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We show that a Lagrangian density proportional to √−gL2
m/R reduces to a pressuron theory of gravity 

that is indistinguishable from General Relativity in the dust limit. The combination of matter and 
geometry in the same Lagrangian density intrinsically satisfies Mach’s Principle — since matter cannot 
exist without curvature and vice versa — while it may have the correct phenomenology in order to 
describe actual gravity.

© 2015 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.
1. Introduction

Several issues point out toward potential inconsistencies of 
General Relativity at ultraviolet and infrared scales. Specifically, 
while this theory perfectly works at solar system scale, short-
comings appear at quantum, astrophysical and cosmological levels. 
Quantum Gravity is the main conundrum as General Relativity can-
not be dealt within standard Quantum Field Theory (QFT). On the 
other hand, we need dark energy and dark matter to achieve a self-
consistent picture for the future standard model of cosmology. Up 
to now, no new particle beyond the current Standard Model of par-
ticles has been detected, while a huge amount of missing matter 
and a cosmic speed up are needed to fit the observed dynamics.

These issues can be softened by taking into account alterna-
tive theories of gravity, in particular scalar-tensor and higher-order 
gravity [1] — that are semi-classical models where additional de-
grees of freedom are introduced, hence enlarging the dynamics of 
General Relativity. The method consists in adding minimally and/or 
non-minimally coupled scalar fields and/or higher-order curvature 
invariant and see whether or not it helps to soften the issues of 
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General Relativity. The presence of these terms can also be justified 
by perturbative QFT since matter-gravity interactions on perturba-
tively curved spacetimes result in such corrections [2].

From the infrared perspective, one of the goals is to address 
the dark side with these additional gravitational degrees of free-
dom [1,3–5]. Indeed these theories can be re-expressed effectively 
as the theory of Einstein plus additional effective terms entering 
the right hand side of the metric field equation. Therefore, in some 
sense, they can be considered as effective source terms like stan-
dard matter. For instance, a commonly considered straightforward 
extension of General Relativity is f (R) gravity where the curvature 
term in the action is an algebraic function of the undifferentiated 
Ricci scalar, while the matter part is left unchanged.

However, because of the current tight constraints one has on 
gravity [6], any proposed alternative theory of gravity must be 
such that it behaves like General Relativity in most situations [1,7]. 
Driven by this observation, and having in mind solar system ex-
periments and constraints in particular, Minazzoli and Hees [8,9]
recently proposed another way to allow some scalar-tensor theo-
ries to satisfy experimental and observational constraints. Indeed, 
with a specific scalar-matter coupling scalar-tensor theories reduce 
to General Relativity in weak pressure regimes. For that reason the 
specific scalar-field(s) associated with this kind of theory has been 
dubbed “pressuron(s)” [8,9].
 under the CC BY license (http://creativecommons.org/licenses/by/4.0/). Funded by 
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On the other side, there is a well-known equivalence be-
tween f (R) theories and a sub-class of scalar-tensor theories 
when the matter Lagrangian is minimally coupled to the gravi-
tational field(s). Hence, one can expect a similar equivalence be-
tween a pressuron theory and a f (R) theory with non-minimal 
gravity-matter coupling. Such non-minimal couplings have recently 
been investigated, notably in [1,5]. They have been extended to 
f (R, Lm) and f (R, Lm, φ, (∂φ)2) theories later on [10].

In what follows we present a simple and elegant f (R, Lm) the-
ory that turns to be equivalent to a special case of pressuron the-
ories. As we will see, the main surprise comes from the fact that 
the whole Lagragian is described by only one term where matter 
and geometry are related by a multiplicative coupling.

2. On an unexpected action form

The action of this theory can be set as follows

S = −1

2

∫
d4x

√−gκ
L2

m

R
, (1)

with κ ≡ 8πG/c4, G and c are the gravitational constant1 and the 
speed of light respectively. One has to stress that action (1) is the 
complete action of the theory.

First of all, note that in this theory, the dynamics can only exist 
if there is matter (i.e. Lm �= 0). This would suggest that there is a 
deeper link between space–time and matter than usually assumed. 
In particular, Mach’s principle is intrinsically fulfilled in this theory. 
This fact will be even more obvious later on after we rewrite the 
theory in its scalar-tensor form.2 But consequently, it also means 
that the theory does not exist in vacuum. Fortunately, QFT tells us 
that true vacuum does not exist because of 0-point energy. Hence, 
action (1) may actually be well defined everywhere, representing a 
realistic interplay between matter and geometry. Another thing to 
point out is that action (1) is one of the simplest choices with the 
correct dimension that involves a multiplicative coupling between 
curvature and matter rather than an additional coupling.

The metric field equation of the theory writes

Rμν − 1

2
gμν R = − R

Lm
Tμν + R2

L2
m

(∇μ∇ν − gμν�) L2
m

R2
, (2)

with the stress-energy tensor defined as follows

Tμν ≡ − 2√−g

δ
(√−gLm

)
δgμν

. (3)

The trace of the metric field equation reads

3
R2

L2
m

�L2
m

R2
= R − R

Lm
T . (4)

Let us recall that for pressureless perfect fluids, one has Lm =
−c2ρ = T ,3 where c2ρ is the rest mass energy density [12]. There-
fore, the right hand side of equation (4) is null for pressureless 
perfect fluids. This is precisely the pressuron mechanism that has 
been described in [8,9].

1 G is different from the effective gravitational constant that is measured in 
Cavendish experiments. The effective gravitational constant can be deduced in this 
theory by doing a post-Newtonian expansion of the field equations — see for in-
stance [8].

2 Let us also remind the reader that scalar-tensor theories were originally moti-
vated by Mach’s principle [11].

3 ρ = ∑
A(

√−gU 0
A)−1mAδ(3)(xα − xα

A), where Uα
A ≡ dxα/cdτA , mA is the con-

served mass of a particle such that dmA/dτA = 0 and δ(3) the Dirac distribution in 
three dimensions.
It turns out that as in usual f (R) gravity one can re-write the 
action in an equivalent scalar-tensor theory form. Indeed, defining

√
� = h = −κ

Lm

R
, (5)

the field equations can be re-written as follows

Rμν − 1

2
gμν R = κ

h
Tμν + 1

h2

(∇μ∇ν − gμν�)
h2, (6)

3

h2
�h2 = κ

h
(T −Lm) . (7)

But such field equations can be derived from the following effec-
tive scalar-tensor theory action

S =
∫

d4x
√−g

[
�R

2κ
+ √

�Lm

]

=
∫

d4x
√−g

[
h2 R

2κ
+ hLm

]
. (8)

Such an action is the one of a pressuron without kinetic terms (i.e.
ω(�) = 0) [8,9].4 But let us recall that even for ω = 0, pressuron 
theories satisfy the strong constraints one has from solar system 
experiments [8,9]. For instance the post-Newtonian parameter γ is 
exactly equal to one, just as in General Relativity [13]. In general, 
regardless the value of ω, pressuron theories reduce to the General 
Relativity phenomenology in weak pressure regimes such as in the 
solar system or during the late cosmic period [8,9]. Indeed, for a 
barotropic perfect fluid, the on-shell Lagrangian is minus the total 
energy density (Lm = −ε) [12] and therefore equation (7) reduces 
to [8,9]

1

h2
�h2 = κ

P

h
, (9)

where P is the barotropic pressure of the fluid [12], such that the 
scalar-field source disappears for P = 0 — in accordance with the 
dust case previously discussed. Another way to see the equivalence 
of actions (1) and (8) goes as follows: using equation (5), one can 
write

−1

2
κ
L2

m

R
= −a + b

2
κ
L2

m

R
= a

2
hLm − b

2
h2 R

κ
, (10)

with a and b two constants such that a + b = 1. Then from the 
definition of the stress-energy tensor (3) and in order to get the 
appropriate normalization of the material Lagrangian, one neces-
sarily has a = 2,5 therefore implying b = −1. Hence, one gets

−1

2
κ
L2

m

R
= 1

2
h2 R

κ
+ hLm. (11)

At the same time this choice for a and b is unique in the sense 
that the variation of h with respect to the metric cancels for the 
two terms in this action. This actually allows to treat h as a fun-
damental scalar field, while it is a priori dependent on the metric, 
and establishes the equivalence to the pressuron with ω = 0.

However there is a strong difference with usual pressuron the-
ories. Indeed, in this theory there cannot be any exact vacuum 

4 One can see that starting from action (8), one recovers the field equations 
(2)–(4) by inserting (7) into (6) and then re-expressing the scalar field equation 
without h. Hence actions (1) and (8) are indeed totally equivalent as long as true 
vacuum energy does exist.

5 a = 2 in order to recover for instance the fact that in the dust case limit one has 
Sm = −c

∫
mhdτ . One can note that obviously, total inertia of massive particles de-

pends on h in this model, which depends on the content of the universe, therefore 
satisfying Mach’s principle.
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solutions as the theory is not even defined in a vacuum config-
uration6 (see action (1)). However, as in General Relativity with a 
cosmological constant, vacuum solutions may be good approxima-
tions in some situations. But in general, one has to consider the 
contribution of the vacuum energy in the field equations from the 
very definition of the theory, even though the issue of its nonphys-
ical7 value derived from the usual QFT perturbative technics has 
not been settled yet [15]. Hence, part of the stress-energy tensor 
(3) must come from vacuum energy, otherwise the theory would 
not even be defined.

3. Conclusion

In this communication, we presented a f (R, Lm) theory of 
gravity with a very unusual action that reduces to General Rel-
ativity in pressure-less regimes. Because matter and curvature 
no-longer couple additively in the action but multiplicatively (1), 
curvature and matter are even more intrinsically related than in 
General Relativity, such that it seems that dynamics do not exist 
without matter. This fulfills Einstein’s initial proposal of having a 
theory of gravity that satisfies Mach’s principle [14].

But let us stress that it comes from a change of paradigm. 
Indeed, curvature and matter are usually considered separately be-
fore their mutual effects are simply added up in the action. But 
here, curvature and matter are related multiplicatively in the ac-
tion from the start. Therefore, in the present theory matter cannot 
be considered without curvature and vice versa. Hence, in some 
sense, one can see this theory as a unified theory of matter and ge-
ometry. As a consequence, the Planck mass and all particle masses 
are proportional in this theory (see equation (11)) [9]. However, 
it also means that the 0-point energy value issue is even more 
pressing in this theory as the theory seems to be not even defined 
without considering such vacuum energy.

Otherwise, we showed that this theory reduces to a special 
case of the so-called scalar-tensor pressuron theory. This relation 
may help in order to study it in various regimes (e.g. cosmologi-
cal, black hole physics etc.). In particular, thanks to the equivalence 
between the actions (1) and (8), one can use results from the liter-
ature related to theories with multiplicative scalar-matter coupling 
(see for instance [16] and the references therein). In any case, a 
lot of work is still needed in order to figure out whether or not 
the particular action (1) is suitable to describe actual space–time 
dynamics — down to the quantum level.

Acknowledgements

H. L. is supported by the Erasmus Mundus Joint Doctorate Pro-
gram under Grant Number 2012-1710 from the EACEA of the Eu-
ropean Commission.

References

[1] Y. Fujii, K.-I. Maeda, The Scalar-Tensor Theory of Gravitation, Cambridge Uni-
versity Press, Cambridge, UK, ISBN 0521811597, March 2003, pp. 256;
R. Woodard, The Invisible Universe: Dark Matter and Dark Energy, L. Pa-
pantonopoulos (Ed.), Lecture Notes in Physics, Berlin Springer Verlag, vol. 720, 
2007, p. 403, arXiv:astro-ph/0601672;

6 According to [14] (p. 287), in 1917 Einstein himself believed “that the correct 
equations [for gravity] should have no solutions at all in the absence of matter”. This 
is because Einstein believed in Mach’s principle — that states roughly speaking that 
“total inertia of a mass point is an effect due to the presence of all other masses, 
due to a sort of interaction with the latter” — while vacuum solutions would mean 
that a test particle’s inertia would be defined even without any other form of mat-
ter, therefore in contradiction with Mach’s principle [14].

7 Nonphysical in the sense that it seems to be different from what is observed.
A. de Felice, S. Tsujikawa, Living Rev. Relativ. 13 (2010) 3, arXiv:1002.4928
[gr-qc];
T.P. Sotiriou, V. Faraoni, Rev. Mod. Phys. 82 (2010) 451, arXiv:0805.1726
[gr-qc];
S. Capozziello, M. de Laurentis, Phys. Rep. 509 (2011) 167, arXiv:1108.6266
[gr-qc];
T. Clifton, P.G. Ferreira, A. Padilla, C. Skordis, Phys. Rep. 513 (2012) 1, arXiv:
1106.2476 [astro-ph.CO];
S. Capozziello, M.D. Laurentis, Scholarpedia 10 (2015) 31422, revision 147843.

[2] N.D. Birrell, P.C.W. Davies, Quantum Fields in Curved Space, Cambridge Univer-
sity Press, Cambridge, UK, ISBN 0521278589, April 1984, pp. 349.

[3] S. Capozziello, M. Francaviglia, Gen. Relativ. Gravit. 40 (2008) 357, arXiv:
0706.1146.

[4] S. Capozziello, M. De Laurentis, Ann. Phys. 524 (2012) 545.
[5] S. Nojiri, S.D. Odintsov, Phys. Lett. B 599 (137) (2004), arXiv:astro-ph/0403622;

O. Bertolami, C.G. Böhmer, T. Harko, F.S.N. Lobo, Phys. Rev. D 75 (2007) 104016, 
arXiv:0704.1733 [gr-qc];
T. Harko, Phys. Lett. B 669 (2008) 376, arXiv:0810.0742 [gr-qc];
O. Bertolami, J. Páramos, Phys. Rev. D 77 (2008) 084018, arXiv:0709.3988;
T.P. Sotiriou, V. Faraoni, Class. Quantum Gravity 25 (2008) 205002, arXiv:
0805.1249 [gr-qc];
S. Nojiri, S.D. Odintsov, Phys. Rep. 505 (2011) 59, arXiv:1011.0544 [gr-qc];
O. Bertolami, P. Frazão, J. Páramos, Phys. Rev. D 86 (2012) 044034, arXiv:
1111.3167 [gr-qc];
J. Wang, K. Liao, Class. Quantum Gravity 29 (2012) 215016, arXiv:1212.4656 
[physics.gen-ph];
N. Tamanini, T.S. Koivisto, Phys. Rev. D 88 (2013) 064052, arXiv:1308.3401 [gr-
qc];
T. Harko, F. Lobo, Galaxies 2 (2014) 410, arXiv:1407.2013 [gr-qc].

[6] C.M. Will, Living Rev. Relativ. 17 (2014) 4, arXiv:1403.7377 [gr-qc].
[7] T. Damour, K. Nordtvedt, Phys. Rev. Lett. 70 (1993) 2217;

T. Damour, K. Nordtvedt, Phys. Rev. D 48 (1993) 3436;
J. Khoury, A. Weltman, Phys. Rev. Lett. 93 (2004) 171104, arXiv:astro-ph/
0309300;
J. Khoury, A. Weltman, Phys. Rev. D 69 (2004) 044026, arXiv:astro-ph/0309411;
J. Khoury, arXiv:1011.5909 [astro-ph.CO], 2010;
P. Brax, Class. Quantum Gravity 30 (2013) 214005.

[8] O. Minazzoli, A. Hees, Phys. Rev. D 88 (2013) 041504, arXiv:1308.2770 [gr-qc];
O. Minazzoli, A. Hees, Phys. Rev. D 90 (2014) 023017, arXiv:1404.4266 [gr-qc];
O. Minazzoli, Phys. Lett. B 735 (2014) 119.

[9] O. Minazzoli, A. Hees, arXiv:1505.00600 [gr-qc], 2015.
[10] T. Harko, F.S.N. Lobo, Eur. Phys. J. C 70 (2010) 373, arXiv:1008.4193 [gr-qc];

T. Harko, F.S.N. Lobo, O. Minazzoli, Phys. Rev. D 87 (2013) 047501, arXiv:
1210.4218 [gr-qc].

[11] C. Brans, R.H. Dicke, Phys. Rev. 124 (1961) 925;
C.H. Brans, Scholarpedia 9 (2014) 31358.

[12] T. Harko, Phys. Rev. D 81 (2010) 084050, arXiv:1004.0576 [gr-qc];
O. Minazzoli, T. Harko, Phys. Rev. D 86 (2012) 087502, arXiv:1209.2754 [gr-qc];
O. Minazzoli, Phys. Rev. D 88 (2013) 027506, arXiv:1307.1590 [gr-qc].

[13] O. Minazzoli, Phys. Rev. D 88 (2013) 064050, arXiv:1309.0091 [gr-qc].
[14] A. Pais, Subtle is the Lord: The Science and the Life of Albert Einstein, Univer-

sity Press, Oxford, 1982.
[15] E. Bianchi, C. Rovelli, Nature (London) 466 (2010) 321.
[16] M.A. Shifman, A.I. Vainshtein, V.I. Zakharov, Phys. Lett. B 78 (1978) 443;

T.R. Taylor, G. Veneziano, Phys. Lett. B 213 (1988) 450;
J. Ellis, S. Kalara, K.A. Olive, C. Wetterich, Phys. Lett. B 228 (1989) 264;
T. Damour, A.M. Polyakov, Gen. Relativ. Gravit. 26 (1994) 1171, arXiv:gr-
qc/9411069;
T. Damour, A.M. Polyakov, Nucl. Phys. B 423 (1994) 532, arXiv:hep-th/9401069;
M. Gasperini, F. Piazza, G. Veneziano, Phys. Rev. D 65 (2001) 023508, arXiv:gr-
qc/0108016;
T. Damour, F. Piazza, G. Veneziano, Phys. Rev. Lett. 89 (2002) 081601, arXiv:gr-
qc/0204094;
J.-P. Uzan, Living Rev. Relativ. 14 (2011);
A. Hees, O. Minazzoli, J. Larena, Phys. Rev. D 90 (2014) 124064, arXiv:1406.
6187;
A. Hees, O. Minazzoli, J. Larena, Gen. Relativ. Gravit. 47 (2015) 9, arXiv:1409.
7273 [gr-qc].

http://refhub.elsevier.com/S0370-2693(15)00871-0/bib66756A69693A323030336669s1
http://refhub.elsevier.com/S0370-2693(15)00871-0/bib66756A69693A323030336669s1
http://refhub.elsevier.com/S0370-2693(15)00871-0/bib66756A69693A323030336669s2
http://refhub.elsevier.com/S0370-2693(15)00871-0/bib66756A69693A323030336669s2
http://refhub.elsevier.com/S0370-2693(15)00871-0/bib66756A69693A323030336669s2
http://refhub.elsevier.com/S0370-2693(15)00871-0/bib66756A69693A323030336669s3
http://refhub.elsevier.com/S0370-2693(15)00871-0/bib66756A69693A323030336669s3
http://refhub.elsevier.com/S0370-2693(15)00871-0/bib66756A69693A323030336669s4
http://refhub.elsevier.com/S0370-2693(15)00871-0/bib66756A69693A323030336669s4
http://refhub.elsevier.com/S0370-2693(15)00871-0/bib66756A69693A323030336669s5
http://refhub.elsevier.com/S0370-2693(15)00871-0/bib66756A69693A323030336669s5
http://refhub.elsevier.com/S0370-2693(15)00871-0/bib66756A69693A323030336669s6
http://refhub.elsevier.com/S0370-2693(15)00871-0/bib66756A69693A323030336669s6
http://refhub.elsevier.com/S0370-2693(15)00871-0/bib66756A69693A323030336669s7
http://refhub.elsevier.com/S0370-2693(15)00871-0/bib62697272656C6C3A31393834626Bs1
http://refhub.elsevier.com/S0370-2693(15)00871-0/bib62697272656C6C3A31393834626Bs1
http://refhub.elsevier.com/S0370-2693(15)00871-0/bib6361706F7A7A69656C6C6F3A323030386772s1
http://refhub.elsevier.com/S0370-2693(15)00871-0/bib6361706F7A7A69656C6C6F3A323030386772s1
http://refhub.elsevier.com/S0370-2693(15)00871-0/bib6361706F7A7A69656C6C6F3A323031326170s1
http://refhub.elsevier.com/S0370-2693(15)00871-0/bib6E6F6A6972693A32303034706Cs1
http://refhub.elsevier.com/S0370-2693(15)00871-0/bib6E6F6A6972693A32303034706Cs2
http://refhub.elsevier.com/S0370-2693(15)00871-0/bib6E6F6A6972693A32303034706Cs2
http://refhub.elsevier.com/S0370-2693(15)00871-0/bib6E6F6A6972693A32303034706Cs3
http://refhub.elsevier.com/S0370-2693(15)00871-0/bib6E6F6A6972693A32303034706Cs4
http://refhub.elsevier.com/S0370-2693(15)00871-0/bib6E6F6A6972693A32303034706Cs5
http://refhub.elsevier.com/S0370-2693(15)00871-0/bib6E6F6A6972693A32303034706Cs5
http://refhub.elsevier.com/S0370-2693(15)00871-0/bib6E6F6A6972693A32303034706Cs6
http://refhub.elsevier.com/S0370-2693(15)00871-0/bib6E6F6A6972693A32303034706Cs7
http://refhub.elsevier.com/S0370-2693(15)00871-0/bib6E6F6A6972693A32303034706Cs7
http://refhub.elsevier.com/S0370-2693(15)00871-0/bib6E6F6A6972693A32303034706Cs8
http://refhub.elsevier.com/S0370-2693(15)00871-0/bib6E6F6A6972693A32303034706Cs8
http://refhub.elsevier.com/S0370-2693(15)00871-0/bib6E6F6A6972693A32303034706Cs9
http://refhub.elsevier.com/S0370-2693(15)00871-0/bib6E6F6A6972693A32303034706Cs9
http://refhub.elsevier.com/S0370-2693(15)00871-0/bib6E6F6A6972693A32303034706Cs10
http://refhub.elsevier.com/S0370-2693(15)00871-0/bib77696C6C3A323031346C72s1
http://refhub.elsevier.com/S0370-2693(15)00871-0/bib64616D6F75723A313939337571s1
http://refhub.elsevier.com/S0370-2693(15)00871-0/bib64616D6F75723A313939337571s2
http://refhub.elsevier.com/S0370-2693(15)00871-0/bib64616D6F75723A313939337571s3
http://refhub.elsevier.com/S0370-2693(15)00871-0/bib64616D6F75723A313939337571s3
http://refhub.elsevier.com/S0370-2693(15)00871-0/bib64616D6F75723A313939337571s4
http://refhub.elsevier.com/S0370-2693(15)00871-0/bib64616D6F75723A313939337571s5
http://refhub.elsevier.com/S0370-2693(15)00871-0/bib64616D6F75723A313939337571s6
http://refhub.elsevier.com/S0370-2693(15)00871-0/bib6D696E617A7A6F6C693A32303133666Bs1
http://refhub.elsevier.com/S0370-2693(15)00871-0/bib6D696E617A7A6F6C693A32303133666Bs2
http://refhub.elsevier.com/S0370-2693(15)00871-0/bib6D696E617A7A6F6C693A32303133666Bs3
http://refhub.elsevier.com/S0370-2693(15)00871-0/bib6D696E617A7A6F6C693A323031356178s1
http://refhub.elsevier.com/S0370-2693(15)00871-0/bib6861726B6F3A323031306570s1
http://refhub.elsevier.com/S0370-2693(15)00871-0/bib6861726B6F3A323031306570s2
http://refhub.elsevier.com/S0370-2693(15)00871-0/bib6861726B6F3A323031306570s2
http://refhub.elsevier.com/S0370-2693(15)00871-0/bib6272616E733A31393631666Bs1
http://refhub.elsevier.com/S0370-2693(15)00871-0/bib6272616E733A31393631666Bs2
http://refhub.elsevier.com/S0370-2693(15)00871-0/bib6861726B6F3A323031307072s1
http://refhub.elsevier.com/S0370-2693(15)00871-0/bib6861726B6F3A323031307072s2
http://refhub.elsevier.com/S0370-2693(15)00871-0/bib6861726B6F3A323031307072s3
http://refhub.elsevier.com/S0370-2693(15)00871-0/bib6D696E617A7A6F6C693A323031336676s1
http://refhub.elsevier.com/S0370-2693(15)00871-0/bib706169733A31393832626Bs1
http://refhub.elsevier.com/S0370-2693(15)00871-0/bib706169733A31393832626Bs1
http://refhub.elsevier.com/S0370-2693(15)00871-0/bib6269616E6368693A323031306E61s1
http://refhub.elsevier.com/S0370-2693(15)00871-0/bib736869666D616E3A313937387062s1
http://refhub.elsevier.com/S0370-2693(15)00871-0/bib736869666D616E3A313937387062s2
http://refhub.elsevier.com/S0370-2693(15)00871-0/bib736869666D616E3A313937387062s3
http://refhub.elsevier.com/S0370-2693(15)00871-0/bib736869666D616E3A313937387062s4
http://refhub.elsevier.com/S0370-2693(15)00871-0/bib736869666D616E3A313937387062s4
http://refhub.elsevier.com/S0370-2693(15)00871-0/bib736869666D616E3A313937387062s5
http://refhub.elsevier.com/S0370-2693(15)00871-0/bib736869666D616E3A313937387062s6
http://refhub.elsevier.com/S0370-2693(15)00871-0/bib736869666D616E3A313937387062s6
http://refhub.elsevier.com/S0370-2693(15)00871-0/bib736869666D616E3A313937387062s7
http://refhub.elsevier.com/S0370-2693(15)00871-0/bib736869666D616E3A313937387062s7
http://refhub.elsevier.com/S0370-2693(15)00871-0/bib736869666D616E3A313937387062s8
http://refhub.elsevier.com/S0370-2693(15)00871-0/bib736869666D616E3A313937387062s9
http://refhub.elsevier.com/S0370-2693(15)00871-0/bib736869666D616E3A313937387062s9
http://refhub.elsevier.com/S0370-2693(15)00871-0/bib736869666D616E3A313937387062s10
http://refhub.elsevier.com/S0370-2693(15)00871-0/bib736869666D616E3A313937387062s10

	Merging matter and geometry in the same Lagrangian
	1 Introduction
	2 On an unexpected action form
	3 Conclusion
	Acknowledgements
	References


