W contained in U, and f (xl , x2 , . . . x,) has continuous 
derivatives of all orders with respect to the zi for values of the xi corresponding to points 
in W. 

The neighborhood U with the functions xi is called a coordinate patch, and the 
set of functions X1(z), X2(2), * . . z,(z) is called a system of local coordinates in U. 
It follows from the definition that a coordinate xi(z) is a differentiable function. 

We apply the definition of differentiable function by way of illustration to 
some of the manifolds already mentioned. On the n-sphere we may define xi(x), 
where x = (~1, 22 , . . . x,+1) to be a differentiable function of the points x in 
S”. Then some n of these n + 1 functions will serve as coordinates about any 
point in part (a) of the axioms, while the remaining differentiable functions are 
given by (b). For the projective n-space P” whose points z are pairs of points, 
(x, -x), of S”, we say f(z) is a differentiable function on P” if f((x, -x)) is a 
differentiable function of x E S”. For the space WI, the pierced sphere, we con- 
sider x1 , x2 and x3 as differentiable functions, as they were on the sphere. The 
quantity x4 is to be differentiable only in the region 1 x4 1 < 1 - E. This function 
is not defined at the rims that have been identified with each other. We need 
another function which is defined and which can be called ditIerent,iable across 
this region of identification. For this purpose we define f(z) by 

j(x) = 1 - E - x4(x) for 0 < x4 5 1 - E, 

j(x) = -1 + t - i(z) for -l+eIx4<0, 
(84) 

and insist that f(z) is differentiable for d # 0. From among the functions 
x1 , x2, x3, x4, and j we can choose local coordinates about any point. 

Although a topological manifold may be given more than one differentiable 
structure (29), we shall abbreviate differentiable manifold to manifold in what 
follows, and the word topology will include differentiable structure as well as 
topology. 

C, DIFFERENTIAL GEOMETRY AND THE FORMULATION OF MAXWELL'S EQUA- 
TIONS 

Diferentiable Functions and Fields 

To state physical laws in quantitative form, we are compelled to deal with 
vectors and tensors in a curved space. These quantities are not most conveniernly 
described in the familiar language of tensor analysis when the space is multiply 

connected. A new or intrinsic formulation is required. 
Tensor analysis is not adequate. It demands a nonsingular coordinate system 

with respect to which one can give the components of vectors and tensors. How- 
ever, according to the definition of a differentiable manifold, a single nonsingular 
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coordinate system is not enough to cover a manifold that is topologically in- 
equivalent to an open set in Euclidean space. It is essential for our physical 
applications that we be able to distinguish singular tensor fields from nonsingular 
ones. A singularity in a field will ordinarily imply a localized source term in the 
differential equations. Such a source term will represent a nongeometric charge 
or mass, which has not been eliminated from the theory, but merely idealized 
to a point charge or a point mass. To investigate the content of pure geometro- 
dynamics we therefore exclude all singularities in the fields. Consider for example 
the two dimensional surface of the unit sphere. The polar angles, 8, ‘p, are or- 
dinarily called coordinates, but they do not cover the surface without singu- 
laxity: (1) The metric, 

ds’ = de2 + sin2 edv2, (85) 

has a component, g”‘+” = sin-’ 0, which goes to infinity at the two poles, 8 = 0 
and e = P. (2) A vector field with apparently nonsingular components, vg = 1, 

Vq = 0, is not well defined with respect to direction at either pole. This singu- 
larity in the vector v = grad e raises a question about calling e a coordinate. 
(3) Along the Greenwich meridian the angle cp suffers a discontinuous change 
from 0 to 27r, in this region making this quantity also inappropriate for a co- 
ord nate. (4) Only in the region 0 < e < ?r, 0 < cp < 2~ do the polar angles 
supply a well defined “coordinate patch.” 

Another %oordinate patch” is needed. Let a small circular ink pad be cen- 
tered at the north pole and let the pad be moved down the Greenwich meridian 
to the south pole. We ask for a new coordinate system that is regular everywhere 
in the blackened region. Of course the new coordinate system may be regular 
over a wider region. For example, consider the point 0 = 7r/2, y, = n/2. Let this 
be north pole of a new set of polar angles, 0’, (o’, in terms of which (1) the pre- 
vious north pole is 0’ = 7r/2, ‘p’ = 7r/2 (2) the previous Greenwich meridian runs 
from 8’ = x/2, ‘p’ = 7r/2 to 8’ = 7r/2, ‘p’ = 3*/2 (3) the previous south pole 
lies at 8’ = 7r/2, cp’ = 3~/2. There is evidently a wide region where the old and 
new coordinate patches overlap. Moreover, at any fixed point on the sphere at 
least one non-singular pair of coordinates 0, cp or 0’, ‘p’, is well behaved. If we do 
not know what nonsingular coordinates are, then we have not yet defined the 
differentiable structure of the manifold. However, as soon as we have said what 
we mean by a differentiable function, then the idea of a diserentiable tensor jield 
is well defined: A tensor is differentiable at a point x if its components with re- 
spect to a (nonsingular) coordinate system around II: are differentiable functions 
at 2. 

Intrinsic Representation of Tensors. 

In the general differentiable manifold it will be impossible to describe a field, 
such as the Maxwell field, by giving its components Fab with respect to a single 



558 MISNER AND WHEELER 

set of coordinates. If components are to be used at all, they have to be given with 
respect to the coordinates of the several distinct coordinate patches. In each 
patch there is great freedom of choice about the coordinate system. Consequently 
the components, F-0 , of the Maxwell field in the several coordinate systems are 
not individually so important as the concept that can be abstracted from them: 
the intrinsic value, F, of the Maxwell field. This procedure of abstraction is 
familiar from the analysis of Cartesian vectors. To say that the velocity vector 
v is known is to say that on demand one can give the components of v in any 
nonsingular coordinate system. We propose to generalize this abstract formalism 
to the case of curved space and tensors of order higher than the first. 

In vector analysis it is convenient to express the connection between a vector 
v and its components by the formula 

m v=v e,, (86) 

where the components urn depend upon the choice of base vectors e, . “Intrinsic 
differential geometry” expresses the same type of relation more explicitly in the 
form 

v = va grad xa, (87) 

and more briefly in the notation, 

v = v,dxa, 63) 

where the letter d stands for gradient. Modern text books on differential geometry 
(SO) even replace the boldface d by lightface d-as we also shall do later-but for 
the time being we keep the boldface notation to emphasize the vectorial charac- 
ter of the gradient operation. 

The gradient operation, applied to any function of position, f = f(P), expresses 
itself in intrinsic notation in the familiar form 

grad f = ($f/ax*) grad xa 

or 

df = (#/axa) dx”. (89) 

Covariant vectors, such as grad f, or df, and v are linear combinations of the 
gradients of the coordinates and are called differential forms of the first order, 
or l-forms. 

Instead of using the gradients of a particular set of coordinates as base vectors 
in a certain coordinate patch, one can use there alternatively as base vectors 
any other set of n linearly independent vectors, Ok. Here the superscript or tells 
which vector, not which component of one vector. Relative to this set of basic 
vectors the components of the vector v are again read out of the expansion 

v = v,oa. (90) 
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The components of grad f or df in such a frame are called its Pfaffian derivatives 
f.ol with respect to the o”: 

grad 3’ = df = f,=tia (91) 

Exterior Diflerential Forms. 

To describe the Maxwell field requires one to deal with a higher order tensor, 
or 2-form. The simplest 2-form, (Y, is the cross product of two l-forms, u and v, 
thus, 

in intrinsic notation; or 

%v = uy, - V&p 

in the familiar language of tensor analysis, or 

(92) 

(I! = >$+dxP A dx = >!&,,(grad ze) X (grad x’) 

in a formulation that connects the intrinsic form with the component representa- 
tion. 

The exterior product operation A (“hook”) generalizes the cross product into 
a means for multiplying vectors and alternating tensors in such a way as to ob- 
tain tensors that are also alternating. This operation does not apply to symmetric 
tensors. The A multiplication is defined by the requirements (1) it is associa- 
tive (2) it is distributive (3) exterior multiplication of two vectors is anticom- 
mutative; that is, we ask 

UAV=-VAU (93) 

for any two l-forms or vectors u, v. In particular, u A u = 0. 
The exterior product of p vectors, or a linear combination of such vectors, 

gives a p-form. Let each vector be expressed in terms of base vectors Ok. The 
product of the p vectors, or the linear combination of such products, can be 
expressed in the form 

a= c aalan...apo @I I\ “OL2 ,, . . . oap 
.Z1<CZ!j...<ap (94) 

= (p!)%a,az.. .mpoal A “az A . . . A we’. 

Here the coefficients or tensor components in the first sum are well defined. In 
terms of these components those that appear in the second sum are defined by 
the requirement that they be alternating functions of the indices. 

The exterior product dx’ A dz’ = (grad x1) X (grad x2) ,signifies geometrically 
an area spanned by base vectors along the x1 and x2 coordinate axes. Similarly 
the product dx’ A dx2 A dx3 represents the parallelepipedal volume spanned 
by three base vectors. 
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The commutation rule for a p-form a and a q-form b is easily found: 

a A b = (-l)PQb A a. (95) 

Functions and vectors are included in this scheme of exterior differential forms 
as O-forms and l-forms, respectively. 

Exterior Diferentiation. 

The operator d which produces the l-form dj = grad j from the O-form f can 
be extended to a form of higher degree, 

a = (P!)-laal...,,dz”’ A . . . A dxap, (96) 

by way of the definition 

da = (p!)-‘da,,..., A dxal A . . . A dx”lp. (97) 

In the language of tensor analysis this equation takes the form 

(Wa,...m,+, = LZ( - l)pf3a~2...~p+l/dxB1, (98) 

where P = 0 or +l according as the indices p1 + . . &,+1 form an even or an odd 
permutation of the indices CY~ . . . LY~+~ . The operation d, the exterior derivative, 
is an alternating differentiation which generalizes the familiar operations of 
gradient and curl. It is linear: 

d(al + aJ = da1 + da2 . (99) 

Applied to a product where the first factor is a p-form, it gives the result 
d(a A b) = (da) A b + (-1)“a A db. (100) 

Applied twice it gives zero 

d(da) = 0. (101) 

This circumstance was employed in passing from expression (96) for an exterior 
differential form a to expression (97) for its exterior derivative, da: the base vec- 
tors dx” = grad xol give no contribution when the operation of exterior differen- 
tiation is applied to them: 

ddx” = curl grad xa = 0. (102) 

No such simplicity results in the case where the same exterior form a is expressed 
in terms of a more general system of base vectors o*; thus do” = curl tia will 
not ordinarily vanish. 

Maxwell’s equations deal with two antisymmetrical tensors, fns and *fols ; 
or in invariant terminology, with two 2-forms, 

f = 3$jaadx” A dg 
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and 

*f = >S*fas axa A dxO. (103) 

Consider the exterior derivative of f; that is, the 3-form 

df = $~(afola/az’)dz’ A dx” A dz’. (104) 

Here the coefficient of a typical basic S-form, such as dx’ A dx” A dx”, with 
X < p < v, has the value 

a.fpv/axx + afdax’ + a.fpX/ax~, 

or in a locally Minkowskian frame, 

(105) 

div h 0, k v = 1, 2, 3), 

curl e + ah/aT (X = 0; p’, v = space). 
(1’36) 

These expressions vanish, according to Maxwell, so one half of his equations 
take the form 

df = 0. (107) 

Similarly, in charge free space the other half of Maxwell’s equations take the 
form 

d*f = 0. (108) 

To satisfy Maxwell’s first set of equations it is suficient to express the field f 
as the curl of a four potential 

or 

f = da; 

+df,edx” A dz” = d(a,dxY) = da, A dxY 

= (aa,/ax*)dx* A dxY = fd(aa,/ax* 
or 

faa = aa,/ax” - aa,/a2. 
Then the exterior derivative of f vanishes automatically: 

df = dda = 0. 

Integration: Motivation and Method. 

aa,/axs)dx” A d$ 

(109) 

W) 

From the differential properties of the 2-form f what integral properties can be 
deduced? How do these consequences differ (1) when we know merely that 
df = 0 and (2) when we know in addition f = da? More generally, how does one 
define integrals of forms? 
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A p-form can be integrated over a p-dimensional surface to give a scalar or 
coordinate-independent quantity. To combine a local q-form (q # p) with a local 
p-dimensional surface element would give a result with local directional prop- 
erties; but, there is no invariant way to add together vectors or other directed 
quantities at different points in curved space to obtain a well-defined total. 
Therefore integrals of p-forms on p-dimensional surfaces alone need be con- 
sidered. 

The surface of integration will require for its coverage one or more p-dimen- 
sional coordinate patches. Break the surface up into curvilinear p-dimensional 
parallelepipeds at least equal in number to the number of required coordinate 
patches. Consider the standard unit p-dimensional cube, I’, with coordinates h”: 

0 5 x” < 1 (Q! = 1,2, * * * p). (111) 

Map the points of I’ into %?z, 

C:IP + SK (112) 

This map C may be thought of as a curvilinear parallelepiped in 3n, but we shall 
call it a cube in 3n because we have no metric with which to distinguish “curved” 
from “straight”. In terms of coordinates the cube takes the form 

Xa = C”(X’, x2, f * * A”). (113) 

where the C” are differentiable functions. A great number of different cubes cover 
the same set of points in XL For instance 

and 

XU = C”(1 - x1, x2, . . * X”) (114a) 

XU = C(X”, x1, *. * A”) (114b) 

are cubes in X different from C, and with the opposite orientation to C, while 

XU = CU(l - x’, 1 - x2, x3, . . * X”) (115) 

is a cube in x different from C, but with the same orientation. The orientation 
of the cube governs the sign of the integral we are evaluating, but other differ- 
ences in cubes that cover the same points of 312 will not influence the value of 
the integral. If f :I’ -+ 1’ is an orientation preserving homeomorphism of 1’ onto 
itself, if in other words it has a positive Jacobian, we will not distinguish the 
cube x = C(h’, X2, . . . X”) from the cube 2 = C(f(X’, X2, . . . A”)). We should 
therefore speak of an “oriented cube in ST.” Substitute the parametric description 
(113) of the surface into the expression (96) for a p-form, a, to get the mapping 

C:a + a’, (116) 
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of the form a on 311 into the form a’ on I’: 

a’ = (P!)-‘aoll...,,dz”‘(X) A . . . A dP(X) 

= (p!)-‘a,,...,,(dx”‘/aXB’)dXB’ A . . . A (&P’/X?p)dXB~J 
(117) 

Replace the volume element dX’ A . . * A dXp by the volume element of the 
standard unit cube, dx’ dx2 . * * dXp and dejine the integral of a over the oriented 
cube C as the quantity 

The appearance of the Jacobian in the integral gives assurance what the value 
of the integral is independent of (a) the choice of coordinates xLI in w and (b) 
the choice of the map I’ ---f 311 used to represent the oriented cube in 311. 

Having defined an integral over one oriented curvilinear p-cube, we have now 
to piece t,ogether the entire p-dimensional surface in in as the sum of a finite 
number of such oriented p-cubes, 

c = Cl + CP + . . . + CN (119) 

Instead of concentrating our attention on such surfaces, it turns out to be more 
convenient and more significant (see Homology Theory, below) to include as 
well a slightly more general object, a p-chain, c, which is simply a formal linear 
combination of a finite number of oriented p-cubes: 

c = 2 2ci. i=l 
It might appear that the only algebraic structure necessary is f signs, so that 
if C is the oriented cube defined by the map (113), we may write -C for the 
oriented cube defined by (114). However it may happen that the same cube C 
appears several times on the boundary of a surface and we therefore wish to 
write nC, where n is a positive or negative integer or zero. If the coefficients si 
in equation (120) were required to be integers, we would call c an integral chain. 
In connection with integration, it is more appropriate to let the coefficients si be 
any real numbers, so that we have in Eq. (120) a real p-chain. The integral of a 
p-form a over the p-dimensional surface, or p-chain, c, then is defined as the sum 
of elementary contributions of the form (118) : 

s azesi a = 5 ,yi a”, e i=l s Ci i=l s P 
(121) 
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Surfaces or p-Chains, and Their Boundaries: Homology Theory. 

Particularly interesting is the relation between a p-chain or surface c and its 
boundary, &. This relation is very simple in the case of a cube, C. Use the symbol 
C’+ to stand for the jth upper face of C; that is, for the (p - 1) dimensional cube, 

Xa = C”@‘, . . . if-l, 1, p+‘, . . . A”). (122) 

Likewise let C’ stand for the lower face, 

XU = C”(X’, . . . p, 0, Q+l, . . . A”). (123) 

Then define the boundary of the oriented cube, C as the chain 

ac = g ( -l)J-‘(ci+ - C’-). (124) 

The p-dimensional cube has a (p - 1) dimensional boundary. It might be 
thought that this (p - 1) dimensional surface has in turn a (p - 2) dimensional 
boundary. However, being closed, the surface evidently has no boundary at all. 
One comes to the same conclusion by applying Eq. (124) twice in succession. 
The result derived in this way for cubes applies to volumes and surfaces and more 
generahy to any p-chain built up out of cubes. 

Let a p-chain be expressed in the form 

c = c 2ci. (1%) 

Then we define the boundary of the p-chain in terms of the boundaries of the 
constituent cubes, C; , in nZ, through the equation 

a~ = C siaci. (126) 

When the boundary of the p-chain vanishes, 

de = 0, (127) 

then c is called a cycle or closed p-chain. For example, a closed orientable surface 
which is broken up into cubes and represented by a chain c will be represented 
by a closed chain. Whether the chain is closed or not, whether ac vanishes or 
not, it follows from the formula adCi = 0 and from the Definition (125) that the 
boundary of any chain is a closed chain; i.e., has no boundary: 

sac = 0. wfu 

Table V gives a few illustrations. 
The notion of boundary as now defined is adequate for deriving the theorem 

of Stokes in a general form, and from this as a special case the theorem of Gauss 
with its electromagnetic applications. A fuller analysis of boundaries and their 
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TABLE V 

EXAMPLES OF ~-CHAINS, BOTH CLOSED (-CYCLES) AND OPEN” 

Dimen- 
sionality, 

P 
Description of p-chain, c 

Is itc;8c$wl 
Its boundary, ac 

(= cycle)? 

2 surface of a torus 
3 volume of a sphere in flat a-space 
3 3.dimensional closed space 

open line 
closed line in a Euclidean space 
closed line about minor 
circumference of a torus 
closed line about major circumference 
upper face of a disc 
surface of a sphere in flat a-space 
surface of a sphere inscribed about. mouth of one worm- 

hole 

no 
yes 
yes 

yes 
no 
yesb 
yesC 

yes 0 
no sphere 

yes 0 

2 end points 
0 
0 

0 
circle 

0 
0 

8 There is no need to include in the table a last column to say that the (p - 1) dimen- 
sional boundary, i%, of the p-cycle, c, has itself in every case no boundary: a(&) = 0. 

byes; and it also bounds a certain volume interior to the sphere. 
c Yes; but there is no limited volume interior to the sphere which the surface can be 

said to bound. 

relationships is given by that branch of algebraic topology which is known as 
homology theory14. Some of the ideas of this theory are needed to analyze charge- 
free electrodynamics in a multiply-connected space. Consider by way of example 
a sphere drawn in 3-space around one mouth of a wormhole-or, in the lower di- 
mensional illustration of Fig. 3, consider a circle drawn on the indicated 2-space 
around one mouth of the handle. As a consequence of the existence of the worm- 
hole, there is no well-de$ned interior to the sphere or the circle. An imaginary 
being supposedly locked up on the inside can enter the wormhole, pass freely 
through it, emerge from the other mouth, and come around outside and look at 
the exterior of his prison. The same topological information can be stated in an- 
other form by thinking of the spherical boundary as a bubble. Let the bubble be 
shrunk but not be allowed to break. It contracts into the interior of the worm- 
hole. Let, it be pushed through the tunnel and out the other side and expanded 
about the other wormhole mouth. Let the positive sides of the original sphere 
and of the new sphere be defined by the direction of a line of force that goes 
through the tunnel and crosses both spheres. Let the two oriented surfaces or 

14 Basic theory in extenso is given by Eilenberg and Steenrod (31); the forthcoming 
Vol. II is t,o consider practical methods of computation. Presentation of the theory in a 
less extensive form, with applications, is made by Seifert and Threlfall (92). For details 
and additional intuitive insight see Lefschetz (.?a) and Seifert and Threlfall (94). Rigorous 
treatment of cubical singular homology theory is given by Serre (95). 
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2-chains so defined be called cl and cz , or more explicitly, cl@) and cZC2) to indicate 
the dimensionality, p = 2, of the chains. Then cl and c2 are said to be homologous 
to each other. More generally, when two p-chains, cl’ and ~2’ together form the 
boundary of a finite (p + 1) dimensional chain, in the sense 

a$+’ = CIP - QP, (129) 

then we say that the two p-chains are homologous. In the example of Fig. 3, the 
two l-chains or circles about the two mouths together completely bound the 
two-dimensional region of the tunnel, or 2-chain, c,‘. In contrast, a circle, csl, 
drawn in the 2-space of Fig. 3 in a place where it does not enclose the mouth of 
a wormhole will by itself completely bound the 2-space, or 2-chain, G,‘, interior 
to it: 

ad = c,‘. (130) 

If in this case the bounding line c, ’ is considered subject to pressure from one 
side, and considered to deform accordingly, it will not have any wormhole to 
pass through nor any chance to reexpand into a new circle. Instead, it will col- 
lapse to nothingness. More generally, when a p-cycle cp all by itself is a boundary, 

cp = acp+’ 2 (131) 
it is said to be homologous zero. 

Two surfaces-or more generally, two p-chains-that are homologous to each 
are said to belong to the same homology class. A homology class is defined to 
consist of all the closed p-chains or p-cycles that are homologous to each other. 
We denote the homology class containing a p-cycle tip by (CC*}. In space that is 
topologically Euclidean all the p-cycles are shrinkable to nothingness; are there- 
fore all homologous zero; and therefore all belong to the zero homology class, 
{ cgp} = { 0). In a multiply connected space the p-cycles are not in general all 
homologous to each other. The number of linearly independent homology classes 
of order p, 

{CIPJ, IczP), ..‘, {CRpP} (132) 

is called the pth Betti number R, of the space (Table VI). The number 

x = 2 (-l)PR, (133) 
p=o 

is called the Euler characteristic of the space. 
Consider two surfaces of the same homology class, one of which is identical 

with the other except for having a wart or incipient bubble on its surface. Com- 
bine the two surfaces with opposite signs. Then they cancel out except at the 
bubble. The resultant surface, like a small sphere, is homologous zero. These 
considerations generalize readily from surfaces to p-cycles of any order. In count- 
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TABLE VI 

HOMOLOGY CLASSES (cp), {cP), ..* {c,$] AND BETTI NUMBERS, R,, FOR Two SAMPLE 

SPACES. A ~-CYCLE IS A ~-DIMENSIONAL REGION, OR ~-CHAIN, WITH 

THE SPECIAL PROPERTY THAT IT HAS NO BOUNDARY 

Space: The two dimensional surface of a torus imbedded in Euclidean 3-space; more briefly, 
a a-torus, !P. Its Betti numbers: Ro = 1; RI = 2; Rz = 1. Euler characteristic x = 0 

Homology classes Description of typical g-cycle in this homology class 
.-. 

(4 A point; all points are homologous 

id\ A closed curve that goes around minor circumference’ 

(C21 A closed curve around major circumferencea 

(C”l The a-torus itself 

Space: Start with a 3-dimensional closed space-visualizable as the a-surface of a sphere 
imbedded in Euclidean 4-space-and modify this space topologically to the extent needed 
to install one wormhole with mouths Ml and MS This is the pierced sphere W1 = S2 X S. 
Its Betti numbers: RO = 1; RI = 1; Rz = 1; Ra = 1. Euler characteristic x = 0. 

Homology classes 

ie”:; 

Description of typical p-cycle in this homology class 

A point; all points are homologous 
Closed line of force that goes once through the wormholeb 
Closed surface about the mouth M1c 
The 3-space itself. 

a A closed curve that can be shrunk to zero can be constructed as the combination of 
two such lines drawn in opposite senses about the torus. 

b A closed curve that can be shrunk to zero is the linear combination with opposite 
senses-that is, the difference-of two such lines. A closed curve that goes around the 
mouth, Ml , of the wormhole can be moved away from this location and shrunk to zero. 
Three dimensions gives freedom to conduct this operation. It is impossible on the lower 
dimensional space of Fig. 3. 

c A closed surface that can be shrunk to zero is the linear combination of two such sur- 
laces with opposite sign. 

ing distinct homology classes, we therefore always omit the class of cycles which 
are homologous zero. Normally there exist infinitely many homology classes. 
None is more fundamental than another. The situation is reminiscent of the dis- 
placements of a crystal lattice-say a simple cubic lattice-which carry it from 
one position to an equivalent. position. One can have a displacement, a in the 
x-direction; or a displacement a in the y-direction; or a knight’s move of a in the 
x-direction simultaneously with 2a in the y-direction; etc. The general allowed 

move can be represented as a linear combination of three basic or linearly inde- 
pendent moves. However, there is no unique choice of these basic moves. Simi- 
larly, by number of distinct homology classes we mean the number of linearly 
independent homology classes in the following sense: A set of homology classes 
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(c;‘) is linearly independent if and only if every relation of the form 

F s”{Q} = [T SV} = (01, 

with real coefficients si, implies that all the si are zero; that is, if and only if no 
linear combination of the cycles tip is a boundary. When the homology classes 
{c,‘) are linearly independent we shall say that the cycles tip representing 
these homology classes are independent cycles. 

The basic relationships between chains, cycles and boundaries which we have 
been discussing may be summarized in a purely algebraic form. Since we can add 
chains together, the set of chains in a manifold 311 forms a group. We may also 
multiply a p-chain by a real number. Consequently the p-chains form an infinite 
dimensional vector space, CP(3n, R), called the group of real p-chains. The chains 
cp satisfying 83 = 0 form a subspace 2,(3-n, R) called the group of p-cycles. 
Every chain cp which is a boundary, cp = dc’+‘, is a cycle. Consequently the set 
of all bounding p-cycles Bp(5n, R) is a vector space which is a subspace of 
.Z,(F~, R). The quotient space 

HA% R) = +W% R)l&(w RI (134) 

is called the p-dimensional homology group of 3~ with real coefficients. The Betti 
number R, is the dimension of the vector space Hp(3nr R) and is finite for any 
compact manifold. 

It may happen that in a closed (compact) n-manifold, every n-chain has a 
boundary so that R, = 0. In this case the manifold is called nonorientable; in 
the opposite case R, = 1 and the manifold is orientable. This distinction points 
up a difference between the idea of boundary expressed by d and the idea of a 
boundary as consisting of points on the “edge” of a set. In a manifold every 
point has a neighborhood homeomorphic to Euclidean space, so no point can be 
considered as being on an “edge” or “boundary” of the manifold. When, how- 
ever, we break the manifold up into cubes, 

fJll= c” = 2 C<“, (135) 
i=4 

we may not be able to choose the orientation of the cubes in such a way that 
the faces of all the cubes cancel out in pairs when we calculate ac: This is the 
situation in a nonorientable manifold. An example is given in Fig. 5 where we 
compute the Betti numbers of the projective plane P2. 

Stokes Theorem. 

We are now in a position to state Stokes theorem concerning the integral of a 
p-form a over the p-dimensional boundary acP+’ of a (p + l)-chain c’+l: 

(136) 
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FIG. 5. The projective plane Pz as an example of a nonorientable manifold. The points 
of the projective plane are pairs of antipodal points on the a-sphere S2. In the figure we 
show the upper hemisphere ca of P, and its equator. Two points on the equator of St, such 
as those marked co in the figure, correspond to exactly one point co in P*. Similarly a single 
line c1 in Pz appears twice as shown in the figure on the equator of 82. Regarding co, cl, c*, 
as chains, i.e., as being broken up into a large finite number of small “cubes”, we see that 
a? = 2cr when ca and cl are oriented as indicated by the arrows in the figure. Since c2 has 
a boundary 2c1 in the a sense of boundary, the Betti number Rz(Pz) is zero. The curve cl 
has no boundary: ac’ = co - co = 0. However c’ is the boundary of the a-chain >ir?, so 
every l-cycle bounds and R1(P2) = 0. The point co has no boundary of course, and it is not 
the boundary of any l-chain, so there is one class of O-cycles, [CO), different from zero, and 
Ro(P2) = 1. 

The integral of a form over a chain is defined in terms of the integral in Eq. (118) 

over the standard unit cube. Therefore the proof of Stokes theorem reduces to 
integration by parts on this cube, I’+‘. The simplest case of Stokes theorem is 
that of a O-form or function, f, whose gradient is integrated over a curve c1 with 
end points x1 and XO: 

I df = s,l~,l-z. 
f = fhl) - fbo>. (137) 

Here we make the convention that the integral of a function over a O-cube, or 
point, is the value of the function at that point. For a l-form, such as the mag- 
netic field h = hidx’ in 3-space, Stokes theorem reads 

This is the formula which usually carries Stokes’ name. Gauss’ theorem is also 
included in formula (136) as we may see by considering a 2-form 

* f !  = & *e;j &Ji A CIX’. (139) 

We have in this case, for a volume c” in S-space, 

1 =- 
s 2 aca 

*eij dxi A dx’ = s *e. 
a03 
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This equation takes the usual form of Gauss’ theorem in flat space when we write 
el for *e23, etc. 

Applications of Xtolces Theorem: Electric Charge, Magnetic Charge, and the Vec- 
tor Potential. 

Two particular cases of Stokes theorem are of principal interest: 
(1) If cp+l is a closed chain, i.e., a cycle, and a = a’ is a p-form, then Eq. (136) 
reads : 

s clap = 0 if &pi1 = 0. 
CP+l (141) 

(2) If dap = 0 we call a’ a closed form. In this case Stokes theorem gives: 

s a’ = 0 if da” = 0. 
aCp+r 

(142) 

This second case may be put in the form of a conservation law: Let c, and cb be 
homologous p-cycles, so CZ, - ca = acPtl. Then Eq. (142) becomes 

I ,p+l a’ = I, 8’ - I, 8’ = 0. (143) 

In other words, the integral of a closed form over a closed surface depends only upon 
the homology class of the surface. The value of this integral is called the period of 
a on ( c,) , the common homology class of c, and cb . According to Maxwell’s equa- 
tions, (104) and (108), both f and *f are closed forms. To the periods of these 
tensors we give names15, to be justified in the next paragraph: 

J c2 
f = 47rp* = 47r (magnetic charge of (c”)) (144a) 

s c2 
*f = 47rp* = 47~ (electric charge of {c”]) (144b) 

When the electromagnetic field is derived from a vector potential a = a,,dx”, 
then there is zero net flux through every surface c2 that is closed (ac’ = 0): 

18f = 12da = 6,.a = 0. (145) 

16 The superscript * indicates that we are measuring both kinds of charge in the purely 
geometrical units of length. As we pass from the geometrical measure of field strength, 
f (cm-r) to the conventional measure of field, F (gauss or g1/2/cm1’2 see) by multiplication 
with the factor ce/G”e(g I/* cmr/2/sec), so the same factor translates from the geometrical 
measure of charge, q* (cm), to the conventional measure of charge in electrostatic units 
(glln cm3/t/sec) : 

q(esu) = (c*/G’@)q* (cm). 
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In other words, the existence of a vector potential implies that there is no magnetic 
charge. 

In reasonable examples the homology class of the surface c2 includes (a) similar 
appearing surfaces of larger or smaller size at the same time, that is, in the same 
space like surface and (b) surfaces like these at earlier and later times. Both f and 
*f are closed. Then Eq. (143) says that the flux through all of these surfaces is 
the same-independent of the size of the surface (Gauss’ law) and independent 
of time (law of conservation of charge). Therefore charge as defined in Eqs. (144) 
has the properties that one is accustomed to demand. The four dimensional 
character of the analysis has combined into a single law two laws normally re- 
garded as separate. In brief, we have shown from Maxwell’s equations that 
charge-regarded as lines of force trapped in the topology-stays constant with 
time regardless of changes in the details of the electromagnetic field, and regard- 
less of changes in space. No mention of the metric even entered the proof of the 
conservation theorem. 

To see in a little more detail the reasonableness of the identification (144), 
consider flat space with the usual time and space coordinates. Then the forms f 
and *f are related to electric and magnetic fields in the following way: 

f = -dt // (ei dzi) + (*h)ijdzi A dzf, (146a) 

*f = dt A (hi dxi) + (*e)ijdxi // hi. (146b) 

Here e; and hi are the components of the usual electric and magnetic fields, and 
(*h),, = h, , (*e),, = e, , etc. When c2 is a closed surface, say a sphere, in the 
T = const. hyperplane, and when f is the electromagnetic field produced by a par- 
ticle inside this sphere, then the magnetic pole strength p* and the electric charge 
q* of this particle are given by 

47~p* = l2 (*h)ijdzi A dx3 = 1 f, 
c2 

4rq* = 1. (*e);j do” A ds’ = I2 *f, 

(147a) 

(147b) 

The first equalities in these equations are familiar expressions of Gauss’ law in 
flat space; the second equalities hold because the dT terms in Eqs. (146) eon- 
tribute nothing to an integral over a surface such as c2 on which T is constant. 
In other words, the vector dT = grad T is orthogonal to any surface on which 
T is constant, and therefore the projection of dT on that surface is zero. In this 
way we see that Eqs. (144) are direct generalizations of familiar equations to a 
curved space-time. 

Examples of Spaces Permitting Charge. 

To fill the gap between the very general language of the conservation laws in 
the last section and the simple intuitive picture of charge in Fig. 3 as lines of 
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force trapped in the topology, it is appropriate to present here two examples of 
spaces permitting charge; that is, spaces endowed with one or more wormholes: 
Rz 2 1. These examples are the manifolds R X Wk and R X T3 which were de- 
fmed earlier in part B of this section (Examples of Manifolds, Product of Mani- 
folds). To define the differentiable structure of W,+ (see Differentiable Manifolds) 
we introduced on WI a functionf(z); in Wk weuse k suchfunctionsf&), i = 1, 
2, “.) k. Let c?(r) be the sphere in Wk defined by f&r) = r. In the two dimen- 
sional analog of Wk shown in Fig. 4, the sphere is doubly pierced (k = 2). The 
typical surface cl(r) is a circle that runs around the mouth of one of the tubes 
that connects opposite faces of the sphere. The typical surface Q(T) runs around 
the mouth of the other tube. In the product manifold R X Wk , of a real line, 
- 00 < T < 00, with Wk , there is on each hypersurface T = const. a copy of 
c:(r) which we will call t?(r, T). Moreover, the pth Betti number R,(R X W,LJ 
of the product manifold is the same as the pth Betti number Rp(Wk) of Wk itself. 
Now consider on R X Wk a 2-form f or *f. Then the flux 

or 

apparently depends on r and T. To see that p;*(r, T) or Q~*(T, T) in fact depends 
only on i we need (a) to require that df = 0 or d*f = 0 and (b) to see that all 
the surfaces c?(r, T) for fixed i belong to the same homology class. The surface 
c?(O, 0) is a 2-sphere. As we let r increase this sphere sweeps out a 3-surface 
ci3(R) 0 < r 6 R which is topologically identical to the volume 1 < x2 + y2 + 
z? < 2 in Euclidean S-space. From this mental image of the S-space cc3(R) in the 
familiar Euclidean 3-space R3, we see the boundary of c:(R): 

k;(R) = c:(R, 0) - c:(O, 0). (149) 

We conclude that c?(r, 0) is homologous to c?(O, 0). No metric notions have en- 
tered yet. Therefore we can let c?(O, T) sweep out a 3-surface c?(T) just as we 
did above for r, and find 

d(T) = ci2(0, T) - ci2(0, 0) (150) 

so that ci”(O, T) and ~‘(0, 0) are homologous. A similar construction shows that 
ci2(r, T) is homologous to ci’(r, 0). More generally, we conclude that all the sur- 
faces ct(r, T) for the same i are homologous. Moreover, the equations df = 0 
and d*f = 0 say that no flux gets lost between homologous surfaces. Therefore 
the charges pi*(r, T) and qi*(r, T) are independent of r and T. 
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The preceding discussion made no use of any metric on R X Wk , and is there- 
fore valid no matter what metric we introduce. For example, at one value of T 
the space-like hypersurface T = const may have the appearance of the doubly- 
pierced sphere of Fig. 4(c). At a later T the two ends of one of the wormholes 
may move together preparatory to annihilation as in Fig. 3. But as long as the 
topology does not actually change, the lines of force remain trapped and the flux 
47rqi* through the closed surface c?(r, T) is unaltered by disturbances of the 
metric. 

In this analysis of the wormhole space-time R X Wk , we assumed the existence 
of a closed form *f or f for which the charges and pole strengths in Eqs. (148) 
do not all vanish. In the following section on de Rham’s theorem we shall see 
that many such forms do exist. In a simpler example, R X T3, we can display 
them explicitly. 

On the torus, T3, functions s”(i = 1, 2, 3) cannot be defined continuously 
everywhere except to within an additive multiple of 2~. However, the gradients 
dxi are differentiable vector fields. In the simpler case of a 2-torus one of these 
gradients may be a field of unit vectors (red!) that circle about the minor cir- 
cumference of the torus. The other field of unit vectors (green!) may be taken 
to be parallel to the major circumference. Similarly vector fields are definable in 
the space R X T3. From them one can construct a form, 

*f = dzr2 A dx3, 

which is obviously closed (d*f = 0). It represents a uniform electric field in the 
x1 direction [see Eq. (146b)]. Integrating this 2-form over the surface cr2(x1, T) 
defined by T = const, x1 = const, we get the value 

* 47rq1 = 
s 

dx2 A dx3 = (2x)‘. (151) 
el*(ZlJ) 

Thus we verify directly that in this case ql* is independent of x1 and T. We might 
hesitate to call ql* a charge since we cannot easily imagine any metric that makes 
all the lines of force appear to originate in a small region of space. However ql* 
clearly measures the total flux of the electric field around the 3-torus through 
the closed surface c12. Similarly, there are two other independent directions on 
the 3. torus, in each of which the flux can be given what value one pleases. There 
this space is endowed with three arbitrary constants of charge. 

De Rham’s Theorem Proves the Existence of %Forms Endowed with Charge. 
To have given an example of a charge-like solution is far from having proven 

that such solutions are always possible in a four space endowed with wormholes; 
that is, in a space with Betti number Rz >/ 1. The existence of such solutions is 
established by the jirst theorem of de Rham (36) : If ci* are R, independent p-cycles 
of a manifold 311, and &i any R, real numbers, there exists a p-form a’ which is 
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closed (dap = 0) and differentiable throughout sx and which satisfies 

s a’ = Qi (i = 1, 2, . * * , R,). 
cp 

To translate into physical terms, we note that a = f2 or *f” is the form that repre- 
sents the electromagnetic field or its dual. The Betti number Rz is the number 
of wormholes, and Q, = 4?rpi* or 47rqi* is the magnetic or electric flux through 
the ith wormhole. More precisely, &a is the flux through surfaces of the ith inde- 
pendent homology class, or in mathematical terms, the so-called period on this 
class. We have to recall again the arbitrariness in the choice of the R2 independent 
or basic homology classes of order 2, linear combinations of which give all homol- 
ogy classes of order 2. There are situations where it is reasonably clear that two 
wormholes are well separated from each other, so that it might be particularly 
appropriate for Q1 to designate the flux through one, and Q2 the flux through the 
other. However, it is also possible to give instances where one wormhole is im- 
bedded inside the other and where Q’1 = &I + QZ and Q: = Q1 - Q2, or some 
other combinations, are just as natural as &I and Q2 as measures of charge. Thus 
de Rham’s theorem says that there exists a solution f of the Maxwell equation, 
df = 0 or a solution, *f, of the Maxwell equations, d*f = 0, which has arbitrarily 
assignable real magnetic or electric charges. 

Now demand that the magnetic charge of every wormhole vanish; in other 
words, demand that the period of f on every homology class {c2) shall be zero: 

s 
f = 0 for all c2. (153) 

Then the second theorem of de Rham guarantees the existence of a vector poten- 
tial, a: 

When fP is a p-form on 311, which is closed (df” = 0) and all of whose periods 
are zero, then fp is derived from a differentiable (p - 1)-form: 

fP = daP-‘. (154) 

In a case such as this, where there exists a potential, so that the one form, f, 
can be written as the curl of another form, a, then the form f is said to be exact. 
To be exact is a more demanding requirement on a form than merely to be closed 
(Table VII). 

Concepts Based on the Metric: Duality and Divergence: Completion of Maxwell’s 
Equations. 

We have just derived Gauss’ theorem and the law of conservation of charge 
from Maxwell’s eight equations, df = 0 and d*f = 0, without making any appeal 
whatsoever to the notions of metric or length. The burden of the proof lay on 
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TABLE VII 

SIMILARITIES BETWEEN THE CONCEPTS OF CYCLES OR CLOSED CHAINS 
(SUCH AS CLOSED SURFACES) AND CLOSED FORMP 

Surfaces 

c General p-chain; a surface for p = 2. 
ac = 0 Means that p-chain is closed; c is then called a p-cycle; signifies for 

p = 2 a closed surface. 
p = +y+l Means that cp is the boundary of c p+i; it then follows that a@ = 0, 

in other words, 82 = 0. However, from a@ = 0 it does not necessar- 
ily follow that there exists any cp+l of which cp is the boundary. 

Stokes’ theorem: Given one chain cp that is a boundary: cp = &pi1 (whence a@ = 0 

and cp = a cycle); then on this cycle the period 
s 

f vanishes for 
cp 

every p-form f that is closed (df = 0). 
de Rham’s theorem: Given one chain cp which is closed (cp = a cycle; a@ = 0) ; and given 

that the period 
s 

f vanishes for every p-form f that is closed; then 
cp 

c* is itself a boundary: cr = a&‘. 

f General p-form; a vector for p = 1; alternating tensor for p = 2. 
df = 0 Then f is called a closed form. The Maxwell field tensor is described 

by a closed form. 
f=da Then f is said to be an ezaet form, or f is said to bound a (the four 

potential, for example). It then follows from the relation d2 = 0 
that f is automatically closed. However, from the closure of a 
form f it does not necessarily follow that there exists any (p - 1) 
form a of which f is the curl or boundary. 

Stokes’ theorem: Given one p-form f that is exact: f = U-i (whence df = 0); then 

the period 
s 

f vanishes on every p-cycle (a@ = 0). 
2 

de Rham’s theorem: Given one p-form f that is closed (df = 0) and given that the period 

s 
f vanishes on every p-cycle (acp = 0), then f is exact: f = dae-1. 

2 

* The concept of chain as defined earlier and used here means a linear combination of a 
finite number of cubes-a form of definition important for open or non-compact manifolds. 

topology. We avoided any appeal to Riemannian geometry by treating the Max- 
well field 

f = >4jNydx’ A dx’ (155a) 

and its dual 

*f = s*f,,ydx” A dx” (155b) 
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as two completely independent objects. We extract extra content from Maxwell’s 
equations, and impose additional restrictions on the field f, when we note the 
one-to-one relation between one field and the other that is established by the 
metric. We shall therefore now define duality and divergence, and formulate the 
remaining content of Maxwell’s equations. 

The connection (11) between the electromagnetic tensor f and its dual *f is 
generalizable to a connection between any p-form 

a = (p!)-la,, . . .+,dzLI1 A . . . A dP’ (156) 

and its dual, the (n - p)-form 

Here n is the dimensionality of the manifold and p and (n - p) the orders of 
the two forms, g is the determinant of the metric tensor guB, and the quantities 
with upper indices are the contravariant components of the original tensor: 

a a~.*‘cTp _ - gU”’ . * * gapp’a,,...pp. (158) 

Applied to a special O-form, the constant function 1, the duality gives the volume 
element 

*l = j g (“‘dzl rl . . . A dz”. (159) 

The following general formulas are most readily proven by applying the defini- 
tion of the duality operation in an orthonormal reference system: 

* *BP = (- l)np+p+sap (160) 

(double duality) 

a’ A *bP = b A *a = (~!)-‘a~“““~b,,...~~*l 

(relation between exterior product and scalar product) 

(161) 

(*a) A *(*b) = (-1)“a A *b (162) 

(scalar product of dual forms expressed in terms of scalar product of forms 
themselves). In these equations s stands for the signature of the metric: s = 0 
on space-like hypersurfaces, where the metric is of the form + + + ; s = 1 in 
four space with the metric - + + + ; and more generally, s is the maximum 
number of orthogonal vectors with negative norm. 

The p-form and its dual are distinguished in the following way, that the in- 
tegral 

s a 
=P 

(163) 
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may be said to be the integral of the tangential component of a over a surface or 
p-chain cp, ,whereas the quantity 

s *a (164) #9--P 
represents the integral of the normal component of a over an (n - p)-chain 
n--Z, c . 

Take the electric field e, a l-form in 3-space; form its dual, a 2-form; take its 
exterior derivative and secure a S-form; and finally take its dual and obtain a 
O-form or scalar. This scalar represents the divergence of the electric field, as 
seen most quickly by writing out the indicated sequence of operations in flat 
space : 

e = ekdxk ; 

*e = eldxz A dx3 + two similar terms; 

d*e = (3el/dz1)dz1 A dx’ A dx3 + two similar terms 

= (div e)dx’ A dx2 A dx3; 

*d*e = div e. 

W-9 

Generalizing to a curved space and a p-form of any order, the theory of forms 
defines a general divergence or co-cliflerential operation 6 which takes a p-form a 
into a (p - 1) form, 

bp-’ = gap G (- l)np+n+s+l*d*ap, (166) 

where the f sign is introduced to simplify the statement of Green’s theorem. 
For a (p - 1) form a and a p-form b this theorem connects the n-fold integral 
of two scalars over all or part of the manifold m with the (n - 1) fold integral 
of a normal vector, a*b = a A *b, over the boundary of this region: 

s a*b = jrn d(a*b) = lrn b*da - Irn 6b*a. (167) 
am 

The negative d’Alembertian operator 

A = 6d + d6( = -‘< 02” or -“o” for a scalar) W33) 

carries a p-form into a p-form. In particular it carries the scalar, ‘p, into the 
scalar 

Acp = 6dp = -div grad C,D = -Cp”;$ . (169) 

The properties of the differential operators d, 6, and A are summarized in Table 
VIII. 
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TABLE VIII 
PROPERTIES OF &E DUALITY OPERATION*, THE EXTERIOR DERIVATIVE d, AND THE 
DIVERGENCE OPERATION 6 IN SPACE TIME AND ON A SPACE-LIKE HYPERSURFACE. 

THE NOTATION uw STANDS FOR THE EXTERIOR PRODUCT wI*v = vA*u 

Property 4.manibld d-manifold 
--. 

Sigdature of metric -+++ +++ 
Dual of dual of p-form * * = (-)“+I **=l 
Divergence of p-form 6 = +d* 6 = *d* (-)” 
Second order differential operator “- 0” = A _= &j + &j (‘- V2” = A s f,d + d& 

Stokes’ theorem 

S is adjoint of d 

A is self adjoint 

General formulas, n-manifold YP, any metric 
*d = 6* (-l)p+‘; *6 = d* (-1)~ 

*A = A*; dA = Ad; ISA = A6 

Integral formulas for case @JP = 0 

(a = aP-1; b = bp) 

(a = ap; b = br) 

For n = 4m - I,*d is self ad- 
joint on (2m - 1) forms s 

b*(*da) = (*db)*a (a = azm-1; b = +-I) 
gpm-1 s mm4”-1 

In terms of the divergence operation 6, the entire content of Maxwell’s equa- 
tions can now be summarized in the form 

df = o= 6f. (170) 

D. CHARACTERIZATION OF SOLUTIONS OF MAXWELL'S EQUATIONS BY INITIAL 
VALUE DATA:CHARGE AND WAVE NUMBER 

Alternative FormulaLions of the Initial Value Problem: Summary of Analysis. 
On a space like surface endowed with a metric it is well known to be enough 

to specify arbitrary continuous electric and magnetic fields-satisfying div e = 0, 
div h = O-in order to be able to continue the fields to the future and the past 
by way of Maxwell’s equation8. This type of initial value data is the natural 
analogue of the x and 2, or x and p, needed to predict the future of a classical 
particle. A different choice of data is made in the Lagrange formulation. Applied 
to a particle, it demands that x be known at the initial and final times, with no 

16 This is a familiar application of the standard Cauchy-Kowaleski theory (R’). 
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information needed about either 2 or p. Applied to the Maxwell field, the La- 
grange formulation asks for example for the magnetic field-or the electric field, 
but not both-on the two space like hypersurfaces T = T, and T = T, . This 
“two surface” type of boundary condition is appropriate when one is interested 
in the classical action of the field integrated over the space-time interval between 
the two surfaces, or when one wants to know Feynman’s quantum propagator: 
the probability amplitude to pass from configuration C1 on u1 to configuration CZ 
on u2 . When the two cotimes have a finite separation one knows how to analyze 
this classical boundary value problem in flat space and in some types of curved 
space (see below) but not in the general type of curved space. However, when the 
two surfaces in question are so close together that the boundary value data can 
be considered to define the magnetic field and its first cotime derivative, then 
the two surface problem reduces to the one surface initial value problem. To it 
we shall henceforth limit our attention in either form A or form B: 

A: Give h and ah/aT on a;.and give the RP electric charges or worm- (171A) 
hole fluxes Q<* once and for all. 

B:Givehandeona. (171B) 

We shall first analyze the relation between a form in 4-space and its projection 
or trace on a 3-space; then the connection between the metric on the hyper- 
surface and the metric of 4-space; and then Maxwell’s equations expressed in 
terms of forms on the hypersurface. We show that specifications (171A) and 
(171B) are equally appropriate to determine uniquely the future evolution of the 
system. Finally we treat briefly the specification of the initial value data, not 
directly in a space like form as in (171A, B), but by way of a natural generaliza- 
tion of Fourier analysis to curved space. 

The Concept of Projection or Trace. 
A hypersurface u in the manifold %i! can be defined by an equation of the form 

p(x) = 0, where cp is a function with dq # 0 at u. We may, if we wish, choose 
cp as one of our coordinates and call it T or x0. We now consider an operation 
which enables us to obtain from any covariant tensor on the 4-manifold ‘SK, a 
corresponding tensor on the 3-manifold u. In the special case where &c) is any 
scalar function on SE, its projection or trace on u is the function q”(x) defined for 
x on u by the equation: 

cp”(x) = p(x), 2 on u. (172) 

Representing cp in terms of coordinates as (o(T, x1, x2, x3), where u is given by 

x”(x) = T(z) = To , z on u, (173) 

we can rewrite Eq. (172) in the particularly simple form 

cp”(x’, x2, x3) = q(To , x1, x2, x3). (174) 
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Similarly, for a p-form 

a = (p!)-lu,,...,,(xo, x1, x2, z3)dz” A . . . A dP, (175) 

we obtain the trace a” of a on u by substituting in Eq. (175) the values $0 = To 
dr” = 0. Likewise, the quadratic form 

ds2 = g,,dz”dz’, (p, Y = 0, 1, 2, 3) (176) 

on u reduces to 

d12 3 gii”dxidx’ = (ds’) = gijdxidxi (4 2. = 1, 2, 3), (177) 

which displays the components giy of the metric we use on the 3-manifold u. 
The exterior derivative d” on u involves no differentiations with respect to x0:“, 

but the identity 

d”a” = (da)” (178) 

assures us that it will cause no confusion to write d for d”. 
Now we may define, relative to the space like hgpersurface u, the dual magnetic 

field, *h, and the dual electric field, *e, by the equations 

*h = f”, (179a) 

*e = (*f)“. (179b) 

We have written *h and *e here so that e and h will be vectors or l-forms of the 
familiar kind on u. The duality to be used here is based on the metric g;r of u, 
and so could be written *o . This allows us to define 

h = *$ (180a) 

e = *,(*f)“, (Bob) 

consistent with Eqs. (179) because of the identity *r*C = 1. We shall never apply 
*- to a form on S& so the meaning wiI1 be clear from the context if we drop the 
subscription on *a as in Eqs. (179). From Maxwell’s equations on 311, df = 0 = 
d*f, and the identity (178) we obtain the trace of Maxwell’s equations on U, df” = 
0 = d(+f)“. In terms of the definitions of (180) and of Table VIII, the trace of 
Maxwell’s equations on a space l&e surface takes the form 

S,h = 0 = 6-e. (181) 

We will normally omit the subscript u on 6 because it will be clear from the con- 
text that we are dealing with a space like surface. We use subscripts on 6, and 
3 because they are not simply the traces on u of the corresponding operations 
on em; in other words, no identity holds for 6 or * like (178) for d; for instance, 
*#’ is a l-form, whereas (*f)” is a 2-form. 
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Maxwell’s Equation in S-Dimensional Form. 
To reconstruct the electromagnetic field f from the 3-dimensional fields e and 

h it simplifies the analysis to make a more careful choice of a cotime coordinate 
T than the one that was demanded in the previous section. Let T be the cotime 
measured along a geodesic which starts out normal to a space like hypersurface 
uo . Then go is given by T(x) = 0 and each uT , defined by T(x) = const, is again 
a space like hypersurface. The quadratic form ds’ can be written 

ds2 = - (dT)2 + d12, w32) 

where d12 is the positive definite quadratic form defined by the metric on uT . 
Our construction of geodesically parallel surfaces uT may carry us into 4-space 
for only a small interval of T (see ref. SS), but in the 3-spaces uT we nevertheless 
have a well-defined global topology. We know from the definitions of e and h 
that at CT, f and *f must have the form 

f = *b - dT A E (183a) 

*f = *,,e + dT A K, (183b) 

where E and K are l-forms which remain to be determined. When we use T, and 
any coordinates xi(i = 1, 2, 3) on (~0 , as coordinates x’ in 4-space (cc = 0, 1, 2, 3) 
with x0 = T, the metric components have the property go0 = - 1, goi = 0. Then 
from Eqs. (157) and (183) we compute *f and *(*f) = -f. In this way we dis- 
cover that e = e and K = h, that is 

f = *b - dT A e (184a) 

*f = *,e + dT A h (184b) 

Since d and d” are related by the formula 

d=d”+dTh&, 

we can use this expression in Maxwell’s equations, df = 0 = d*f, together with 
Eqs. (184) and (100) to find 

d”(*b) + dT A -&, *,h + due = 0, (186a) 

d”(*,e) + dT A & *,,e - d”h = 0. 

Here a/aT is the derivative along the geodesic normal to u. The terms in dT in 
Eqs. (186) must vanish independently of the other terms, so we may rewrite 
Eqs. (186) as 3-dimensional equations (Table IX), treating T as a parameter 
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TABLE IX 

THE TRACE OF MAXWELL’S EQUATIONS ON A SPACE LIKE SURFACE 

“Electric equations” 

Intrinsic J-vector notation 
notation on flat space 

“Magnetic equations” 

Intrinsic 3-vector notation on 
notation flat space 

Equations in bf = 0 
4-space or d*f = 0 

Trace on (r d(*f)’ = 0 
Define 

e = *,(*f)’ 
Then 

d(*,e) = 0 
or he = 0 

div e = 0 and df,= 0 div h = 0 and 
ae/aT = curl h (or 8*f = 0) dh/aT = - curl e 

d(f”) = 0 
Define 

h = *,(f’) 
Then 
d(*,h) = 0 

dive = 0 or &h = 0 div h = 0 

and omitting the u’s: 

tih = 0, a(*h)/dT = -de, (187a) 

iie = 0, d(*e)/aT = dh. (187b) 

Here we have written Sh = 0 in place of the d*h = 0 of Eq. (186a) to agree with 
the customary three dimensional forms of Maxwell’s equations. 

Formulation B of the Initial Value Problem. 
Equations (187) are now in the form to which the Cauchy-Kowalewski theo- 

rem applies. More explicitly, the equations 

a(*h)/t?T = -d*(*e), (188a) 

a(*e)/aT = d*(*h), 

are six equations, solved for the time derivatives, for six unknown functions, the 
components of *e and *h. They determine *e and *h uniquely when the initial 
values of *e and *h on the hypersurface a0 are given. When in addition these 
initial values satisfy 

d*h = 0 = d*e uw 

on a0 , then these same requirements of zero divergence will also be satisfied on 
Q= as a consequence of Eqs. (188) : 

a(d*h)/aT = 0 = e(d*e)/aT. ow 

The proof depends on the facts that d = d” commutes with d/CiT, and that 
d2 = 0. De Rham’s theorem assures us that we can find initial values *h and *e 
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on u. which (1) satisfy the divergence requirements (189) and (2) have any de- 
sired values for the magnetic and electric charges 

4rpi* = Ii2 *h (191a) 

and 

on Rz independent wormholes in co . Granted such initial value data, we are 
assured” of the existence for some finite time beyond u. of a unique solution of 
the source-free Maxwell equations that displays constantly the specified charges. 

Formulation A of the Initial Value Problem. 
So much for the case where e and h are specified on u; now for the alternative 

case where (1) we know the electric charges pi* once and for all, and where in 
addition (2) we know on u the quantities *h and &h/aT, as the limit of infor- 
mation about the magnetic field on two infinitesimally close space like surfaces- 
information of the kind suited to the Lagrangian formulation of quantum me- 
chanics. 

The initial value data must satisfy the divergence conditions, 

d*h = 0 (192) 

and 

d(&h/aT) = 0 (193) 

and the requirement that the magnetic fluxes-if any-through all wormholes 
shall stay constant in time: 

s (&h/dT) = 0. (194 
ci2 

This granted, we find the electric field e on the space like surface uniquely from 
the three pieces of information 

Se = 0, (195) 

de = - a*h/aT, 

s e = 4*qi*p (197) 
Ci2 

17 The Cauchy-Kowalewski theorem requires analyticity, while the de Rham theorem 
supplies only differentiable initial values e and h. To remedy this fault in the demonstra- 
tion one may employ the existence theorem of Four&s-Bruhat (39). 



584 MISNER AND WHEELER 

TABLE X 

CLASSIFICATION OF REAL NONSINGULAR VECTOR FIELDS IN A COMPACT ~-SPACE 
ENDOWED WITH POSITIVE DEFINITE METRIC; THE TRANSVERSE WAVES ARE 

SAID To HAVE RIGHT- OR LEFT-HANDED POLARIZATION ACCORDING AS 

THE SCALAR WAVE NUMBER. k. Is POSITIVE OR NEGATIVE 

Type of vector field 

Symbol 
Definition 

Longitudinal 

L 
AL = 2L 
dL = 0 

TIUWWX 

X 
*dX = kX 
6X =o 

Ikl >O 

Coulomb (harmonic) 

c 
dC = 0 = N.! 

Association with ei- 
genvalues or sur- 
faces 

Consequence 
Potential 
Potential from field 
Field from potential 
Potential equations 

Potential simplifies 
analysis? 

Standardization 

Scalar pro- x 
duct with 

b 

L1 Lz ..’ x, x1 . . . 
Kp 42 . . . k, kz . . 

c, Cb . . ’ CR2 
8, sb ‘.. &Q 

A(6L) = tc2(6L) AX = k2X AC = 0 

scalar (0 Z-form Y none 

P =K -%L Y = *X = k-‘dX - 

L = tcldp X = k-‘&Y = aY - 

Ap = .k+o 

Yes 

J 
L*L = 1 

*SY = kY 

dY =0 
No 

s 
x*x = 1 

s L,*Ln = 6,% 
s 

L,*X, = 0 

s 
X,*L, = 0 

s 
x,*x, = sm, 

I C,*L, = 0 
s 

c,*x, = 0 

- 

-r-- 

s 
L,*C* = 0 

s 
x,*cb = 0 

s C,*C, + 8ir/Romm 

s 
C,*Q i 4* 

‘2 (fl)c~ (flhha+)(b+) 
(*)a 
(f)b 

-for example, by the methods of Fourier analysis described in the following 
section (Table X). Knowing both e and h, we are back at an initial value problem 
that has already presented itself, and that possesses a unique solution for some 
finite time beyond uo . 
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Generulizution of Fourier Analysis to Curved Space. 

When one is dealing with electrodynamics in curved space it is most natural 
to specify initial value data as a function of position on U, as in (171A, B). An 
ordinary Fourier analysis is completely out of the question. However, one can 
give a generalization of Fourier analysis to curved and even multiply-connected 
space which is of use in considering special situations where the metric is con- 
stant, or nearly constant, with respect to a suitably chosen cotime coordinate, 
T. It permits the initial value data to be specified in terms of Fourier coefficients. 

On the space-like hypersurface r consider initial value data such as the elec- 
tric field e, the magnetic field h, or more generally any vector field or l-form, v. 
According to the analysis of Hodge (SO), we can decompose v uniquely into the 
sum of three parts, characterized as in Table X by the names longitudinal, trans- 
verse, and harmonic-or, as we may say, Coulomb. We will be limiting attention 
to 3-space. Therefore it will be permissible as in Table X to omit the superscripts 
(r that evidences the space-like character of the operations of curl, d”, and di- 
vergence, 5”. For simplicity of analysis we shall assume that the space is closed. 

A longitudinal field has zero curl, but a nonconserved flux because it has a 
nonzero divergence. Electric or magnetic fields of this type would correspond 
to distributions of “real” charge or magnetic poles. Therefore we exclude such 
fields from attention. 

A transverse field has zero divergence and zero flux through any wormhole, 
but its curl is nonzero. Such a field can be decomposed into proper modes X, , 
each endowed with a characteristic scalar wave number k,(#O) of its own: 

*dX,( = curl X,) = kX, . (198) 

Modes with positive k we describe as right-handedly polarized; conversely for 
modes with negative k. 

A harmonic or Coulomb field has zero divergence and zero curl, but a non- 
vanishing flux through at least one wormhole. Such a vector field can be decom- 
posed uniquely into a linear combination of characteristic harmonic vector Jields, 
C,(a = 1,2, . * +, R2), such that C, attributes a unit charge to the ath wormhole, 
and contributes no flux at all to any other wormholes-that is, to any other of 
Rz basic linearly independent homology classes. 

The general vector field in curved multiply-connected 3-space can be Fourier- 
analyzed in the form 

The orthogonality relations and the normalization conventions summarized in 
Table X permit one to find all the coefficients in this expansion by relations of 
which the following is typical: 

(200) 
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Without attempting to derive here the general expansion (199), we can note 
some of the underlying principles. (1) The inner product of two vector fields, 

(a, b) = [ a*b, (201) 

is positive definite, so that 

(a, a> > 0 (202) 

unless a = 0. (2) It follows that the set of all vector fields or l-forms of finite 
norm generate a Hilbert space. (3) The operators A and *d are self adjoint when 
applied to vectors in S-space (Table IX) and therefore have eigenvalues and 
complete sets of eigenfunctions. (4) From the property 

(v, Av) = (6v, 6v) + (dv, dv) > 0 (203) 

it follows that the eigenvalues of A are non-negative numbers, lc’. (5) Given any 
nonzero solution of the equation 

Av = Ii’v (204) 

with k > 0, one can decompose it into two parts, 

v=a+b, 

a = Icm2d&v 7 (205) 

b = K26dv, 

both of which satisfy the same space-like version (204) of the wave equation, and 
one of which is longitudinal; the other, transverse: 

da = 0, (206) 

6b = 0. (207) 

(6) For those eigenvalues A for which there exists a nonzero transverse field b, 
there can be constructed out of this field a curl, 

c = k-‘*db( = k-’ curl b), ( 208) 

such that 

k-‘*dc( = k-’ curl c) = Ic-‘Ab = b. (209) 

From b and c we can build right-handedly and left-handedly polarized fields 

X, = b + c, 

k-‘*dX+( = k-l curl X,) = X+ , 
(210) 
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and 

X-=b-c 

- k-‘*dX_( = -k-l curl X_) = X. , 
(211) 

not both of which can vanish. As example, consider in flat space the transverse 
field or l-form, 

b = dx2 sin kxl, 

c = k-l curl b = k-‘*db = dx3 cos kx’, 

from which we build the circularly polarized fields 

X* = dx2 sin kx’ f dx3 cos lcx’. (212) 

Relation of Harmonic Field to Familiar Pattern of Electric Lines of Force. 
The harmonic or Coulomb fields are unique to multiply-connected space, with 

Betti number R2 3 1. A typical one of these fields has a pattern of lines of force 
like that shown in Fig. 3. Consider the case where the space has an enormous 
radius of curvature, so that it is nearly flat, except in the immediate vicinity of 
the + and - mouths of typical wormholes, a, b, with exceedingly small radii 
R, , Rb , * . . . Let the length “underground” of the connection between matching 
wormhole mouths be very short, and also of the order R, , Rb , . . * . Let the 
fluxes hhf.&*, hqb*, ’ ’ ’ go through the respective wormholes. In this very special 
model the field almost everywhere looks like that of Rz pairs of equal and oppo- 
site charges : 

e = Pa*& + qb*cb + . * ’ 

ya*(ro+/raC3 - r,-/ra-“) + 

The electrostatic energy of the fields, 

s 
e*e/8r, 

consists of (1) self energy terms of the order 

qa*2/Re + qb*2/Rb 

and (2) interaction terms of the form 

(213) 

(214) 

+ . . . (215) 

qa*&b*(ra+b+-’ - r,+b--l - ‘t-,-b+-’ + ?-,-b--l )+ - - - . (216) 

From this circumstance one can immediately deduce the integrated value of the 
products of individual harmonic forms, 

s co*cb , (217) 
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as indicated in Table X. One sees that these harmonic forms give one all the ma- 
chinery needed to describe classical charge in a completely consistent and di- 
vergence free manner. 

Fourier Coeficients as Initial Value Data; Dynamic Equations for Their Rate of 
Change. 

To specify the initial values of e and h on a space like surface u it is enough, 
we conclude, to know the Fourier coefficients in the following expansions: 

e = 2 em% + 2 qa*Ca , 
m a=1 

h=gh,L. 
m 

(218) 

We have omitted magnetic pole terms from the second expression as without 
interest. 

The evolution of the electromagnetic field with time proceeds most simply 
when the metric does not change with increase of the geodesically normal cotime 
coordinate T. Then the dynamical equations (188) reduce to an immediately 
integrable form, 

dqi*/dT = 0; qi* = const 

de,/dT = i&h,,,; 

dh,/dT = -kmen; 

(219) 

e, = (M)(e, + ih,& exp (-ik,T) + c.c.; 

h, = (+Q(e, + ih& exp (-i&T) + C.C. 
(220) 

Here the generalizations of the familiar normal mode decomposition of the field 
are simple and obvious. 

No such simplicity reigns when the metric changes with time in a complicated 
way. Then the normal modes themselves alter. Consequently the dynamical 
equations (219) acquire new terms, 

de,ldT = k,b, + c Iken + c L,,qa*, 
a 

(221) 
dh,ldT = -i&e, + c K,,h, , 

which might loosely be considered to represent (1) the emission of energy into 
the transverse field, or absorption of energy from the transverse field, by the 
Coulomb fields due to the motion of the charges or other changes in the metric 
(2) the pumping or scattering of energy into one transverse mode out of another 
mode or out of the metric itself, as a result of changes in the metric. It is true 
that one can define the local density of electromagnetic field energy in an un- 
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ambiguous way. However, the same is not true of the integrated field energy (40). 
There is no common set of space and time coordinates with respect to which one 
could even hope to refer the components of a total energy-momentum four vec- 
tor. Moreover, the local conservation’ laws, integrated ‘over a closed space such 
as we are considering here, produce nothing of interest, only the trivial identity 
0 = 0. Consequently it is necessary to use with caution the idea of energy trans- 
fer from one mode to another. This caution in no way depreciates either the 
dynamical equations (221) or what they have to say about the most interesting 
coupling between modes of the field and modifications of the metric. 

IV. CHARGE AND MASS AS ASPECTS OF GEOMETRY 

We have just, finished examining the response of an electromagnetic field to 
curvature and multiple connectedness in the metric, without asking-or having 
to ask-about the influence of this field on the metric. However, an adequate 
analysis of classical charge and mass (in the sense of Table I) demands that both 
sides of the interaction be examined. For this reason (1) we consider a space 
like surface u and ask what initial value data has to be given on this surface- 
and what, conditions this data must satisfy-to specify uniquely the future 
evolution of both the electromagnetic field and the metric (2) we examine the 
properties of the Schwarzschild and Reissner-Nordstrom solutions as solutions of 
these equations that manifest mass, and mass together with charge (3) we note 
an exact solution of the initial value conditions that generalizes the Reissner- 
Nordstrom solution to a space endowed with many charges and masses, all mo- 
mentarily at rest at the moment of observation and (4) we remark that such 
wormhole solutions, together with geons, furnish two techniques of building dis- 
turbances in empty space, out of which one can make rich combinations. 

THE INITIAL VALUE CONDITIONS AND THE EXISTENCE OF SOLUTIONS TO THL 
MAXWELL-EINSTEIN EQUATIONS 

Consider a space-like surface u. On it let the trace of the metric tensor, dl’, take 
on prescribed values as a function of position, 

dl” = g$dzidxk. (22% 

Also let e and h have prescribed values on u. Then there will in general exist no 
acceptable solution either of the Maxwell equations or of the Einstein equations. 
The equations of Maxwell will have a well defined solution if and only if the 
initial value conditions (189) are satisfied : 

S,e = 0 = S,h. (223) 

Similarly, the field equations of Einstein will have a well-defined solution if and 
only if certain initial value requirements are satisfied (Eqs. (224) and (225) be- 
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low). Grunted that these conditions as well as Eqs. (223) are fulfilled, then a 
solution of the combined Einstein-Maxwell equations with the prescribed initial 
values will exist for some finite time. 

The initial value problem for general relativity has been studied extensively 
by Lichnerowicz (41), and an existence theorem which does not require analytic- 
ity has been given by Four&s (42). In general relativity, the four of Einstein’s 
equations involving RIP - >@,‘R provide the initial value requirements analogous 
to Eqs. (.%ZY) in electromagnetic theory-requirements which connect the time 
rate of change of curvature on u with the Poynting flux and Maxwell energy 
density: 

(Pii - &jP);j = -2(gc3’)“z[ijk]eih” = -2[*(e A h)]i (224) 

p2 - pijpij + Rc3’ = 2(eaei + hihi) = 2*(e*e + h*h). (225) 

Here we follow the notation of Mme. Four&s (43, who has demonstrated the 
existence of solutions of Eqs. (224) and (225) in the case where there is no elec- 
tromagnetic field. We let the surface CT be given by x0 = T = 0, and write go0 = 
- V’, goi = Vvi(i = 1, 2, 3). Then gij = gijC3) provides the metric d12 on c which 
is used to raise indices and define covariant derivatives in Eqs. (224) through 
(228). With q2 = viqi, we define 

hi = >~(g’“‘)““[ijk]fjk , (226a) 

ei = (1 + ~2)-1’2(Vi-lj~o - fij?jj), (22613) 

P;j = >s(l + q2)-1’z[V-1dgij/aXo - (,l$/dXj + Tja/dxi) V - (q;;j + qj;i)], (227) 
and 

p = pii (228) 

Thus Pij is essentially the time derivative of the metric, while RC3’ is the scalar 
curvature of the metric gij@) on u. The formulas (226) translate Eqs. (180) into 
components relative to the coordinates chosen here. 

THE SCHWARZSCHILD AND REISSNER-NORDSTROM SOLUTIONS 

The Schwarzschild metric furnishes the most familiar example of a solution 
of the field equations and therefore a solution of the inkial value requirements 
(224) and (225). In this example the electric and magnetic fields vanish, 

e=O=h. (229) 

The metric 

ds2 = - (1 - 2m*/r)dT2 + (1 - 2m*/r)-‘dr’ + r’(dO* + sin’ 0 &‘j (230) 

satisfies the field equations R,, = 0. In contrast, the Ricci curvature tensor for 
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the metric on the space like surface T = const has the nonzero value 

- 2m*p 
Ri GM = 

( 
m*/r” 

m*/r” ) 

(231) 

but still a zero trace, 

R@’ = 0, (232) 

Also the quantities P;k vanish in virtue of the constancy of the metric. Thus the 
initial value requirements (224) and (225) are fully satisfied by the Schwarzschild 
solution. 

The Schwarzschild metric appears at first sight to have a singularity at the 
point r = 2m*. However the Ricci curvature tensor (231) is perfectly well be- 
haved at this point, as is also the full Riemann curvature tensor in the appro- 
priate mixed covariant-contravariant representat,ion. To bring part of this regu- 
larity into evidence, we make a coordinate transformation of a type suggested 
before by more than one writer (44)‘“. 

r = [l + (m*l2p)l”p. (233) 

Then the metric takes the form: 

ds2 = -(; ;“m$;) dT” + (1 + m*/2p)4(dp” + p2 d!?). (234) 

Here 

dL?’ = de2 + sin’8 dp” (235) 

is the metric of a unit sphere. This result can be interpreted as follows: In making 
the transformation (233) we have redefined the differentiable structure of the 

I* The regularization in all of these cases removes only the singularity in the space part 
of the metric, not that in the time part, and therefore falls short in every instance of the 
regulariz&ion described in the text. Einstein and Rosen, supposing that they would not 
be able to eliminate the singularity in the space part of the metric by a coordinate trans- 
formation alone, also changed the sign of the constant’ of gravitation. Of course this step 
gives a negative value for the electromagnetic contribution to the mass, and for the energy 
of electromagnetic fields in general, in contradiction with experience. Einstein and Rosen 
pictured their regularizing transformation in terms of a space nearly flat except near par- 
ticles, and a mirror space, close to and parallel to the first space, with a bridge across at the 
Schwarzschild singularity. On this picture the charge or charges in the primary space need 
not add up to zero. In contrast, the analysis in terms of harmonic forms (1) imposes no such 
mirror property on space (2) treats all points of space as on the same footing (3) brings in 
the idea of a real cont,inuation of electric lines of force through a wormhole (4) normally 
contemplates a closed space, with no excess unbalanced lines of force that have to end at 
infinity. 
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manifold we are considering, so that now p, rather than r, is to be called a diferen- 
tiable function. As a result, the metric d12 on the space-like surface T = 0 is 
now nonsingular at the Schwarzschild radius. The space-time metric ds2 remains 
singular, however, since g T T  vanishes at the Schwarschild radius, i.e., gTT --f CC. 
We do not know how to eliminate this singularity explicitly for all time, but ac- 

cording to the initial value theory of Lichnerowicz and Four&, we can remove it 
for some undetermined, but nonzero, length of time. This we see by noting that 
the initial value conditions (224) and (225) leave gTT = -l’* completely arbi- 
trary on the initial surface. We take as initial conditions therefore, the following: 

ds= = -V2dT2 + d12, (236) 

d12 = (1 + m*/2p)4(dp2 + p2 dQ*), (237) 

eg,,/‘aT = 0. (238) 

We may, for instance, choose V = 1. Since V need only be differentiable, not 
analytic, we may also choose V = V seha.arrehiid as in (234) when p is a small 
distance E away from the singular surface p = m*/2, but fill in over the previously 
singular surface with differentiable, nonzero, values of V. With gTT specified on 
the initial surface T = 0 in a manner such as this, the solution that results from 
integrating the Einstein equations is at least asymptotically stable: It will exist, 
and coincide (45) with the Schwarzschild solution for a cotime T which is ar- 
bitrarily large as p + w. Furthermore, for any fixed po > m*/2 a solution of 
this type may be found which exists for all p > p0 for at least any prescribed 
length of time, say 101” years. 

These same arguments apply equally well when the center of attraction is 
endowed with charge in addition to mass. We start with the Reissner-Nordstrom 
(46) solution for this problem. It differs from the Schwarzschild solution (230) 
only in the replacement of the factor (1 - 2m*/r) everywhere by 

(1 - 2m*/r + q*‘/r2). 

The dual of the electric field in this case is 

Then we write 

*e = q* sin 8d6’ A c&. (239) 

r = p[( 1 + m*/2p)’ - q*‘/4p2] (240) 

a,nd find for the metric 

ds* = - VR.v2dT2 + dl’, (241) 

where 

V RN* = 
( 

1 - m*$q “>“/[(l + g>’ - ($)3 
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and 

dt = [( 1 + m*/2p)’ - (4*/2p)‘] (dp’ + p2 d@. GW 

The singularity of the space-time metric due to the vanishing of VRN when 
2p = (m*” - q*2)“2, may again be removed by modifying gTT = - V2 on an 
initial surface near this critical value of p. To make possible this regularixation 
we must demand that the mass exceed the minimum limit that is associated by 
general relativity with the charge in question: 

m*(cm) > q*(cm) 

or 

m(g) > G-l”g = (3.88 X 103g/esu)q(esu). (244) 

This condition is quite incompatible with the properties of the “dressed” par- 
ticles studied by experiment. This circumstance stresses again that we are 
dealing here exclusively with a description of classical charge and mass that has 
nothing whatsoever directly to do with the particles found in nature. 

Thus far we have shown how the singular surface in the Schwarzschild metric 
may be removed, but there apparently remains in Eqs. (237) and (243) a singu- 
larity as p --f 0. We shall now see that we cannot call this a singularity unless 
we are willing to say that the metric is also singular as p -+ + 00. The transforma- 
tion 

J (m*2 - q*y 

(m*2 Pp*2)l!2 - 2/) G’W 

maps the entire manifold, p > 0, onto itself in a differentiable, l-l, metric pre- 
serving way. Therefore the vicinity of p = 0 is in every meaningful way equiva- 
lent to the vicinity of p = ~0. The initial surface T = 0 is a complete Riemannian 
manifold, that is, every geodesic can be continued to infinite length. One might 
nevertheless wish a stronger property to specify the global meaning of “non- 
singular”. One might insist that the manifold be either closed or that there be 
only one region (either p + 00 or p + 0) where the space is asymptotically flat. 
An example of this type may be constructed from the charge-free Schwarzsehild 
solution (237). We complete the definition of the mapping J of Eq. (246) by 
defining 

TJ T, (246) 

The mapping J then has no fixed points, and we may identify the point x with 
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the point Jx to obtain a new manifold with only one region, p + + m, which is 
asymptotically flat. The surface T = 0 in this manifold is topologically equiva- 
lent to projective 3-space P3 (see Sec. III B) with one point removed, “the point 
at CC “. This procedure cannot be applied to the Reissner-Nordstrom solution, 
for although the metric is invariant under J, the electromagnetic field changes 
sign and is therefore not consistent with the identifications. The time dependence 
of this nonsingular modification of the charge-free Schwarzschild solution has 
been investigated by Dubman (47) to first order in 1”. He finds’that the area 
of the critical sphere begins to decrease. 

MANY CHARGES AND MASSES 

The Reissner-Nordstrom initial conditions (239) and (241-243) can be gen- 
eralized to the case of N wormhole mouths endowed with charge and mass in 
the following way: Set 

di’ = - V2dT2 + (x2 - +*)*(dx* + d.y2 + dz’), (249) 

dx’ A dxk, 

ag,,v/dT = 0 (251) 

at T = 0, let V be any nonsingular, positive definite function, and let each x, 
C#J, satisfy the flat space Laplace equation 

(a*/a~* + a2/av2 + a*/a& = 0. (252) 

These initial values make the initial surface a complete Riemannian manifold 
when we choose 

x = 1 + c wz/r,,+ = F Paira, a (253) 

with r, = ( r - r, 1 and ct= 3 ( Pa 1 , a = 1, 2, . . * N. The points ro = (x, , YJ~ , 2,) 
are of course excluded from the manifold, The restriction (Y, 2 1 &, ( arises from 
the fact that the metric would be singular if (x” - 4”) = 0 at any point. The 
completeness requirement also excludes negative masses as well as multipole terms 
in either x or 4. The cy’s and p’s are related to mass and charge respectively, but 
do not give the masses and charges directlylg. In the special case where there is 
no charge, + = 0, one obtains a class of problems which has been studied by 
Lichnerowicz (49). As long as only instantaneously static solutions of the initial 
value conditions are desired, a similar (x2 - +“)” factor may be used to modify 

I9 See Lindquist and Wheeler (48) for the relationship between m,,* and the 01. , and for 
a study of the time dependence of some solutions of this type. 
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any three dimensional metric in place of the dx2 + dy’ + dz2 of Eq. (249). The 
initial value conditions then reduce to the form 

& + S& = 0 (254) 

plus a similar equation for C#J that replaces Eq. (252). Here --a and R are the 
Laplacian and scalar curvature of the unmodified metric. 

RELATION TO GEONS 

Electromagnetic geons (50) are objects built out of electromagnetic radiation 
and held together by mutual gravitational attraction. The metric is great,ly 
altered in the region occupied by the geon but the topology of space is still 
isomorphic to the normal Euclidean topology. Shortwavelength radiation sent 
directly at the geon comes out again whether it experiences a small or a large 
alteration in direction in the encounter. In contrast, shortwavelength radiation 
directed at one mouth of a wormhole will come out the other mouth. Despite this 
difference in properties, the two objects curve space in the same way and are 
indistinguishable, mass for mass, as regards their l/r2 gravitational attraction. 

These two techniques for constructing mass-like solutions of the equations of 
geometrodynamics need not be employed separately. One can envisage an object 
endowed both with circulating radiation and with wormhole mouths, drawn 
together and moving about in a limited region of space as a consequence of mu- 
tual gravitational attraction. In addition, a sufficient number of wormhole 
mouths of the same sign moving on nearly identical orbits will simulate a cur- 
rent. They can create magnetic fields strong enough to have a substantial or 
even a dominating effect on the structure. It follows that the variety of objects 
that can be built out of curved empty space is exceedingly rich and very far 
from having been explored or even surveyed. 

EQUATIONS OF MOTION 

Masses and charges are not objects distinct from the fields in the theory we 
are presenting here-not even to the extent of being singularities in the fields. 
It is therefore obvious that the field equations determine the motions of the 
masses and charges. We must, however, insist that these motions correspond in 
the appropriate limit to the Newtonian and Lorentz force laws, for these laws 
express most basic and well tested properties of idealized classical point particles. 
In geometrodynamics, mass and charge are not idealized as properties of poinl 
particles, they are rather aspects of the geometrical structure of space. To dis- 
cuss equations of motion it will be necessary to view space-time with less resolv- 
ing power than heretofore, and collapse the entire structure of a mass or charge 
down to a point whose motion we may then compare with the laws of Newton 
and Lorentz. For instance, an entire region about one mouth of a wormhole, as 
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in Fig. (3), may be called one point xl , and a similar region about the other 
mouth may be called x2 . The tube connecting these two region we simply leave 
out altogether. A similar idealization may be made for a geon, and likewise for 
an object that is built out of radiation and wormholes. In this way the manifold 
of Fig. (3) is mapped in a singular way onto a topologically Euclidean space, and 
the metric which is carried over will have two singularities, at r1 and .r2 . Simi- 
larly for many masses and charges: by collapsing each to a point we ignore all 
details of inner structure and pass to a limit where it becomes appropriate to com- 
pare motions with those predicted by the force laws of Newton and Lorentz. 
The problem so defined is the problem so carefully studied by Einstein, Infeld, 
and Hoffman. Those and other investigators derive the mechanical equations of 
motion of singularities” from the field equations. Consequently we can conclude 
that the objects discussed here-charges and masses built out of curved empty 
space and not,hing more-satisfy in the appropriate limit the equations of New- 
ton and Lorentz. 

No UNITS BUT LENGTH IN PURELY CLASSICAL PHYSICS 

The purely geometrical character of classical physics shows itself in the cir- 
cumstance that space curvatures are measured in cm-‘, electromagnetic fields 
in cm-‘, charges in cm, and masses in cm. There is no place for any units other 
than length. A parable may be pardoned, of a kingdom where distances to the 
north were sacred and measured in miles, while those to the east and west and up 
and down were measured in feet. A special education was needed to calculate 
diagonal distances from coordinate readings until the discovery was made that a 
single constant of nature sufficed for the theory of the calculation. Thereaft#er 
much attention was devoted to “explaining” how nature happened to be en- 
dowed with a natural “slope” of 5280 feet per mile. The parable perhaps makes 
one charitable towards similar attempts to “explain” why the speed of light 
should be 3 X lOi cm/set. That Roltzmann’s constant k: is only a conversion 
factor between two chance units of energy is of course a familiar idea. It is less 
familiar that grams and centimeters are two equivalent units for length; that 
the Schwarzschild radius of an object, r&w = Gm/c’ = m*(cm), is a purely geo- 
metrical way to characterize its inertia. We have seen that classical electromag- 
netism likewise requires nothing but units of length for its simplest expression. 
The field is only a manifestation of curved empty space. Classical physics in the 
sense of Table I reduces to pure geometry. 

2. Einstein, Infeld, and Hoffman (51) deal with uncharged singularities of finite mass in 
slow motion; Infeld and Schild (52) treat uncharged singularities of infinitesimal mass 
moving at arbitrary velocities; and D. M. Chase (53) analyzes charged singularities of 
infinitesimal mass moving at arbitrary velocities. 
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V. PROBLEMS AND PROSPECTS OF GEOMETRODYNAMICS 

Certain gaps remain to be filled in the logical structure of geometrodynamics 
and almost everything remains tlo be done to exploit the richness of this subject 

CASE OF NULL FIELDS 

The algebraic relations (4), (5) of already unified field theory were developed 
quite generally, but the differential equations (7), (8) were derived only on the 
assumption that the Ricci curvature tensor is non-null. For this simplifying as- 
sumption to fail, for the tensors R,, (and FPy) to be null, it is necessary that the 
two electromagnetic field invariants should simultaneously vanish: 

e.h = 0; h2 - e2 = 0. (256) 

At a given moment of time this condition will ordinarily be fulfilled only on cer- 
tain isolated lines in space. As time advances these lines will trace out surfaces 
in space time, 

x8 = x0(& r]). (257) 

On such surfaces Eq. (7) gives no well defined value for the vector olg , the gradi- 
ent of the complexion of the electromagnetic field. Is (Y itself well defined? Can 
the equations of already unified theory be formulated in such a way as to hold 
right across such a surface? Does the presence of such surfaces impose any addi- 
tional topological or periodicity requirements on the Ricci curvature tensor? 
Do any special problems arise when the invariants (256) vanish, not merely on 
surfaces in space time, but throughout regions of greater dimensionality? These 
questions all obviously hang together. 

WHY ONLY ONE KIND OF CHARGE? 

A second group of questions concerns charge. The interpretation of charge 
in terms of lines of force trapped in the topology allows all charges to be as well 
purely magnetic as purely electric. However, the difference between the two 
possibilities is well known to be only one of names. The duality transformation 

f’ = *f; *f’ = * *f = -f 

or 

h’ = e; e’ = -h (258) 

renames magnetic charges so that they are all electric, in conformity with the 
usual convention. The charges associated with all wormholes-or homology 
classes in dimension two-can again be renamed as purely electric when in the 
original frame of reference each is a mixture of an electric charge ei and a mag- 
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netic pole pi , provided that t.he ratio of the two has for each wormhole the same 
value 

ei/pi = cos P/sin 0. (259) 

Then the duality rotation 

f’ = e*+ (260) 

accomplishes the renaming in accordance with tradition. However, this renam- 
ing of all charges as electric is only possible when the ratio (259) of the two 
kinds of charges is identical for all the homology classes or wormholes in the 
original duality reference system. Can this ratio condition be restated in other 
terms? 

When the regions over which space is appreciably curved are small compared 
to the distances between different wormhole mouths, then there is an approxi- 
mate localizability of the typical charge. We are invited to look at it in a local 
Lorentz frame where it appears momentarily to be at rest. In this frame the 
field close to the charge is practically purely electric. Consequently there will be 
a surface, either around the mouth of the wormhole, or deep down in its throat, 
where the complexion, (Y, is either everywhere zero or equal to some integral 
multiple of 27r. Moreover, we expect the surface (Y = 2m to remain tied to the 
neck of the wormhole in the same way as time advances; similarly for other worm- 
holes, i. Insofar as the characteristic complexion, achar = (Y(~), for each is well de- 
fined, the condition that all charges be electric therefore says 

ff 
(9 

-a ti) = 2* . 
( 

positive or negative 
integer or zero ) * (261) 

This condition reminds one of the periodicity requirement, 

f 
CY,, dx” = 2n’integer (262) 

(Eq. 77) imposed by already unified field theory upon the Ricci curvature tensor. 
Nevertheless, we have seen no way to derive (261) from (262). Therefore we are 
not clear whether the requirement that all charges be electric is a part of the 
theory as it exists, or whether it has to be added to the theory. 

For all magnetic poles to be zerozl it is enough, according to Eq. (145), that 
the field should be derivable from a 4-vector potential: 

f = da (263) 
or 

spy= aaJax" - aa,/axv. (53344) 
21 See Malkus (64) for the convincing experimental evidence against the existence of free 

magnetic poles. 
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This is an assumption that goes beyond Maxwell’s equations, for in Sec. III-D 
we saw that there exist solutions of Maxwell’s equations which display electric 
and magnetic charge side by side. There, however, electromagnetism was con- 
sidered within the arena of a prescribed metric. Only in this framework of ideas 
is it clear that the exclusion of magnetic poles-or the existence of a 4-potential- 
is a demand independent of, and supplemental to, the Maxwell equations them- 
selves. 

When we turn to the full coupled Einstein-Maxwell equabions, and note that 
the Ricci curvature R,, is completely determined by the field, then it is not clear 
that the nullity of magnetic poles, or the existence of a 4-potential, has to be 
added as a supplementary condition. Moreover, no example is known of a solu- 
tion of the coupled Einstein-Maxwell equations in which the magnetic poles can- 
not all be eliminated by a duality rotation. It is obviously an important issue 
of principle to decide whether the existence of a 4-potential really has to be added 
to Eqs. (41, (5), (7), and (8) of already unified field theory. Can it be derived 
from those equations? 

Another issue presents itself: Can Eqs. (4), (5), (7), and (8) of geometro- 
dynamics, with or without a possible supplementary condition about a ~-PO- 
tential, all be derived from a single variational principle? Some work has been 
done that is relevant to this issue (55) but the problem itself appears never even 
to have been formulated in the literature. 

Now we turn from the question of the best formulation of the field equations 
to the problem how best to deal with the initial value requirements. For the 
case of pure electromagnetism one has long ago learned to satisfy automatically 
the requirement div h = -6h = 0 on the initial hypersurface by introducing as 
primary data, not h itself, but a S-potential a that generates an acceptable h. 
In the case of the coupled equations of geometrodynamics, we meet nonlinear 
initial value requirements (224) and (225) on the measures, P;j, of the time 
derivative of the metric. Does there exist any kind of freely choosable superpo- 
tential, analogous to a: which will generate a tensor P;i which in turn will auto- 
matically satisfy (224) and (225)? If so, the properties of such a superpotential 
should reveal much about the truly independent variables of geometrodynamics. 
To clarify this point is essential for the understanding of already unified theory, 
for its most efficient application, and for illumination on what it means to quan- 
tize it. 

Still another question of principle raises itself. In electromagnetism we can 
make a linear combination of two solutions to obtain a third. Geometrodynamics 
is of course nonlinear. Does there nevertheless exist a method to combine two 
solutions to obtain a third? To search for such a combinatorial scheme would 
seem to demand an investigation of the continuously infinite dimensional space 
of field histories. On raising this issue, we were kindly advised by our colleague, 
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Professor V. Bargmann, that the methods of Lie (56) should suffice to obtain a 
definitive answer to our question. 

To the questions of principle that we have raised, about null fields, about the 
existence of a 4-potential, about a possible superpotential, and about the combi- 
natorial properties of the infinite dimensional space of field histories, there should 
be added many issues about the consequences of the classical theory, on which 
we shall only touch”. (1) How wide a variety of wormholes and multiple con- 
nectedness is topologically conceivable. (2) When the deterministic evolution of 
the metric with time leads at a certain moment to fission or coalescence of worm- 
hole mouths or to any other change in topology, what new phenomena occur? 
(3) What can one do to construct closed mathematical expressions for the metrics 
of spaces that show as much as possible of the richness of geometrodynamics- 
gravitational waves, wormholes, shocks, trapped radiation, and combinations 
of all these features? 

One’s attention is inevitably drawn beyond these fascinating questions to the 
still deeper issue, what is the nature of quantum geometrodynamicsz3 and what 
ideas have to be added to quantum geometrodynamics for the description of 
nature? 
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