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PRINCIPAL FIBER BUNDLES IN
NON-COMMUTATIVE GEOMETRY

CHRISTIAN KASSEL

Abstract. These are the expanded notes of a course given at the Summer school
“Geometric, topological and algebraic methods for quantumfield theory” held
at Villa de Leyva, Colombia in July 2015. We first give an introduction to non-
commutative geometry and to the language of Hopf algebras. We next build up a
theory of non-commutative principal fiber bundles and consider various aspects
of such objects. Finally, we illustrate the theory using thequantum enveloping
algebraUq slp2q and related Hopf algebras.
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Al álgebra le dediqué mis mejores ánimos,
no sólo por respeto a su estirpe clásica

sino por mi cariño y mi terror al maestro.

Gabriel García Márquez,
Vivir para contarla [21]

1. Introduction

These are the expanded notes of a course given at the Summer school “Geomet-
ric, topological and algebraic methods for quantum field theory” held at Villa de
Leyva, Colombia in July 2015. The main objective of this course was twofold:

(1) to give an introduction to non-commutative geometry andto the language
of Hopf algebras;

(2) to build up a theory of non-commutative principal fiber bundles, consider
various aspects of these non-commutative objects, highlight the similari-
ties and the differences with their classical counterparts, and illustratethe
theory with significant examples.

Non-commutative geometry is based on the idea that instead of working with
the points of a topological spaceX (or a C8-manifold, or an algebraic variety)
we may just as well work with the algebraOpXq of continuous (orC8, or reg-
ular) functions onX. Many geometrical constructions onX can be expressed by
algebraic constructions on the commutative algebraOpXq, which in turn can be
extended to non-necessarily commutative algebras. The necessity of passing from
commutative algebra to non-commutative ones originates from physics; according
to [9],

[it] arises from the general indication that the small-scale structure
of space-time is not well-modelled by usual continuous geometry.
At the Planck scale one may reasonably expect that our notionof
geometry has to be modified to include quantum effects as well.
Non-commutative geometry has the potential to do this.

Keeping in mind the geometric origin of such non-commutative constructions, it is
natural to use the phrase “non-commutative spaces” for non-commutative algebras.
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In mathematics such generalized spaces have appeared in the1980’s in the work
of Connes on group actions and on foliations (see [13]), but also in the theory of
quantum groups, which originated in the work of Faddeev’s school, of Drinfeld, of
Jimbo, and of Woronowicz (see [17, 18, 30, 51, 61]).

Quantum groups are non-commutative algebras depending on aparameterq.
Whenq takes the value 1, then quantum groups specialize to classical objects such
as groups of symmetries. The construction of quantum groupswas inspired by the
“quantum inverse scattering method”, a method devised for constructing integrable
quantum systems and mostly developped by L. D. Faddeev and his collaborators.
The discovery of quantum groups was a major event with spectacular applications
not only in quantum physics, but also in domains of pure mathematics such as
representation theory and low-dimensional topology. Let us quote Drinfeld on
quantization from the introduction of [18]:

... both in classical and quantum mechanics there are two basic
concepts: state and observable. In classical mechanics [...] observ-
ables are functions on [a manifold]M. In the quantum case [...]
observables are operators in [a Hilbert space]H [...] [O]bservables
form an associative algebra which is commutative in the classical
case and noncommutative in the quantum case. So quantization is
something like replacing commutative algebras by noncommuta-
tive ones.

Technically speaking, quantum groups are what algebraistsand topologists call
Hopf algebras. Therefore, the first aim of this course was to introduce the concept
of a Hopf algebra and to illustrate it with significant examples, such as the ones
related to the special linear groupS L2pCq.

Our second aim was to define non-commutative analogues of principal fiber
bundles. Principal fiber bundles are ubiquitous geometrical objects in mathematics
and gauge theory. For instance, given a Lie (or algebraic) group G and a closed
subgroupG1, the projectionG Ñ G{G1 onto the homogeneous spaceG{G1 is a
principal fiber bundle. To quantize homogeneous spaces we need an adequate no-
tion of quotient of Hopf algebras and more precisely the concepts of comodule
algebras and Hopf Galois extensions. There are numerous meaningful examples of
non-commutative principal fiber bundles; see [9, 14, 24, 25,40, 41, 49, 50].

Let us give an overview of these notes. In Sect. 2 we review thedefinition of
classical principal fiber bundles and state their main properties. In Sect. 3 we un-
dertake the crucial passage from commutative to non-commutative algebras; we
concentrate on two simple situations in which a spaceX can easily be replaced by
its function algebraOpXq, namely whenX is a finite set or when it is an affine alge-
braic variety. To make things even simpler, all objects and algebras considered in
these notes are defined over the fieldC of complex numbers. We also give in Sect. 3
our first example of a non-commutative space, namely the “quantum plane”, a one-
parameter deformation of the ordinary complex plane, and weextend certain basic
operations from ordinary spaces to non-commutative ones.

In Sect. 4 we consider the case when a space has an additional group structure.
This naturally leads us to the notion of a Hopf algebra. In Sect. 4.4 we present two
mutually dual Hopf algebras constructed from a finite group.
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In Sect. 5 we introduce two quantum groups associated with the Lie groupS L2pCq;
one is its quantum coordinate algebra SLqp2q, the other one is the quantum envelop-
ing algebraUq slp2q of the Lie algebra ofS L2pCq. We also construct a duality map
between them and consider two interesting quotients.

In Sect. 6 we extend the notion of a group action to the non-commutative world.
This leads us to the concept of a comodule algebra over a Hopf algebra. We give
various examples of comodule algebras, thus showing that this concept covers
much more than just group actions. In particular, any group-graded algebra is a
comodule algebra over a suitable Hopf algebra. We also show how to equip the
quantum plane with the structure of a comodule algebra over the quantum coordi-
nate algebra ofS L2pCq.

Section 7 is entirely devoted to Hopf Galois extensions, which are non-commu-
tative analogues of principal fiber bundles. We pose the problem of classifying
them and show that, contrary to the classical case, there mayexist (infinitely many)
non-isomorphic non-commutative principal fiber bundles over a point. We also
define the non-commutative version of the pull-back of a bundle.

In the final section (Sect. 8), for any Hopf algebraH we construct a non-commu-
tative principal fiber bundle in the form of a deformationAH of H over a parameter
spaceBH which is the coordinate algebra of a smooth affine algebraic variety of
the same dimension asH. We give explicit formulas for this non-commutative
principal fiber bundle whenH is the quantum enveloping algebraUq slp2q or some
of its finite-dimensional quotients.

We will not give the proofs of all statements in these notes. For some of them
we will refer to the relevant publications or to exercises ifthey turn out to be rather
simple. Except for Theorems 8.12 and 8.13 in Section 8.3, thematerial presented
in these notes already exists in the literature.

2. Review of principal fiber bundles

La geometría fue más compasiva tal vez por
obra y gracia de su prestigio literario.[21]

We start by recalling the definition and the basic propertiesof fiber bundles and
of principal fiber bundles. In Sect. 7 we will define non-commutative analogues of
such bundles.

2.1. Fiber bundles. Let F be a topological space. Recall that afiber bundlewith
fiber F is a locally trivial continuous mapπ : P Ñ X from a topological spaceP,
called thetotal spaceof the bundle, to a topological spaceX, called thebase space,
such that eachfiber π´1ptxuq is homeomorphic toF. Locally trivial means that
for eachx P X there is a neighbourhoodU Ă X of x and a homeomorphism
ψ : π´1pUq – U ˆ F such thatπ “ p1 ˝ ψ, wherep1 : U ˆ F Ñ U is the first
projection ontoU.

In the sequel we assume that the topological spaces we consider are Hausdorff
and paracompact (the latter means that every open cover has alocally finite open
refinement). These conditions are satisfied by most spaces generally considered.

A fiber bundle mapfrom a fiber bundleπ1 : P1 Ñ X1 to another fiber bundle
π : P Ñ X with the same fiberF is a pairprϕ : P1 Ñ P, ϕ : X1 Ñ Xq of continuous
maps such thatπ ˝ rϕ “ ϕ ˝ π1. The composition of two such maps is again a fiber
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bundle map. A fiber bundle map is said to be ahomeomorphism of fiber bundlesif
bothrϕ : P1 Ñ P andϕ : X1 Ñ X are homeomorphisms.

The simplest example of a fiber bundle with fiberF and base spaceX is given
by the first projectionp1 : X ˆ F Ñ X. Any fiber bundle homeomorphic to such a
fiber bundle is called atrivial fiber bundle.

2.2. Pull-backs. We now deal with an important functoriality property. Any fiber
bundleπ : P Ñ X with fiberF and base spaceX together with any continuous map
ϕ : X1 Ñ X induces a fiber bundleπ1 : ϕ˚pPq Ñ X1 with the same fiberF and with
base spaceX1. The spaceϕ˚pPq is defined by

ϕ˚pPq “
 

px1, pq P X1 ˆ P | ϕpx1q “ πppq
(

and the mapπ1 : ϕ˚pPq Ñ X1 is equal to the composite mapϕ˚pPq Ă X1 ˆP
p1Ñ X1.

The fiber bundleπ1 : ϕ˚pPq Ñ X1 is called thepull-backof the bundleπ : P Ñ X
along the mapϕ : X1 Ñ X.

Clearly, ifϕ1 : X2 Ñ X1 is another continuous map, then

ϕ1˚pϕ˚pPqq – pϕ ˝ ϕ1q˚pPq.
If id : X Ñ X is the identity map ofX, then id˚pPq “ P. It follows that any

homeomorphismϕ : X1 Ñ X induces a homeomorphismϕ˚pPq – P.

Exercise 2.1.(a) Letπ : P Ñ X be a fiber bundle. Prove that ifi : txu Ñ X is the
inclusion of a pointx in X, theni˚pPq “ π´1ptxuq is the fiber of the bundle atx.

(b) Show that any fiber bundle with base space equal to a point is trivial.
(c) Prove that the pull-back of a trivial fiber bundle is trivial.
(d) Let X be acontractiblespace, i.e. such that there is an elementx0 P X and a

continuous mapη : X ˆ r0, 1s Ñ X such thatηpx, 0q “ x andηpx, 1q “ x0 for all
x P X. Show that any fiber bundle with base spaceX is trivial.

For more on fiber bundles, see the classical references [26, 57].

2.3. Principal fiber bundles. We fix now a topological groupG.

Definition 2.2. A principalG-bundleis a fiber bundleπ : P Ñ X with a continuous
left action Gˆ P Ñ P satisfying the following two conditions:

(i) we haveπpgpq “ πppq for all g P G and pP P,
(ii) for all p, p1 P P with πppq “ πpp1q there is a unique element gP G such

that gp“ p1.

In other words, in a principalG-bundle the group action preserves each fiber
π´1pxq and the action ofG on each fiber is free and transitive. It follows that each
fiber is in bijection withG and that the space of orbitsGzP is homeomorphic to the
base spaceX.

An equivalent way to express Conditions (i) and (ii) above isto require that the
map

(2.1) γ : G ˆ P Ñ P ˆ P ; pg, pq ÞÑ pgp, pq
is a bijection fromG ˆ P onto the subspace

P ˆX P “
 

pp, p1q P P ˆ P | πppq “ πpp1q
(
.

Given principalG-bundlesπ : P1 Ñ X1 andπ : P Ñ X, a map of principal G-
bundlesfrom the first one to the second one is a fiber bundle mapprϕ, ϕq compatible
with theG-action, i.e. such thatrϕpgp1q “ grϕpp1q for all g P G andp1 P P1.
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Example 2.3. Given a topological spaceX, let G act onP “ G ˆ X by g1pg, xq “
pg1g, xq (g, g1 P G, x P X). This is a principalG-bundle. Any principalG-bundle
homeomorphic to such a bundle is called atrivial principal G-bundle.

Example 2.4. Consider the groupS1 of complex numbers of modulus one. Given
an integern ě 1, the mapπn : S1 Ñ S1 defined byπnpzq “ zn is a principal
G-bundle, whereG is the cyclic groupZ{n of ordern.

Exercise 2.5.Prove that the principalZ{n-bundleπn : S1 Ñ S1 of Example 2.4 is
trivial if and only if n “ 1.

2.4. Functoriality and classification. We now record important properties of prin-
cipalG-bundles. For the proofs we refer to [26, Chap. 4] or to [57].

Theorem 2.6. (a) If π : P Ñ X is a principal G-bundle andϕ : X1 Ñ X is a
continuous map, then the pull-backπ1 : ϕ˚pPq Ñ X1 is a principal G-bundle.

(b) If π : P Ñ X is a principal G-bundle andϕ0, ϕ1 : X1 Ñ X are homotopic1

continuous maps, then the principal G-bundlesϕ˚
0pPq andϕ˚

1pPq are homeomor-
phic.

(c) There exists a principal G-bundleπG : EG Ñ BG such that for any principal
G-bundleπ : P Ñ X there is a continuous mapϕ : X Ñ BG such thatϕ˚pEGq is
homeomorphic toπ : P Ñ X; the mapϕ is unique up to homotopy.

The base space of the principalG-bundleπG : EG Ñ BG is called theclassify-
ing spaceof the groupG. The terminology is justified by the following immediate
consequence of the theorem.

Corollary 2.7. The mapϕ ÞÑ ϕ˚pEGq induces a bijection between the setrX, BGs
of homotopy classes of continuous maps from X to BG and the setIsoGpXq of
homeomorphism classes of principal G-bundles with base space X:

rX, BGs – IsoGpXq.

Starting from the next section, we shall build up the algebraic language neces-
sary to define non-commutative analogues of principal fiber bundles.

3. Basic ideas of non-commutative geometry

As we stated in the introduction, non-commutative geometryis based on the idea
of (a) replacing a spaceX by its (commutative) function algebraOpXq, (b) passing
from commutative algebras to non-commutative algebras. Inthis section we start
with two simple geometric situations, namely whenX is a finite set and when it is
an affine algebraic variety. In Sect. 3.2 we present our first elementary example of
a non-commutative space, namely the quantum plane, and in Sect. 3.3 we extend
certain basic operations from spaces to non-commutative ones.

For deformation quantization, which is another way, inspired by quantum me-
chanics, to pass from commutative algebras to non-commutative algebras see the
lectures [23] by Simone Gutt.

1That is, there exists a continuous mapΦ : X1 ˆ r0, 1s Ñ X such thatΦpx,0q “ ϕ0pxq and
Φpx,1q “ ϕ1pxq for all x P X1.
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3.1. Two classical dualities between spaces and algebras.Let us now present
two well-known correspondences between spaces and algebras. All algebras we
consider in these notes areC-algebras (i.e. defined over the fieldC of complex
numbers). We furthermore assume that all algebras are associative and unital. We
denote the unit of an algebraA by 1, or by 1A to avoid any confusion.

3.1.1. Finite sets. In the first example, the spaces which we consider are merely
sets, or if one prefers, discrete topological spaces. To anyset X we associate
its function algebraOpXq, which consists of all complex-valued functions onX.
Given two such functionsu1, u2 : X Ñ C, we may consider any linear combination
λ1u1 ` λ2u2, whereλ1 andλ2 are complex numbers; the functionλ1u1 ` λ2u2 is
defined by

pλ1u1 ` λ2u2qpxq “ λ1u1pxq ` λ2u2pxq
for all x P X. Similarly, the productu1u2 of two functionsu1, u2 P OpXq is defined
by pu1u2qpxq “ u1pxqu2pxq for all x P X. These operations provideOpXq with
the structure of a commutative associative and unitalC-algebra. The unit is the
constant function whose values are all equal to 1.

For anyx P X, consider theδ-functionδx defined for ally P X by δxpyq “ δx,y,
whereδx,y is the Kronecker symbol2. The product of twoδ-functions is clearly
given by

δx δy “ δx,y δx.

This means that eachδ-function is an idempotent, i.e.,δ2
x “ δx, and that the product

of two distinctδ-functions is zero.
If the setX is finite, then the settδxuxPX of δ-functions forms a basis ofOpXq

considered as a vector space over the complex numbers. Indeed, we can expand
any functionu : X Ñ C in the following unique way:

u “
ÿ

xPX

upxq δx.

Note that the unit ofOpXq is the sum of theδ-functions: 1“
ř

xPX δx.
If the setX is of cardinalityN, we can order the elements ofX and assume that

X “ tx1, . . . , xNu. Consider the linear map

u P OpXq ÞÑ pupx1q, . . . upxNqq P CN.

This map is clearly an isomorphism fromOpXq onto theN-dimensional vector
spaceCN. It is also an algebra isomorphism if we endowCN with the product

px1, . . . xNqpy1, . . . yNq “ px1y1, . . . xNyNq.
In particular, the dimension ofOpXq is equal to the cardinality ofX. Since a finite
set is determined up to bijection by its cardinality, it follows that a finite setX can
be recovered (up to bijection) from its function algebraOpXq.
3.1.2. Algebraic varieties.The next correspondence is more substantial, namely
the one between algebraic varieties and commutative algebras. Recall that acom-
plex algebraic varietyis the set of solutions of a system of polynomial equa-
tions over the complex numbers: more precisely, letΣ be a set of polynomials
in CrX1, . . . ,Xns; then the corresponding algebraic variety is given by

V “ t px1, . . . , xnq P Cn | Ppx1, . . . , xnq “ 0 for all P P Σ u .
2Recall thatδx,y “ 1 if x “ y andδx,y “ 0 otherwise.
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To V we associate the quotient-algebra

OpVq “ CrX1, . . . ,Xns{IΣ,

whereIΣ is the ideal ofCrX1, . . . ,Xns generated byΣ. We say thatOpVq is thecoor-
dinate algebraof the algebraic varietyV. The algebraOpVq is a finitely generated
commutativeC-algebra.

Conversely, let us start from a finitely generated commutative C-algebraA. It
can be written as the quotient of a polynomial algebras with finitely many variables,
i.e. it is of the form

A “ CrX1, . . . ,Xns{I

for some idealI Ă CrX1, . . . ,Xns. ThenA “ OpVq, whereV is the set of points
px1, . . . , xnq P Cn satisfying the system of polynomial equationsPpx1, . . . , xnq “ 0
for all P P I .

There is another way to findV such thatA “ OpVq for a given finitely generated
commutativeC-algebraA. Namely consider the set AlgpA,Cq of characters ofA.
A characterof A is an algebra homomorphismχ from A to C, i.e. a linear form
satisfying the conditions

χpabq “ χpaqχpbq and χp1q “ 1.

Now, if A “ CrX1, . . . ,Xns{I , then a characterχ : A Ñ C is determined by its
valuesχpXiq “ xi P C on the generatorsX1, . . . ,Xn. Sinceχ must be zero on the
ideal I , this means that then-tuple px1, . . . , xnq P Cn of values must be a solution
of the equationsPpx1, . . . , xnq “ 0 for all P P I . Such solutions form an algebraic
varietyV and we haveA “ OpVq.

Let us also observe that the characters of a finitely generated commutativeC-
algebraA are in bijection with its maximal ideals. Indeed, start froma character
χ : A Ñ C; its kernelm is an ideal ofA. Sinceχ is surjective, we haveA{m – C by
Noether’s first isomorphism theorem. Therefore,m is a maximal ideal. Conversely,
let m be a maximal ideal ofA. Then A{m is a field which is isomorphic toC
by Zarisky’s lemma or by Hilbert’s Nullstellensatz. The composed algebra map
χ : A Ñ A{m – C is a character ofA.

Let us now give some elementary examples of commutative algebras corre-
sponding to algebraic varieties.

Example 3.1. The coordinate algebra of a point isC since AlgpC,Cq consists only
of one element, namely the identity map. This follows also from the description of
the function algebra of a finite set given in Sect. 3.1.1.

Example 3.2. The one-variable polynomial algebraCrXs is the coordinate algebra
of thecomplex lineC since any algebra homomorphismCrXs Ñ C is determined
by its value on the variableX; equivalently, AlgpCrXs,Cq – C.

Similarly, the two-variable polynomial algebraCrX,Ys is the coordinate algebra
of thecomplex planeC2: any algebra homomorphismCrX,Ys Ñ C is determined
by its values onX andY. We have AlgpCrX,Ys,Cq – C2.

Example 3.3. Let us now consider the algebraA “ CrX,X´1s of Laurent poly-
nomials in the variableX. SinceXX´1 “ 1, this algebra can also be seen as
the quotient-algebraCrX,Ys{pXY ´ 1q. Here also any algebra homomorphism
χ : A Ñ C is determined by its valueχpXq “ x P C on the variableX, but contrary
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to the case ofCrXs, the fact thatX is invertible inA puts the following restriction
on x, namely

xχpX´1q “ χpXqχpX´1q “ χpXX´1q “ χp1q “ 1.

Therefore,x is invertible in the fieldC, which is equivalent tox ‰ 0. We deduce
AlgpA,Cq – Cˆ, whereCˆ “ Czt0u. In other words, the algebraCrX,X´1s of
Laurent polynomials is the coordinate algebra of theonce-punctured complex line.

Example 3.4. The algebraCrX,Ys{pY2 ´ X3 ` X ´ 1q is the coordinate algebra of
theelliptic curveconsisting of the pointspx, yq P C2 satisfying the equation

y2 “ x3 ´ x ` 1.

Example 3.5. Let x1, . . . , xN be distinct points in the complex lineC. Consider the
quotient-algebraA “ CrXs{pX ´ x1, . . . ,X ´ xnq. Since the polynomialsX ´ xi

are coprime, we also haveA “ CrXs{pPq, whereP is the degreeN polynomial

P “ pX ´ x1q ¨ ¨ ¨ pX ´ xnq.
The assignmentQ P CrXs ÞÑ pQpx1q, . . . ,QpxNqq P CN induces an algebra iso-
morphismA – CN. This example shows that a finite set can be seen as a special
case of an algebraic variety.

3.2. Non-commutative algebras.From now on we deal with non-necessarily com-
mutative algebras. We recall that all algebras we consider are associative unital
C-algebras.

3.2.1. Non-commutative polynomials.The prototype of a finitely generated com-
plex commutative algebra is the algebra of polynomialsCrX1, . . . ,Xns in finitely
many variables. In an analogous way the prototype of a finitely generated not
necessarily commutative complex algebra is the algebraC xX1, . . . ,Xny of polyno-
mials inn non-commuting variables X1, . . . ,Xn. Any element ofC xX1, . . . ,Xny is
a finite linear combination (with complex coefficients) of finite words in the letters
X1, . . . ,Xn. Such a linear combination is unique because such words forma basis
of C xX1, . . . ,Xny considered as a vector space over the complex numbers.

Mind the difference between these two kinds of polynomial algebras: the ele-
mentXY ´ YX is non-zero inC xX,Yy whereas it vanishes inCrX,Ys.

Any finitely generated complex algebraA is a quotient-algebra ofC xX1, . . . ,Xny
for somen, which means thatA can be expressed as

A “ C xX1, . . . ,Xny{I

for some two-sided idealI of C xX1, . . . ,Xny. For instance, for the algebra of ordi-
nary polynomials inn variables, we have

CrX1, . . . ,Xns “ C xX1, . . . ,Xny{I ,

whereI is the two-sided ideal generated by all elements of the formXiX j ´ X jXi

(i, j P t1, . . . , nu2).

3.2.2. The quantum plane.Let q be a non-zero complex number. Consider the
algebraC xX,Yy of polynomials in two non-commuting variablesX,Y and the two-
sided idealIq of C xX,Yy generated byYX´ qXY. The quotient-algebra

CqrX,Ys “ C xX,Yy{Iq

is not commutativeunlessq “ 1.
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Whenq “ 1, then the algebraCqrX,Ys is isomorphic toCrX,Ys, which is the co-
ordinate algebra of the plane. Thus,CqrX,Ys is a one-parameter non-commutative
deformation (or a quantization) of the coordinate algebra of the plane. For this
reason and by extension,CqrX,Ys can be considered as the coordinate algebra of
a “space” in an extended sense, of a so-callednon-commutative space. In this par-
ticular instance, this non-commutative space is known in the literature under the
namequantum plane.

The settXiY jui, jě0 forms a basis ofCqrX,Ys, independently ofq (see Exer-
cise 3.6 below). Notice that the defining relationYX “ qXY implies the following
product formula for two monomials inCqrX,Ys:

pXiY jqpXkYℓq “ q jk Xi`kY j`ℓ. pi, j, k, ℓ ě 0q
In Sect. 3.1.2 we showed how to recover an algebraic varietyV from its co-

ordinate algebra, using its characters. Let us look at the set AlgpCqrX,Ys,Cq of
characters ofCqrX,Ys. As with the usual polynomial algebraCrX,Ys, a character
χ : CqrX,Ys Ñ C is determined by its valuesχpXq “ x andχpYq “ y on the
generatorsX andY. Now the set AlgpCqrX,Ys,Cq is in bijection with the set of
pointspx, yq P C2 such thatyx “ qxy. In C the valuesx andy commute, so that
yx “ qxy is equivalent topq ´ 1qxy “ 0. Whenq ‰ 1, then AlgpCqrX,Ys,Cq can
be identified with the subset ofC2 defined byxy “ 0; this subset is the union of
the linesL1 “ t0u ˆC andL2 “ Cˆ t0u Ă C2. The coordinate algebra ofL1 Y L2

is the commutative algebraCrX,Ys{pXYq. We thus have bijections

AlgpCqrX,Ys,Cq “
#

AlgpCrX,Ys,Cq “ C2 if q “ 1,

AlgpCrX,Ys{pXYq,Cq “ L1 Y L2 if q ‰ 1.

This shows that from the point of view of characters, there isa jump when we pass
from q “ 1 to an arbitrary complex numberq. Observe also that as a vector space,
CrX,Ys{pXYq has a basis given bytXiuiě0 Y tY ju jě1; this basis is clearly very
different from the basistXiY jui, jě0 of CqrX,Ys.
Exercise 3.6.(A basis of the quantum plane)

(a) Let τ andυ be the endomorphisms of the polynomial algebraCrts defined
on any polynomialPptq by τpPptqq “ tPptq andυpPptqq “ Ppqtq. Show that there
is a unique algebra morphismρ : CqrX,Ys Ñ EndpCrtsq such thatρpXq “ τ and
ρpYq “ υ.

(b) Deduce thattXiY jui, jPN is a basis ofCqrX,Ys. Hint: use the morphismρ to
prove linear independence.

3.2.3. Non-commutative spaces.In view of the previous examples, non-commuta-
tive algebras will henceforth often be callednon-commutative spaces. The special
case of the quantum plane shows that characters are not sufficient to characterize
non-commutative spaces. As written in the introduction of [49],

... in noncommutative geometry there are no points.

This is a significant difference with ordinary spaces. Such a difference is also well
explained in [55, Sect. 2].

3.3. Extending basic operations to non-commutative spaces.We now show
how to extend certain basic operations on spaces to the worldof non-commutative
spaces, i.e. of non-necessarily commutative algebras.
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3.3.1. From maps to algebra homomorphisms.Let ϕ : X Ñ Y be a map between
algebraic varieties. Then we can define a mapϕ˚ : OpYq Ñ OpXq by

(3.1) ϕ˚puq “ u ˝ ϕ
for all u P OpYq. It is easy to check thatϕ˚ is a morphism of algebras.

If ψ : Y Ñ Z is another map between algebraic varieties andψ˚ : OpZq Ñ OpYq
is the corresponding morphism of algebras, then we have the following equality of
morphisms fromOpZq toOpXq:

pψ ˝ ϕq˚ “ ϕ˚ ˝ ψ˚.

3.3.2. From products to tensor products.Given algebraic varietiesX, Y, we can
consider their productXˆY. We denote byπX : XˆY Ñ X andπY : XˆY Ñ Y the
canonical projections. The productXˆY satisfies the following universal property:
for all mapsϕX : Z Ñ X andϕY : Z Ñ Y from another algebraic varietyZ, there
exists a unique mapϕ : Z Ñ X ˆ Y such thatπX ˝ ϕ “ ϕX andπY ˝ ϕ “ ϕY.

Applying the contravariant functorϕ ÞÑ ϕ˚ defined by (3.1), we see that the
coordinate algebraOpX ˆ Yq comes with two algebra morphisms

ϕ˚
X : OpXq Ñ OpX ˆ Yq and ϕ˚

Y : OpYq Ñ OpX ˆ Yq
satisfying a universal property that is easily deduced fromthe universal property of
the productX ˆ Y. It follows that we have a canonical algebra isomorphism

(3.2) OpX ˆ Yq – OpXq b OpYq,
whereOpXq b OpYq is the tensor product of the algebrasOpXq andOpYq.

Let us recall that thetensor product Ub V of two complex vector spacesU
and V consists ofC-linear combinations of symbols of the formu b v, where
u P U andv P V. By definition, the mapU ˆ V Ñ U b V sending each couple
pu, vq P U ˆ V to u b v is C-bilinear, i.e.C-linear both inu and inv. It satisfies
the following universal property: for anyC-bilinear map f : U ˆ V Ñ W to
another vector spaceW, there is a uniqueC-linear maprf : U b V Ñ W such that
f pu, vq “ rf pu b vq for all pu, vq P U ˆ V. Moreover, iftuiuiPI is a basis ofU and
tv ju jPJ is a basis ofV, then

tui b v jupi, jqPIˆJ

is a basis ofU b V. As a consequence, dimpU b Vq “ dimpUq dimpVq.
If A, B are (not necessarily commutative) algebras, then their tensor product

A b B carries a structure of algebra with multiplication determined by

pa1 b b1qpa2 b b2q “ a1a2 b b1b2

for all a1, a2 P A andb1, b2 P B. The algebraA b B has a unit given by

1AbB “ 1A b 1B.

The tensor product of algebras satisfies the following universal property.

Proposition 3.7. Let f : A Ñ C and g: B Ñ C be morphisms of algebras such
that fpaqgpbq “ gpbq f paq in C for all a P A and bP B. Then there exists a unique
morphism of algebras fb g : A b B Ñ C such thatp f b gqpa b bq “ f paqgpbq
for all a P A and bP B.
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Using the notation AlgpA1,A2q for the set of morphisms of algebras fromA1

to A2, we can paraphrase the previous proposition by saying that AlgpA b B,Cq is
isomorphic to the subset of AlgpA,Cq ˆ AlgpB,Cq consisting of all pairsp f , gq of
morphisms whose images commute inC. In particular, ifC is commutative, then

AlgpA b B,Cq – AlgpA,Cq ˆ AlgpB,Cq.
For this reason we may consider the tensor product of algebras as the non-

commutative analogue of the product of spaces.

Exercise 3.8.Prove Proposition 3.7.

4. From groups to Hopf algebras

In this section we introduce the concept of a Hopf algebra andillustrate it with
several examples which will show up repeatedly in these notes. For general refer-
ences on Hopf algebras, see [1, 31, 46, 58].

4.1. Algebraic groups. Let G be analgebraic group, i.e. an algebraic variety
equipped with the structure of a group such that the product mapµ : G ˆ G Ñ G
is a map of algebraic varieties.

The basic example of an algebraic group is thegeneral linear group GLNpCq,
which consists of all invertibleN ˆ N-matrices with complex entries, equipped
with the usual matrix product. This product is given by polynomial formulas in the
entries. The coordinate algebra ofGLNpCq is the algebra

(4.1) OpGLNpCqq “ Crt, pai, jq1ďi, jďNs{pt detpai, jq ´ 1q.
Any subgroup ofGLNpCq defined by the vanishing of polynomials is also an

algebraic group. For instance, thespecial linear group S LNpCq, which consists of
all N ˆ N-matrices whose determinant is 1, is an algebraic group. Itscoordinate
algebra is the algebra

OpS LNpCqq “ Crpai, jq1ďi, jďNs{pdetpai, jq ´ 1q.
It is obtained fromOpGLNpCqq by settingt “ 1.

By (3.1) the product mapµ : G ˆ G Ñ G of an algebraic group induces a
morphism of algebrasµ˚ : OpGq Ñ OpG ˆ Gq. We can composeµ˚ with the
canonical isomorphismOpG ˆ Gq – OpGq b OpGq (see (3.2)), which yields a
morphism of algebras

∆ : OpGq Ñ OpGq b OpGq,
which we call thecoproductof OpGq.

The productµ of G is associative, which means that we have

µ pµpg1, g2q, g3q “ µ pg1, µpg2, g3qq
for all g1, g2, g3 P G. This identity, which readsµ ˝ pµ b idq “ µ ˝ pid bµq,
transposes to the followingcoassociativityidentity for the coproduct:

(4.2) p∆b idq ˝ ∆ “ pid b∆q ˝ ∆.
Similarly, theunit e of the groupG, which can be seen as a homomorphism

ē : t1u Ñ G (sending 1 toe), induces the morphism of algebras

ε “ ē˚ : OpGq Ñ Opt1uq “ C,
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which we call thecounit of OpGq. The identitiesµpe, gq “ g “ µpg, eq (g P G)
read

µ ˝ pēb idq “ id “ µ ˝ pid bēq,
where we have identifiedt1u ˆ G andG ˆ t1u with G. They transpose to the
counitality identities

(4.3) pε b idq ˝ ∆ “ id “ pid b εq ˝ ∆ : OpGq Ñ OpGq,
where we use the natural identificationsCb OpGq – OpGq andOpGqb C – OpGq.

In a groupG any elementg possesses aninverse, i.e. an elementg´1 such that

(4.4) µpg, g´1q “ e “ µpg´1, gq.
The map inv :g ÞÑ g´1 induces a mapS “ inv˚ : OpGq Ñ OpGq, which we call
theantipodeof OpGq. The identities (4.4) imply identities for the antipode, which
we shall display in Sect. 4.3.

WhenG “ GLNpCq is the general linear group, the coproduct of the coordinate
algebraOpGLNpCqq is defined on the generatorst, ai, j of OpGLNpCqq by

(4.5) ∆ptq “ t b t and ∆pai, jq “
Nÿ

k“1

ai,k b ak, j

and the counit by

(4.6) εptq “ 1 and εpai, jq “ δi, j

for all i, j P t1, . . . ,Nu. For the antipode, letA be theN ˆ N-matrix A “
pai, jq1ďi, jďN. Denote byAi, j the determinant of thepN ´ 1q ˆ pN ´ 1q matrix
obtained from deleting Rowi and Columnj of A. Then for each generatorai, j

(i, j P t1, . . . ,Nu) we have

(4.7) Spai, jq “ p´1qi` j A j,i

detpAq .

By the definition (4.1) the generatort is invertible with inverset´1 “ detpAq and
its antipode is given bySptq “ t´1 “ detpAq.

The values of∆pai, jq, εpai, jq and Spai, jq given in Formulas (4.5)–(4.7) above
also determine the coproduct, counit and antipode ofOpS LNpCqq, whereS LNpCq
is the special linear group.

Exercise 4.1.Prove the claims of this section.

4.2. Bialgebras. Before defining Hopf algebras, we present the concept of a bial-
gebra.

Definition 4.2. A bialgebrais an associative unital algebra equipped with two
linear maps∆ : H Ñ H b H andε : H Ñ C satisfying the following conditions:

(i) The maps∆ andε are morphisms of algebras.
(ii) We have the following equalities:

(4.8) p∆b idq ˝ ∆ “ pid b∆q ˝ ∆.
and, identifyingCb H and Hb C with H,

(4.9) pε b idq ˝ ∆ “ id “ pid b εq ˝ ∆.
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The map∆ is called thecoproductof H and ε is its counit. It is sometimes
convenient to denote the product of the bialgebraH by µ : H b H Ñ H and to
introduce the unique morphism of algebrasη : C Ñ H, which we call theunit
of H; we haveηp1q “ 1H.

Given a bialgebraH with coproduct∆, we define theopposite coproduct

∆op : H Ñ H b H

by∆op “ τ ˝∆, whereτ : H b H Ñ H b H is theflip defined byτpx b yq “ yb x
for all x, y P H. We say thatH is cocommutativeif ∆op “ ∆.

Exercise 4.3. Let Crts be the polynomial algebra in one variablet. Show that
Crts is a bialgebra with coproduct∆ and counitε determined by∆ptq “ t b t and
εptq “ 1. Check that this bialgebra is cocommutative.

Exercise 4.4. (a) Let H be a bialgebra with coproduct∆ and counitε. Consider
the linear dual Ȟ “ HompH,Cq of H. Define a productµˇ : Hˇb HˇÑ Hˇ for all
x P H andα, β P Hˇby

(4.10) µˇpα b βqpxq “ pα b βqp∆pxqq “
ÿ

i

αpx1
iq βpx2

i q,

when∆pxq “
ř

i x1
i b x2

i . Show that

(i) µˇ is an associative product with unit equal toε P H ,̌
(ii) Hˇ is cocommutative ifH is a commutative algebra.

(b) Now assume thatH is finite-dimensional as a vector space overC.

(i) Show thatHˇ is a bialgebra with coproduct∆ˇ : HˇÑ Hˇb Hˇ and counit
εˇ : HˇÑ C defined by

∆ˇpαqpx b yq “ αpxyq
andεˇpαq “ αp1Hq for all α P H .̌

(ii) Prove thatHˇ is commutative ifH is cocommutative.

Remark 4.5. It follows from Exercise 4.4 that the dual of a finite-dimensional
bialgebra is another (finite-dimensional) bialgebra. To extend such a duality to the
case whenH is an infinite-dimensional bialgebra, we have to replace thelinear
dualHˇ by therestricted dual H̋ defined by

H˝ “ tα P Hˇ |αpIq “ 0 for some idealI such that dimH{I ă 8u .
See [46, Sect. 1.2] or [58]. We haveH˝ “ Hˇ if dim H ă 8.

4.3. Hopf algebras. Let H be a bialgebra with productµ, unit η, coproduct∆,
and counitε. Given two linear endomorphismsf , g of H we define a new linear
endomorphismf ˚ g of H by

(4.11) f ˚ g “ µ ˝ p f b gq ˝ ∆ P EndpHq.
We now define the concept of a Hopf algebra.

Definition 4.6. Let H be a bialgebra.
(a) Anantipodeof H is a linear endomorphism S of H such that

(4.12) S ˚ idH “ η ˝ ε “ idH ˚S.

(b) A Hopf algebrais a bialgebra together with an antipode.
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(c) A morphism of Hopf algebrasf : H Ñ H1 between Hopf algebras is a
morphim of bialgebras such that

∆1 ˝ f “ p f b f q ˝ ∆, ε1 ˝ f “ ε, S1 ˝ f “ f ˝ S,

where∆ (resp.∆1) is the coproduct,ε (resp.ε1) is the counit and S (resp. S1) is the
antipode of H (resp. of H1).

Example 4.7. If G is analgebraic group, then its coordinate algebraOpGq equip-
ped with the maps∆, ε, andS defined in Sect. 4.1 is a Hopf algebra. Actually, the
axioms of a Hopf algebra are derived from this example.

Hopf algebras have two important features which are worth emphasizing:

‚ The concept of Hopf algebras isself-dual: the restricted dualH˝ of a Hopf
algebraH is again a Hopf algebra (see Exercises 4.4 (b) and 4.11 for finite-
dimensional Hopf algebras). This duality allows also to extend the Pon-
tryagin duality of abelian groups to non-abelian ones (see Exercise 4.16).

‚ The category of leftH-modules, whereH is a Hopf algebra, is atensor
category. Recall that a leftH-moduleV is a vector space together with a
bilinear mapH ˆ V Ñ V; px, vq ÞÑ xv (x, P H, v P V) such that

(4.13) pxyqv “ xpypvqq and 1Hv “ v

for all x, y P H andv P V. The mappx, vq ÞÑ xv is called the action.
If V1 andV2 are leftH-modules, then so is the tensor productV1 b V2.

Indeed one defines an action ofH onV1 b V2 by

(4.14) xpv1 b v2q “ ∆pxqpv1 b v2q “
ÿ

i

x1
iv1 b x2

i v2

if ∆pxq “
ř

i x1
i b x2

i .

Exercise 4.8.Check that the action (4.14) ofH onV1 b V2 satisfies (4.13).

Remark 4.9. In many cases, for instance whenH is a quantum group as in Sect. 5,
V1 b V2 is naturally isomorphic as anH-module toV2 b V1. It is this feature that
leads to braid group representations and knot invariants. We will not say more
about this; see [31, Part Three] for details on this vast subject.

Exercise 4.10.Show that the product̊ on the algebra EndpHq of linear endomor-
phisms of a Hopf algebraH given by (4.11) is associative with unit equal toη ˝ ε.
Prove that an antipode is unique if it exists.

Exercise 4.11.Show that the dualHˇof a finite-dimensional Hopf algebraH is a
Hopf algebra.

Exercise 4.12.(A bialgebra without antipode)LetCrts be the bialgebra considered
in Exercise 4.3. Prove that it has no antipode [hint: apply (4.12) to the elementt].

The following properties of the antipode of a Hopf algebra are worth mentioning
(see [31, III.3] or [58]).

Proposition 4.13. Let H be a Hopf algebra with coproduct∆, counitε, and an-
tipode S .

(a) The antipode S is an anti-morphism of algebras, i.e., forall x, y P H,

Spxyq “ SpyqSpxq and Sp1q “ 1,
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and we have
pS b Sq ˝ ∆ “ ∆op ˝ S and ε ˝ S “ ε.

(b) If H is commutative or cocommutative, then the antipode Sis an involution,
i.e. S2 “ idH.

Another useful concept is the following. An elementx of a Hopf algebraH is
calledgroup-likeif

(4.15) ∆pxq “ x b x and εpxq “ 1.

Let GrpHq be the set of group-like elements ofH.

Proposition 4.14. The setGrpHq of group-like elements of H is a group under the
product in H. The inverse of an element x inGrpHq is Spxq.
Proof. Let x, y P H be group-like elements. Since∆ and ε are morphisms of
algebras, we have

∆pxyq “ ∆pxq∆pyq “ px b xqpy b yq “ xyb xy

andεpxyq “ εpxqεpyq “ 1. This shows that GrpHq is preserved under the product.
Clearly, the unit 1 ofH is group-like and is a unit for the product in GrpHq.

Applying (4.12) to a group-like elementx, we obtainSpxqx “ 1 “ xSpxq,
which shows thatSpxq is the inverse ofx. To conclude that GrpHq is a group, it
remains to check thatSpxq is group-like. Indeed, by Proposition 4.13 (a),

∆oppSpxqq “ pS b Sqp∆pxqq “ Spxq b Spxq,
which implies∆pSpxqq “ Spxq b Spxq. We also haveεpSpxqq “ εpxq “ 1. Thus,
Spxq is group-like. � �

Examples of group-like elements and computations of GrpHq will be given in
Exercise 4.19 below.

4.4. Examples of Hopf algebras from finite groups.To familiarize the reader
with the concept of a Hopf algebra, we now present the following two basic exam-
ples, both constructed from a group.

4.4.1. The function algebra of a finite group.Let G be a finite group with unite
andOpGq be its function algebra, as defined in Sect. 3.1.1. It is a Hopfalgebra with
coproduct∆, counitε, and antipodeS given by

(4.16) ∆puqpg, hq “ upghq, εpuq “ upeq, Spuqpgq “ upg´1q
for all g, h P G andu P OpGq. Here we have identifiedOpGq b OpGq with the
function algebraOpG ˆ Gq of the product groupG ˆ G.

We can also express∆, ε, andS in terms of theδ-functions introduced inloc.
cit. Namely we have

∆pδgq “
ÿ

hPG

δh b δh´1g, Spδgq “ δg´1, εpδgq “
#

1 if g “ e,

0 otherwise.

Since the inverse mapg ÞÑ g´1 in a group is an involution, it follows from (4.16)
that the antipodeS is an involution as well, which is in agreement with Proposi-
tion 4.13 (b) applied to thecommutativeHopf algebraOpGq.
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4.4.2. The convolution algebra of a group.Let G now be an arbitrary group, not
necessarily finite. We defineCrGs to be the vector space spanned by the elements
of G. This means that any element ofCrGs is a linear combination of the form

ÿ

gPG

λg g,

where the coefficientsλg are complex numbers, all of which are zero except for
a finite number. We also assume that the settgugPG is a basis ofCrGs, which is
equivalent to the implication

˜ÿ

gPG

λg g “ 0

¸
ñ

`
λg “ 0 for all g P G

˘
.

The vector spaceCrGs is equipped with a product, often called theconvolution
product, defined by the formula

˜ÿ

gPG

λg g

¸˜ÿ

gPG

µg g

¸
“

ÿ

gPG

˜ÿ

hPG

λh µh´1g

¸
g.

The convolution product possesses a unit, which is 1CrGs “ e, wheree is the unit
of the groupG. The algebraCrGs is called theconvolution algebraof G, or simply
thegroup algebraof G.

We now claim thatCrGs is a Hopf algebra. Its coproduct, counit, and antipode
are given by

(4.17) ∆

˜ÿ

gPG

λg g

¸
“

ÿ

gPG

λg g b g, ε

˜ÿ

gPG

λg g

¸
“

ÿ

gPG

λg,

(4.18) S

˜ÿ

gPG

λg g

¸
“

ÿ

gPG

λg g´1 “
ÿ

gPG

λg´1 g.

We can see on Formula (4.17) for the coproduct that∆op “ ∆, which means that
the Hopf algebraCrGs is cocommutative. By Proposition 4.13 (b) this implies that
the antipodeS is an involution, which can easily be seen on (4.18).

Exercise 4.15.Prove the claims in Sect. 4.4.2.

Exercise 4.16.(Duality between the function algebra and the group algebra) LetG
be afinite group. Define a bilinear formOpGq ˆ CrGs Ñ C by

C
u,
ÿ

gPG

λg g

G
“

ÿ

gPG

λg upgq

for all u P OpGq, g P G, andλg P C. It induces a linear mapω : OpGq Ñ CrGsˇ by
ωpuq “ xu,´y (u P OpGq). Recall thatCrGsˇ is the dual Hopf algebra ofCrGs, as
defined in Exercise 4.4. Prove the following:

(i) The linear mapω : OpGq Ñ CrGsˇ is bijective.
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(ii) For all u, v P OpGq, g, h P G we have

xuv, gy “ xu, gy xv, gy,
x∆puq, g b hy “ xu, ghy,

εpuq “ xu, ey,
xSpuq, gy “ xu, g´1y.

(iii) Deduce thatω : OpGq Ñ CrGsˇ is an isomorphism of Hopf algebras.

Exercise 4.17.(Duality for finite abelian groups)Let G be a finiteabeliangroup
and pG “ HompG,Cˆq be its group of characters. We recall that acharacterof G is
a group homomorphism fromG to the multiplicative groupCˆ of non-zero com-
plex numbers. Since any element ofG is of finite order, the values of a character
of G are roots of unity, which are complex numbers of modulus 1.

The setpG is a group under pointwise multiplication; it is also calledthe Pon-
tryagin dualof G.

(i) Show that {G1 ˆ G2 – xG1ˆxG2 wheneverG1 andG2 are finite abelian groups.
(ii) Determine all characters of a cyclic group of ordern and conclude that there

is a (non-unique) isomorphismyZ{n – Z{n.
(iii) Deduce from (i) and (ii) thatpG – G for any finite abelian groupG.

Exercise 4.18.(The Hopf algebrasCrGs andOp pGq) LetG be a finite abelian group
and pG be its group of characters, as defined in the previous exercise. Consider
the function algebraOp pGq, which is a Hopf algebra by Sect. 4.4.1. Observe that
this Hopf algebra is not only commutative, but also cocommutative sincepG is
abelian (see Formula (4.16) for the coproduct). On the otherhand we have the
cocommutative Hopf algebraCrGs, which is commutative becauseG is abelian.
Prove that the linear mapCrGs Ñ Op pGq defined byg P G ÞÑ pχ ÞÑ χpgqq

χP pG is an
isomorphism of Hopf algebras.

Exercise 4.19.(Group-like elements)
(a) Show that the only group-like elements of a group algebraCrGs are of the

form
ř

gPG λg g, where all coefficientsλg are zero, except for exactly one, which
is equal to 1. Deduce a group isomorphism GrpCrGsq – G.

(b) Given a finite groupG, show that an elementu P OpGq is group-like if and
only if upeq “ 1 andupghq “ upgquphq for all g, h P G, i.e. if and only ifu is a
character ofG. Deduce a group isomorphism GrpOpGqq – pG “ HompG,Cˆq.

4.5. The Heyneman–Sweedler sigma notation.Let H be a Hopf algebra with
coproduct∆, counitε and antipodeS. It is often convenient to use the following
notation (due to Heyneman and Sweedler) for the image of an elementx P H under
the coproduct:

∆pxq “
ÿ

pxq

xp1q b xp2q.

The coassociativity identity (4.8) expressed in this notation becomes
ÿ

pxq

pxp1qqp1q b pxp1qqp2q b xp2q “
ÿ

pxq

xp1q b pxp2qqp1q b pxp2qqp2q.
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To simplify we will express both sides of the previous equality by
ÿ

pxq

xp1q b xp2q b xp3q.

In this notation the counitality identity (4.9) becomes

(4.19)
ÿ

pxq

εpxp1qq xp2q “ x “
ÿ

pxq

xp1q εpxp2qq.

The defining equation (4.12) for the antipode becomes

(4.20)
ÿ

pxq

Spxp1qq xp2q “ εpxq1 “
ÿ

pxq

xp1q Spxp2qq.

The fact that∆ is a morphism of algebras can be expressed in this notation by

ÿ

pxyq

pxyqp1q b pxyqp2q “

¨
˝ÿ

pxq

xp1q b xp2q

˛
‚
¨
˝ÿ

pyq

yp1q b yp2q

˛
‚.

It is convenient to write the previous right-hand side simply as
ÿ

pxqpyq

xp1qyp1q b xp2qyp2q.

5. Quantum groups associated with S L2pCq
In this section we will present two Hopf algebras which were discovered in

the 1980’s and are quantizations of the special linear groupS L2pCq and of its Lie
algebraslp2q, the latter consisting of all 2̂ 2-matrices of trace 0. These Hopf
algebras depend on a parameterq. They have the particularity of being neither
commutative, nor cocommutative. They are instances of so-calledquantum groups.

The term “quantum group” was introduced by Drinfeld in his Berkeley 1986
ICM address [18]3. As we mentioned in the introduction, the discovery of quantum
groups was a major event with spectacular applications in representation theory,
low-dimensional topology and theoretical physics. The reader may learn more on
quantum groups in the monographies [11, 29, 31, 37, 42].

5.1. The quantum coordinate algebra ofS L2pCq. In Sect. 4.1 we considered the
special linear groupS LNpCq and its coordinate algebra

OpS LNpCqq “ Crpai, jq1ďi, jďNs{pdetpai, jq ´ 1q.
Let us now restrict to the caseN “ 2. For simplicity, set SLp2q “ OpS L2pCqq.

We have
SLp2q “ Cra, b, c, ds{pad ´ bc´ 1q,

wherea “ a1,1, b “ a1,2, c “ a2,1 andd “ a2,2. We can rewrite Formulas (4.5)–
(4.7) for the coproduct∆, the counitε and the antipodeS of the Hopf algebra SLp2q
in the following compact matrix form:

(5.1) ∆

ˆ
a b
c d

˙
“

ˆ
a b
c d

˙
b
ˆ

a b
c d

˙
,

3Drinfeld along with other invited mathematicians from the Soviet Union was prevented by the
Soviet authorities to attend the conference; in Drinfeld’sabsence his contribution was read by Cartier.
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(5.2) ε

ˆ
a b
c d

˙
“

ˆ
1 0
0 1

˙
,

(5.3) S

ˆ
a b
c d

˙
“

ˆ
d ´b

´c a

˙
.

This is a compact version for the formulas

∆paq “ a b a ` b b c, ∆pbq “ a b b ` b b d,

∆pcq “ c b a ` d b c, ∆pdq “ c b b ` d b d,

εpaq “ εpdq “ 1, εpbq “ εpdq “ 0,

Spaq “ d, Spbq “ ´b, Spcq “ ´c, Spdq “ a.

The Hopf algebra SLp2q is commutative, but not cocommutative, which can be
seen for instance on the formula for∆paq. Its antipode is clearly an involution,
which follows of course from the fact that the map inv :g ÞÑ g´1 is involutive.

Now we introduce anon-commutative deformationof the Hopf algebra SLp2q.
The deformation depends on a parameterq which we take to be a non-zero complex
number. Define SLqp2q to be the algebra generated by four generatorsa, b, c, d
subject to the relations

ba “ qab, ca “ qac,

db “ qbd, dc “ qcd,

bc “ cb, ad ´ da “ pq´1 ´ qq bc,

ad ´ q´1bc “ 1.

If q “ 1, the previous relations reduce to the fact that the generators a, b, c, d
commute and satisfy the additional relationad´bc “ 1. Thus in this case, we have
SLqp2q “ SLp2q. If q ‰ 1, then clearly SLqp2q is not commutative, so it cannot be
isomorphic to SLp2q.

The algebra SLqp2q is a Hopf algebra. Its coproduct∆ and counitε are given by
the same formulas as for SLp2q, namely by (5.1) and (5.2). However the antipodeS
of SLqp2q is given, not by (5.3), but by another formula (depending onq), namely
in compact matrix form by

(5.4) S

ˆ
a b
c d

˙
“
ˆ

d ´qb
´q´1c a

˙
.

The Hopf algebra SLqp2q provides our first example of a Hopf algebra that is
(for generalq) neither commutative, nor cocommutative, and with non-involutive
antipode (for the latter, see Exercise 5.2 below). The Hopf algebra SLqp2q is a
quantizationof the coordinate algebra SLp2q; this is another way of saying that
SLqp2q is a deformation of SLp2q as a Hopf algebra.

The Hopf algebra SLqp2q is an example of aquantum group. The Hopf algebras
OpGLNpCqq andOpS LNpCqq can be quantized in a similar fashion.
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Exercise 5.1.(a) Compute the following expressions in SLqp2qbSLqp2q involving
the coproduct∆ defined by (5.1):

∆pbq∆paq ´ q∆paq∆pbq, ∆pcq∆paq ´ q∆paq∆pcq,
∆pdq∆pbq ´ q∆pbq∆pdq, ∆pdq∆pcq ´ q∆pcq∆pdq,
∆pbq∆pcq ´ ∆pcq∆pbq, ∆paq∆pdq ´ q´1∆pbq∆pcq ´ 1 b 1,

∆paq∆pdq ´ ∆pdq∆paq ´ pq ´ q´1q∆pbq∆pcq.
Deduce that∆ : SLqp2q Ñ SLqp2q b SLqp2q is a morphism of algebras.

(b) Check that SLqp2q satisfies all axioms of a Hopf algebra.

Exercise 5.2.(The square of the antipode)
(a) Use (5.4) to compute the squareS2 of the antipode of SLqp2q on the genera-

torsa, b, c, d.
(b) Show thatS2 has infinite order ifq is not a root of unity.
(c) If q “ exppπ

?
´1{Nq for some integerN ą 1, prove thatS2 is a Hopf

algebra automorphism of SLqp2q of orderN.

Exercise 5.3.Forε “ ˘1 define SLpεqp2q to be the algebra generated byX,Y,Z,T
and the relationsXY “ YX, XZ “ ZX, XT “ TX, YZ “ εZY, YT “ εTY,
ZT “ εTZ andX2 ´ εY2 ´ εZ2 ` εT2 “ 1.

(a) Letε “ 1. Show that there is an algebra isomorphismϕ : SLpεqp2q Ñ SLp2q
such thatϕpXq “ pa`dq{2,ϕpYq “ pa´dq{2,ϕpZq “ pb`cq{2,ϕpTq “ pb´cq{2.
Deduce AlgpSLpεqp2q,Cq – S L2pCq.

(b) Letε “ ´1. Show that AlgpSLpεqp2q,Cq is the union of three quadrics lying
in three distinct planes (for further details, see [22, Sect. 4.2]).

5.2. A quotient of SLqp2q. Let q be again a non-zero scalar. Consider the algebra
CqrX,X´1,Ys generated by three generatorsX,X´1,Y subject to the relations

XX´1 “ X´1X “ 1, YX “ qXY.

This algebra is non-commutative whenq ‰ 1. Proceeding as in Exercise 3.6, the
reader may check that the settXiY ju wherei runs overZ and j overN is a basis
of CqrX,X´1,Ys. The algebraCqrX,X´1,Ys contains the quantum planeCqrX,Ys
of Sect. 3.2.2 as a subalgebra.

The algebraCqrX,X´1,Ys has the structure of a Hopf algebra with coproduct∆,
counitε and antipodeS given on the generatorsX,Y by

(5.5) ∆pXq “ X b X, ∆pYq “ X b Y ` Y b X´1,

(5.6) εpXq “ 1, εpYq “ 0, SpXq “ X´1, SpYq “ ´qY.

The formula for∆pYq shows thatCqrX,X´1,Ys is a non-cocommutative Hopf al-
gebra.

Moreover,CqrX,X´1,Ys is a quotient of the Hopf algebra SLqp2q introduced in
Sect. 5.1; we have the following precise statement, whose proof we leave to the
reader.

Lemma 5.4. There is a surjective morphism of Hopf algebras

π : SLqp2q Ñ CqrX,X´1,Ys
such thatπpaq “ X, πpbq “ Y,πpcq “ 0, andπpdq “ X´1.
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Since the morphismπ kills the generatorc of SLqp2q, we can seeCqrX,X´1,Ys
as a quantization of the coordinate algebra of the subgroupB of upper triangular
matrices inS L2pCq.
5.3. The quantum enveloping algebra ofslp2q. We now describe another impor-
tant quantum group, which is dual to the quantum group SLqp2q in a sense which
will be made precise in Lemma 5.5 below.

This new algebra, denotedUq slp2q, also depends on a non-zero complex param-
eterq; we furthermore assumeq ‰ ˘1, so thatq ´ q´1 ‰ 0.

We defineUq slp2q to be the algebra generated by four elementsE, F,K,K´1

subject to the relations
KK´1 “ K´1K “ 1,

KE “ q2EK, KF “ q´2FK,

EF ´ FE “ K ´ K´1

q ´ q´1
.

The algebraUq slp2q is called thequantum enveloping algebra4 of the Lie alge-
braslp2q. The settEiF jKℓui, jPN; ℓPZ is a basis ofUq slp2q considered as a complex
vector space (for a proof, see [31, Prop. VI.1.4]).

The algebraUq slp2q is a Hopf algebra with coproduct∆, counit ε, and an-
tipodeS given on the generators by

∆pK˘1q “ K˘1 b K˘1, εpK˘1q “ 1, SpK˘1q “ K¯1,

∆pEq “ 1 b E ` E b K, εpEq “ 0, SpEq “ ´EK´1,

∆pFq “ K´1 b F ` F b 1, εpFq “ 0, SpFq “ ´q´1FK.

The algebraUq slp2q first appeared in a paper by Kulish and Reshetikhin; its
Hopf algebra structure is due to Sklyanin (cf. [39, 56]).

Consider the morphism of algebrasρ : Uq slp2q Ñ M2pCq given by

ρpK˘1q “
ˆ

q˘1 0
0 q¯1

˙
, ρpEq “

ˆ
0 1
0 0

˙
, ρpFq “

ˆ
0 0
1 0

˙
.

It is a two-dimensional representation ofUq slp2q. For anyu P Uq slp2q, the matrix
ρpuq is of the form

ρpuq “
ˆ

Apuq Bpuq
Cpuq Dpuq

˙
.

This equality defines four linear formsA, B,C,D on Uq slp2q, hence four elements
A, B,C,D on the dual algebraUq slp2qˇ whose product is given by (4.10).

Lemma 5.5. There is a unique morphism of algebrasψ : SLqp2q Ñ Uq slp2qˇ such
that

ψpaq “ A, ψpbq “ B, ψpcq “ C, ψpdq “ D.

For a proof we refer to [31, Sect. VII.4]. Takeuchi [60] showed thatψ is injec-
tive; thus SLqp2q embeds into the dual of the quantum enveloping algebraUq slp2q.
Actually, the image of the morphismψ lies inside the restricted dual Hopf alge-
braUq slp2q˝, as defined in Remark 4.5.

4The concept of enveloping algebra of a Lie algebra is a classical concept of the theory of Lie
algebras; see for instance [15, 28, 31, 54]. The relationship between the quantum enveloping alge-
braUq slp2q and the enveloping algebra of the Lie algebraslp2q is explained in [31, VI.2].
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Exercise 5.6.Prove that the mapρ : Uq slp2q Ñ M2pCq defined above is a mor-
phism of algebras. Give a proof of Lemma 5.5.

Exercise 5.7.Check that the group-like elements ofUq slp2q consist of the powers
Kk of K (k P Z).

Exercise 5.8.Show that the following element ofUq slp2q belongs to its center:

EF ` q´1K ` qK´1

pq ´ q´1q2
.

Remark 5.9. Drinfeld [17, 18] and Jimbo [30] generalized the construction of
Uq slp2q to any symmetrizable Kac–Moody Lie algebrag. The resulting Hopf al-
gebraUq g is a quantization of the universal enveloping algebra ofg.

5.4. A finite-dimensional quotient of Uq slp2q. The quantum enveloping algebra
Uq slp2q has an interesting quotient whenq is a root of unity of orderd (d ě 3
sinceq ‰ ˘1). Assumeq is such a root of unity. Sete “ d if d is odd, ande “ d{2
if d is even; we havee ě 2.

Let I be the two-sided ideal ofUq slp2q generated byEe, Fe andKe ´ 1. Define
the quotient algebra

ud “ Uq slp2q{I .

It can be shown that the settEiF jKℓu1ďi, j,ℓďé 1 of elements ofUq slp2q maps to a
basis ofud (for a proof, see [31, Prop. VI.5.8]). Therefore,ud is finite-dimensional
of dimension equal toe3.

Moreover, there is a unique Hopf algebra structure onud such that the natural
projectionUq slp2q Ñ ud is a morphism of Hopf algebras (see [31, Prop. IX.6.1]).

Exercise 5.10.Let q be a root of unity of orderd ě 3 ande as above. Show that
the elementsEe, Fe, Ke lie in the center ofUq slp2q.

We will come back toUq slp2q andud in Sect. 8.3.

6. Group actions in non-commutative geometry

Our next step is to extend the concept of a group action to the world of non-
commutative spaces. We need to introduce the concept of a comodule algebra over
a Hopf algebra. As we shall see, such a concept covers varioussituations.

6.1. Comodule-algebras.Fix a Hopf algebraH with coproduct∆ and counitε.

Definition 6.1. A (right) H-comodule algebrais an (associative unital) algebra A
equipped with a morphism of algebrasδ “ A Ñ A b H, called thecoaction,
satisfying the following properties:

(a) (Coassociativity)

(6.1) pδ b idHq ˝ δ “ pidA b∆q ˝ δ,
(b) (Counitarity)

(6.2) pidA b εq ˝ δ “ idA,

where we have identified Ab C with A.
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Any H-comodule algebraA contains a subalgebra, which will turn out to be of
importance to us, namely the subalgebra ofA on which the coactionδ is trivial:

Acó H “ ta P A | δpaq “ a b 1u .
The elements ofAcó H are calledcoinvariant.

Exercise 6.2. Show thatAcó H is a subalgebra ofA and that the unit 1A of A
belongs toAcó H.

The following example of a comodule algebra shows that this concept extends
group actions to non-commutative algebra.

Example 6.3. Let G be a finite group acting on the right on a finite setX. Then the
action, which is a mapX ˆ G Ñ X induces a morphism of algebrasδ between the
corresponding function algebras

δ : OpXq Ñ OpX ˆ Gq “ OpXq b OpGq.
Equipped withδ, the algebraOpXq becomes anH-comodule algebra for the Hopf
algebraH “ OpGq.

Let Y “ X{G be the set of orbits of the action ofG on X. Then the projection
X Ñ Y sending each elementx P X to its orbit xG induces an injective morphism
of algebrasOpYq Ñ OpXq. It can be checked thatOpYq coincides with the subal-
gebraOpXqcó OpGq of coinvariant elements ofOpXq.
Example 6.4. In Definition 6.1 setA to be equal to the Hopf algebraH and the
coactionδ to be equal to the coproduct∆ of H. ThenH becomes anH-comodule
algebra. We claim that any coinvariant elementx P H is a scalar multiple of the
unit 1 of H. Indeed, applyingεb id to both sides of the equality∆pxq “ xb 1 and
using (4.9), we obtainx “ εpxq 1, which yields the desired conclusion.

We now give more examples of comodule algebras.

6.2. Group-graded algebras. Let G be a group.

Definition 6.5. A G-graded algebrais an algebra A together with a vector space
decomposition

A “
à
gPG

Ag,

where each Ag is a linear subspace of A such that
(a) AgAh Ă Agh for all g, h P G, which means that the product ab belongs to Agh

whenever aP Ag and bP Ah;
(b) the unit1A of A is in Ae, where e is the unit of the group G.

It follows from the definition thatAe is a subalgebra ofA and that eachAg is an
Ae-bimodule under the product ofA.

WhenG “ Z{2 is the cyclic group of order 2, then aG-graded algebra is often
called asuperalgebra.

We next show that aG-graded algebra is the same as aCrGs-comodule alge-
bra, whereCrGs is the convolution algebra of the groupG with its Hopf algebra
structure defined in Sect. 4.4.2 (see also [7, Lemma 4.8]).

Proposition 6.6. (a) Any G-graded algebra A is aCrGs-comodule algebra. More-
over, Acó CrGs “ Ae.

(b) Conversely, anyCrGs-comodule algebra is a G-graded algebra.
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Proof. (a) We define a linear mapδ : A Ñ A b CrGs by

δpaq “ a b g for all a P Ag.

The mapδ is a morphism of algebras in view of Conditions (a) and (b) of Defi-
nition 6.5. Let us check the coassociativity and counitarity conditions of Defini-
tion 6.1 forδ. Firstly, for anya P Ag,

pδ b idHq ˝ δpaq “ pδ b idHqpa b gq “ a b g b g.

Similarly,

pidA b∆q ˝ δpaq “ pidA b∆qpa b gq “ a b g b g

in view of (4.17). Therefore,pδ b idHq ˝ δ “ pidA b∆q ˝ δ holds on each sub-
spaceAg, hence onA. Secondly, for anya P Ag,

pidA b εq ˝ δpaq “ pidA b εqpa b gq “ aεpgq “ a

again in view of (4.17).
The inclusionAe Ă Acó CrGs follows from the definition ofδ and from the fact

that e is the unit ofCrGs. Let us prove the converse inclusion. For a general
elementa “ ř

gPG ag P A with eachag P Ag, we have

δpaq “
ÿ

gPG

ag b g.

Since the elementsg P G are linearly independent inCrGs, we see that, ifa is
coinvariant, i.e.,δpaq “ a b e, thenag “ 0 for all g ‰ e. Thus any coinvariant
element belongs toAe.

(b) Assume now thatA is aCrGs-comodule algebra with coactionδ. Using the
natural basistgugPG of CrGs, we can expandδpaq P A b CrGs for any a P A
uniquely as

δpaq “
ÿ

gPG

pgpaq b g

where eachpgpaq belongs toA. It is clear thata ÞÑ pgpaq defines a linear endo-
morphismpg of A.

Let us now express the coassociativity of the coactionδ. On one hand, we have

pδ b idHq ˝ δpaq “ pδ b idHq
˜ÿ

gPG

pgpaq b g

¸
“

ÿ

gPG

ÿ

hPG

phppgpaqq b h b g.

On the other hand,

pidA b∆q ˝ δpaq “ pidA b∆q
˜ÿ

gPG

pgpaq b g

¸
“

ÿ

gPG

pgpaq b g b g.

Identifying both right-hand sides in view of (6.1), we obtain

(6.3) ph ˝ pg “
#

pg if g “ h,

0 otherwise.
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Next, the counitarity condition (6.2) implies that

a “ pidA b εq ˝ δpaq “ pidA b εq
˜ÿ

gPG

pgpaq b g

¸

“
ÿ

gPG

pgpaq εpgq “
ÿ

gPG

pgpaq.

In other words,

(6.4)
ÿ

gPG

pg “ idA .

Define the linear subspaceAg “ pgpAq of A for all g P G. The equality (6.4)
implies

ř
gPG Ag “ A. Let us check that this sum is a direct sum. Indeed, let us

assume that
ř

gPG pgpagq “ 0 in A for a family pagq of elements ofA and applyph

to it for a fixed elementh P G. By (6.3), we obtain

0 “ ph

˜ÿ

gPG

pgpagq
¸

“
ÿ

gPG

phppgpagqq “ phpahq.

Since this holds for anyh P G, we see that each summand in the sum
ř

gPG pgpagq
vanishes.

We claim thatδpaq “ a b g for anya P Ag. Indeed, an element ofAg is of the
form a “ pgpa1q for somea1 P A. Using (6.3), we obtain

δpaq “
ÿ

hPG

phpaq b h “
ÿ

hPG

phppgpa1qq b h “ pgpa1q b g “ a b g.

It remains to check thatab belongs toAgh for all a P Ag andb P Ah, and that 1A
belongs toAe. For the first requirement, we haveδpaq “ a b g andδpbq “ b b h.
Sinceδ is a morphism of algebras, we have

δpabq “ δpaqδpbq “ pa b gqpb b hq “ abb gh,

which proves that the productabbelongs toAgh.
For the second requirement, we haveδp1Aq “ 1A b e; thus, the unit of the

algebra belongs to the componentAe indexed by the uniteof the group. � �

Let us give a few examples of group-graded algebras.

Example 6.7. By Example 6.4 we know that the Hopf algebraCrGs is itself a
CrGs-comodule algebra with coaction equal to the coproduct∆ of CrGs. Since
∆pgq “ g b g by (4.17), we deduce from Proposition 6.6 and its proof thatCrGs
is a G-graded algebraCrGs “

À
gPG Ag, where eachg-componentAg is one-

dimensional and consists of all scalar multiples of the elementg.

Example 6.8. (Gradings on matrix algebras)
(a) Consider the algebraMNpCq of N ˆ N-matrices. LetEi, j P MNpCq be the

matrix whose entries are all zero, except for thepi, jq-entry which is equal to 1.
TheN2 matricesEi, j (1 ď i, j ď N) form a basis ofMNpCq.

The algebraMNpCq can be given many group gradings. Indeed, letG be a group
andpg1, . . . , gNq be anN-tuple of elements ofG. For anyg P G, let Ag be the vector
space spanned by all matricesEi, j such thatgig

´1
j “ g; we setAg “ 0 is there is

no couplepi, jq such thatgig
´1
j “ g. Then the decompositionMNpCq “

À
gPG Ag

yields the structure of aG-graded algebra onMNpCq (check this claim!).
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(b) As a special case of the previous gradings, takeG “ Z{N to be the cyclic
group generated by an elementt of orderN and

pg1, . . . , gNq “ pe, t, t2, . . . , tN´1q.
Then MNpCq has a gradingMNpCq “

ÀN´1
k“0 Atk for which Atk consists of all

matricespai, jq1ďi, jďN such thatai, j “ 0 if i ´ j ı k pmod Nq. In particular,Ae is
the subalgebra of diagonal matrices. EachAtk is N-dimensional.

Example 6.9. LetH be the four-dimensional algebra ofcomplex quaternions. Re-
call that it has a basist1, i, j, ku such that the multiplication ofH is given by the
following rules : 1 is the unit and

i2 “ j2 “ k2 “ ´1, i j “ ´ ji “ k, jk “ ´k j “ i, ki “ ´ik “ j.

The algebraH is G-graded, whereG is the grouppZ{2q2 of order 4: we have

Ap0,0q “ C 1, Ap1,0q “ C i, Ap0,1q “ C j, Ap1,1q “ C k.

There is an isomorphism of algebrasψ : HÑ M2pCq given by

ψp1q “
ˆ

1 0
0 1

˙
, ψpiq “

ˆ
0

?
´1?

´1 0

˙
,

ψp jq “
ˆ

0 ´1
1 0

˙
, ψpkq “

ˆ?
´1 0
0 ´

?
´1

˙
.

This isomorphism induces apZ{2q2-grading onM2pCq. Such a grading is not of
the form presented in Example 6.8 (b) above.

6.3. Algebras with group actions. Let G be a group.

Definition 6.10. A G-algebrais an algebra A together with a group homomorphism
ρ : G Ñ AutpAq such that eachρpgq is an algebra automorphism of A.

The subspaceAG consisting of all elementsa P A such thatρpgqpaq “ a for all
g P A forms a subalgebra ofG. The elements ofAG are calledG-invariants.

Any algebra has the structure of aG-algebra withG taken to be (a subgroup
of) the group of algebra automorphisms ofA. Let us give a few more examples of
G-algebras.

Example 6.11. If K is a finiteGalois extensionof a number fieldk with Galois
groupG, thenG acts by automorphisms onK and we haveKG “ k.

Example 6.12.The general linear groupGLNpCq acts by conjugation on the matrix
algebraMNpCq. The GLNpCq-invariants are the scalar multiples of the identity
matrix.

Assume now that the groupG is finite. Consider the Hopf algebraOpGq (intro-
duced in Sect. 4.4.1) and its basistδgugPG of δ-functions.

Proposition 6.13. (a) Any G-algebra A is anOpGq-comodule algebra with coac-
tion δ : A Ñ A b OpGq given for all aP A by

δpaq “
ÿ

gPG

ρpgqpaq b δg.

Moreover, the subalgebra Acó OpGq of coinvariant elements coincides with the sub-
algebra AG of G-invariant elements of A:

Acó OpGq “ AG.
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(b) Conversely, anyOpGq-comodule algebra is a G-algebra.

The proof is left to the reader, who is invited to take inspiration from the proof
of Proposition 6.6.

6.4. The quantum plane and itsSLqp2q-coaction. The special linear groupS L2pCq
acts on the two-dimensional vector spaceC2 by matrix multiplication. As a spe-
cial case of Example 6.3, the coordinate algebraCrX,Ys of C2 becomes a SLp2q-
comodule algebra. Recall from Sect. 5.1 that

SLp2q “ Cra, b, c, ds{pad ´ bc´ 1q
is the coordinate algebra ofS L2pCq. It is easy to check that the corresponding
coactionδ : CrX,Ys Ñ CrX,Ys b S L2pCq is given by

(6.5) δpX,Yq “ pX,Yq b
ˆ

a b
c d

˙
,

which is short for

δpXq “ X b a ` Y b c and δpYq “ X b b ` Y b d.

In Sect. 5.1 we quantized SLp2q using a complex parameterq ‰ 0. We now
proceed to quantize the previous coaction. To this end we replaceCrX,Ys by the
quantum planeCqrX,Ys “ C xX,Yy{pYX´ qXYq introduced in Sect. 3.2.2.

Theorem 6.14.The mapδ given by Formula(6.5)equips the quantum planeCqrX,Ys
with the structure of aSLqp2q-comodule algebra. Moreover, the subalgebra of
coinvariants ofCqrX,Ys isC1.

The second assertion is the non-commutative analogue of thefact that the only
point of the plane which is invariant under the action of SL2pCq is the origin.

Proof. (a) We first have to establish thatδ is a morphism of algebras. It suffices to
check thatδpYqδpXq “ qδpXqδpYq. Using (6.5), we have

δpYqδpXq “ pX b b ` Y b dqpX b a ` Y b cq
“ X2 b ba` YXb da` XYb bc` Y2 b dc.

Similarly,

δpXqδpYq “ pX b a ` Y b cqpX b b ` Y b dq
“ X2 b ab` YXb cb` XY b ad ` Y2 b cd.

Now using the defining relations of SLqp2q and the relationYX “ qXY, we obtain

δpYqδpXq ´ qδpXqδpYq “ X2 b pba´ qabq ` YXb pda´ qcbq
`XYb pbc´ qadq ` Y2 b pdc´ qcdq

“ XYb qpda´ qcb` q´1bc´ adq
“ ´XYb qpad ´ da´ pq´1 ´ qqbcq “ 0.

The mapδ being a morphism of algebras, it is enough to check its coassociativity
and its counitarity on the generatorsX,Y, which is easy to do.

(b) Let ω P CqrX,Ys be a coinvariant element, i.e.δpωq “ ω b 1. Recall
the morphism of Hopf algebrasπ : SLqp2q Ñ CqrX,X´1,Ys of Lemma 5.4. The
composed map

δ1 “ pid b πq ˝ δ : CqrX,Ys Ñ CqrX,Ys b CqrX,X´1,Ys
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turns the quantum planeCqrX,Ys into aCqrX,X´1,Ys-comodule algebra. We have
δ1pωq “ pid b πqpω b 1q “ ω b πp1q “ ω b 1. Thusω is coinvariant for the
CqrX,X´1,Ys-coaction. Now it follows from (6.5) and the formula forπ that

δ1pXq “ X b πpaq ` Y b πpcq “ X b X

and
δ1pYq “ X b πpbq ` Y b πpdq “ X b Y ` Y b X´1.

Comparing with Formula (5.5) for the coproduct∆ of the Hopf algebraCqrX,X´1,Ys,
we see thatδ1 is the restriction of∆ to the subalgebraCqrX,Ys. It follows from this
remark and from Example 6.4 thatω is a scalar multiple of the unit ofCqrX,X´1,Ys,
which is also the unit ofCqrX,Ys. � �

Exercise 6.15.Let q be a non-zero complex number. For any integerr ą 0 define
theq-integerrrs by

rrs “ 1 ` q ` ¨ ¨ ¨ ` qr´1 “ qr ´ 1
q ´ 1

.

and theq-factorial rrs! by

rrs! “
rź

k“1

rks “ pq ´ 1qpq2 ´ 1q ¨ ¨ ¨ pqr ´ 1q
pq ´ 1qr .

We agree thatr0s! “ 1. For 0ď r ď n we define theq-binomial coefficient
„
n
r


“ rns!

rrs! rn ´ rs! .

(a) For 0ă r ă n show the followingq-analogue of thePascal identity
„
n
r


“
„
n ´ 1
r ´ 1


` qr

„
n ´ 1

r


.

(b) LetX,Y be variables subject to the relationYX “ qXY. Prove theq-binomial
formula

pX ` Yqn “
nÿ

r“0

„
n
r


XrYn´r .

Exercise 6.16.Recall the basistXiY jui, jPN of the quantum planeCqrX,Ys. Com-
puteδpXiY jq for the coaction (6.5).

6.5. Quantum homogeneous spaces.Let G be an algebraic group andG1 be an
algebraic subgroup. To this data we associate thehomogeneous space G{G1, whose
elements are the left cosetsgG1 of G1 in G with respect tog P G; in other words,
two elementsg1, g2 P G represent the same element ofG{G1 if and only if there
existsg1 P G1 such thatg2 “ g1g1.

To the inclusioni : G1
ãÑ G corresponds the morphism of Hopf algebrasπ “

i˚ : OpGq Ñ OpG1q, which sends a functionu P OpGq to its restriction toG1. The
mapπ is surjective. The composition

δ “ pid b πq ˝ ∆ : OpGq Ñ OpGq b OpG1q
turnsOpGq into anOpG1q-comodule algebra. Let us consider the subalgebra

OpGqcó OpG1q Ă OpGq
of coinvariant elements.
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Lemma 6.17.An element uP OpGq belongs to the subalgebraOpGqcó OpG1q if and
only if upgg1q “ upgq for all g P G and g1 P G1.

Proof. IdentifyingOpGq bOpG1q with OpGˆG1q and using Formula (4.16) for the
coproduct ofOpGq, we see that the above coactionδ sends an elementu P OpGq to
the functionδpuq P OpG ˆ G1q given by

δpuqpg, g1q “ upgg1q
for all g P G andg1 P G1. Such an elementu is coinvariant if and only ifδpuq “
ub 1, which is equivalent toδpuqpg, g1q “ upgq1 for all g P G andg1 P G1. � �

It follows from the lemma and the above description ofG{G1 that the subal-
gebraOpGqcó OpG1q of coinvariant elements can be identified with the coordinate
algebraOpG{G1q of the homogeneous spaceG{G1.

The non-commutative analogue of a homogeneous space is the following. Let
π : H Ñ H̄ be a surjective morphism of Hopf algebras. The map

δ “ pid b πq ˝ ∆ : H Ñ H b H̄

turns H into an H̄-comodule algebra. Let us consider the subalgebraHcó H̄ of
coinvariant elements; by analogy with the previous classical case we callHcó H̄ a
quantum homogeneous space.

This general construction provides many examples of quantum homogeneous
spaces; see [9, 14, 24, 25, 40, 41, 50, 53]. We have already encountered such a sit-
uation with the surjective morphism of Hopf algebrasπ : SLqp2q Ñ CqrX,X´1,Ys
in Sect. 5.2, whereCqrX,X´1,Ys has been hinted at as a quantization of the co-
ordinate algebra of the subgroupB of upper triangular matrices inS L2pCq. It is
well known that the homogeneous spaceS L2pCq{B is in bijection with thepro-
jective lineCP1. Therefore the subalgebra SLqp2qcó CqrX,X´1,Ys can be seen as a
quantization ofCP1.

7. Hopf Galois extensions

It was noticed in the 1990’s (see [9, 19, 53]) that the right non-commutative
version of a principal fiber bundle is the concept of a Hopf Galois extension, a
notion which had been introduced in the 1960’s by algebraists in order to extend
the classical Galois theory of field extensions to a more general framework.

Let us now define Hopf Galois extensions. The use of the word “Galois” in this
expression will be justified by Example 7.4 below.

7.1. Definition and examples.

Definition 7.1. Let H be a Hopf algebra and B an (associative unital) algebra.An
H-Galois extensionof B is an H-comodule algebra A with coactionδ : A Ñ Ab H
such that the following three conditions hold:

(i) A contains B as a subalgebra;
(ii) B “ Acó H “ ta P A | δpaq “ a b 1u;
(iii) the linear map

(7.1) β : A b A Ñ A b H ; a b a1 ÞÑ pa b 1q δpa1q

induces a linear isomorphism AbB A –ÝÑ A b H.
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Let us comment on Condition (iii). Firstly, the vector spaceA bB A is by defini-
tion the quotient ofA b A by the subspaceU spanned by all tensors of the form

abb a1 ´ a b ba1. pa, a1 P A, b P Bq
Condition (iii) implies that the mapβ factors through the quotient spaceA bB A.
Let us check this: it is enough to verify thatβ vanishes on the generators of the
subspaceU. Indeed,

βpabb a1 ´ a b ba1q “ pabb 1q δpa1q ´ pa b 1q δpba1q
“ pa b 1qpb b 1q δpa1q ´ pa b 1q δpbq δpa1q “ 0

in view of the fact thatb is coinvariant, hence satisfiesδpbq “ b b 1.
The mapβ in Condition (iii) is the non-commutative analogue of the map γ :

G ˆ P Ñ P ˆ P defined by (2.1), and the isomorphismA bB A –ÝÑ A b H is the
non-commutative analogue of the bijectionγ : G ˆ P Ñ P ˆX P. For this reason
a Hopf Galois extension can be seen as anon-commutative principal fiber bundle.

Remark 7.2. Let A be anH-Galois extension ofB. Observe that, if dimA is finite,
then so are dimAbAand dimAbBA. In view of the isomorphismAbBA – AbH,
we deduce that the Hopf algebraH is finite-dimensional and that dimH ď dim A.
If in addition B “ C is the ground field, thenAbBA “ AbA and dim H “ dim A.

Remark 7.3. Sometimes in the definition of anH-Galois extensionA of B one also
requiresA to befaithfully flat as a leftB-module. This means that taking the tensor
productbBM with a sequence of rightB-modules produces an exact sequence if
and only if the original sequence is exact. Finite-rank freeor projective modules are
examples of faithfully flat modules. The Hopf Galois extensions we will consider
in Sect. 8 satisfy this extra condition.

According to [12, Sect. 7], Definition 7.1 was introduced to give a generalization
of Galois theory to arbitrary commutative rings, the finite group of automorphisms
in the classical theory being replaced by a Hopf algebra.

Let us now present the prototypical example of a Hopf Galois extension, which
justifies the terminology used.

Example 7.4. If K is a finite Galois extensionof a number fieldk with Galois
groupG, then by Proposition 6.13 (a) the fieldK is anOpGq-comodulek-algebra
with coactionδ given for alla P K by

δpaq “
ÿ

gPG

gab δg.

We know that the subalgebra of coinvariant elements ofK is the subalgebra of
G-invariant elements, therefore coinciding with the fieldk. The map

β : K bk K Ñ K bk OpGq
defined by (7.1) is an isomorphism (see e.g. [46, Sect. 8.1.2]). Therefore,K is an
OpGq-Galois extension ofk.

Here are more examples of Hopf Galois extensions.

Example 7.5. If P Ñ X is a principal G-bundle, thenOpPq is anOpGq-Galois
extension ofOpXq.
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Example 7.6. Let A “ Crx, x´1s be the algebra of Laurent polynomials in one
variable and letn ě 1 be an integer. We can giveA a Z{n-grading by setting
degpxiq ” i pmod nq. This is a strong grading in the sense defined above. The
algebraA becomes aCrZ{ns-Galois extension of the subalgebraB “ Crxn, x´ns.
This is the algebraic version of the principalZ{n-bundleπn : S1 Ñ S1 of Exam-
ple 2.4.

Example 7.7. (Strongly graded algebras)Let G be a group. We know (see Propo-
sition 6.6) that anyG-graded algebraA is aCrGs-comodule algebra. Recall that
the subalgebra of coinvariants is thee-compotentAe. Such a comodule algebra is
aCrGs-Galois extension ofAe if and only if A is astrongly G-graded algebra, i.e.
aG-graded algebra such thatAgAh “ Agh for all g, h P G (see [46, Th. 8.1.7]).

The matrix algebraMNpCq with theZ{N-grading given in Example 6.8 (b) and
the algebra of quaternions with thepZ{2q2-grading of Example 6.9 are strongly
graded algebras.

Remark 7.8. In classical differential geometry once one has a principalG-bundle,
one can construct a vector bundle associated with it and withan additional repre-
sentation ofG, equip this vector bundle with a connection, and derive various char-
acteristic classes. Nowadays these classical constructions have non-commutative
counterparts; for details, see [9, 14, 24, 25, 49, 62].

7.2. The classification problem. We say that twoH-Galois extensionsA,A1 of B
areisomorphicif there is an isomorphism ofH-comodule algebrasA Ñ A1.

In Sect. 2.4 (see Corollary 2.7) we showed how to classify principalG-bundles:
there exists a bijection

rX, BGs –ÝÑ IsoGpXq
which is functorial inX. Recall that IsoGpXq is the set of homeomorphism classes
of principalG-bundles with base spaceX andrX, BGs is the set of homotopy classes
of continuous maps fromX to BG.

We wish likewise to classify allH-Galois extensions ofB up to isomorphism for
a given Hopf algebraH and a given algebraB. In other words, we would like to
compute the set GalHpBq of isomorphism classes ofH-Galois extensions ofB.

So far not many general results on GalHpBq are available. Here is one.

Theorem 7.9. The setGalHpBq is non-empty.

This is a consequence of the following result.

Proposition 7.10.The tensor product algebra A“ BbH is an H-Galois extension
of B “ B b 1 with coactionδ “ idB b∆ : A “ B b H Ñ A b H “ B b H b H,
where∆ is the coproduct of H.

This Hopf Galois extension is called thetrivial Hopf Galois extension. Its iso-
morphism class is thus a special point of GalHpBq, just as the trivial principal
G-bundle is a special element of the set IsoGpXq of homeomorphism classes of
principalG-bundles with given base spaceX.

Proof. The mapδ turnsA into anH-comodule algebra. Proceeding as in Exam-
ple 6.4, we prove that the subalgebra of coinvariant elements coincides withBb1 “
B.
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Finally we have to establish that the mapβ : A bB A Ñ A b H of (7.1) is an
isomorphism. Now

A bB A “ pB b Hq bB pB b Hq “ B b H b H

andA b H “ B b H b H. It suffices to check that the mapβ1 : H b H Ñ H b H
defined for allx, y P H by

β1px b yq “ px b 1q∆pyq “
ÿ

pyq

xyp1q b yp2q

is a linear isomorphism (here again we use the Heyneman–Sweedler sigma notation
of Sect. 4.5). Define a mapβ2 in the other direction by

β2px b yq “ px b 1qpS b idqp∆pyqq “
ÿ

pyq

xSpyp1qq b yp2q.

On one hand, by (4.20) and (4.19) we have

pβ1 ˝ β2qpx b yq “
ÿ

pyq

xSpyp1qqyp2q b yp3q “
ÿ

pyq

xεpyp1qq b yp2q

“ x b
ÿ

pyq

εpyp1qqyp2q “ x b y,

which provesβ1 ˝ β2 “ idHbH. On the other,

pβ2 ˝ β1qpx b yq “
ÿ

pyq

xyp1qSpyp2qq b yp3q “
ÿ

pyq

xεpyp1qq b yp2q

“ x b
ÿ

pyq

εpyp1qqyp2q “ x b y.

This completes the proof of the bijectivity ofβ1, hence ofβ. � �

7.3. The setGalHpCq may be non-trivial. We observed in Sect. 2.1 that any fiber
bundle over a point is trivial. The corresponding result forH-Galois extensions of
the ground fieldC may not hold. To show this let us present examples of Hopf
algebrasH for which card GalHpCq ą 1.

It is convenient to introduce the following definition.

Definition 7.11. Let H be a Hopf algebra. An H-Galois objectis an H-Galois
extension ofC.

7.3.1. The case of a group algebra.Let us considerH “ CrGs for some groupG.
We now describe GalHpCq for this Hopf algebra.

By Example 7.7 we know that anyCrGs-Galois extensionA of C is a strongly
G-graded algebraA “

À
gPG Ag such thatAe “ C. Since it is strongly graded,

it follows that each componentAg is one-dimensional. Let us pick a non-zero
elementug in eachAg. Then the product structure of the algebraA is determined
by the productsuguh for each pairpg, hq of elements ofG. We have

(7.2) uguh “ λpg, hq ugh P Agh

for some scalarλpg, hq depending ong andh. Such a scalar is non-zero since by
definition the multiplication mapAg ˆ Ah Ñ Agh is surjective. Thus, the family of
scalarsλpg, hq defines a mapλ : G ˆ G Ñ Cˆ, whereCˆ “ Czt0u.
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The mapλ satisfies an additional relation calledcocyclicity, originating from the
fact that the product ofA is associative. Indeed, we havepuguhquk “ ugpuhukq for
all g, h, k P G. Using (7.2), we obtain the following equality

(7.3) λpg, hq λpgh, kq “ λph, kq λpg, hkq
for all g, h, k P G. A mapλ : G ˆ G Ñ Cˆ satisfying the identity (7.3) is called a
2-cocyclefor the groupG.

It can be checked (see any textbook on group cohomology, for instance [8]) that
the pointwise multiplication of maps fromG ˆ G to Cˆ induce an abelian group
structure on the setZ2pG,Cˆq of 2-cocycles forG.

Let us choose another non-zero elementvg in eachAg. Then we havevg “
µpgq ug for some non-zero scalarµpgq. Combining this with (7.2), we obtainvgvh “
λ1pg, hq vgh, where

(7.4) λ1pg, hq “ µpgqµphq
µpghq λpg, hq

for all g, h P G. We say that two 2-cocyclesλ, λ1 arecohomologousif they are
related by an equation of the form (7.4). It is easy to check that for any map
µ : G Ñ C

ˆ the assignmentpg, hq ÞÑ µpgqµphq{µpghq is a 2-cocycle, which
we call acoboundary. Moreover, the setB2pG,Cˆq of coboundaries is a subgroup
of Z2pG,Cˆq.

We define thesecond cohomology groupof G as the quotient

H2pG,Cˆq “ Z2pG,Cˆq{B2pG,Cˆq.
It follows from the previous arguments that we have a bijection

(7.5) GalCrGspCq – H2pG,Cˆq.
Example 7.12. It is well known (see [8, V.6]) that for a cyclic groupG (infinite or
not) we haveH2pG,Cˆq “ 0; for such a group GalCrGspCq is then trivial by (7.5),
i.e. anyCrGs-Galois object is trivial.

Example 7.13.Let G “ pZ{Nqr for some integerr ě 2. Then

H2pG,Cˆq – pZ{Nqrpr´1q{2,

which implies that GalCrGspCq ą 1 for such a group. This is of course a rather
surprising result, which again shows that non-commutativegeometry has features
which classical geometry does not have.

Example 7.14. Even more surprising, ifG “ Z
r is the free abelian group of

rankr ě 2, then
H2pG,Cˆq – pCˆqrpr´1q{2.

Hence, forr ě 2 there areinfinitely manyisomorphism classes ofCrZrs-Galois
objects.

Remark 7.15. In contrast with Example 7.12, the cohomology groupH2pZ{2,Rˆq
of the cyclic group of order 2, now with coefficients inRˆ “ Rzt0u, is not trivial:

H2pG,Rˆq “ Rˆ{pRˆq2 – Z{2.

Proceeding as above, we deduce that, up to isomorphism, there are two realZ{2-
Galois extensions ofR. The trivial one isRrZ{2s “ Rrxs{px2 ´ 1q – R ˆ R,
which has zero divisors. The second one is the fieldC “ Rrxs{px2 ` 1q of complex
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numbers. Both are two-dimensional superalgebras, with theeven part spanned by
the unit 1 and the odd part by the image ofx.

Remark 7.16. Group algebras are cocommutative Hopf algebras and by (7.5)the
group GalHpCq is abelian in this case. More generally, for anycocommutative
Hopf algebraH, the set GalHpCq has the structure of an abelian group; its product
is induced by the cotensor product5 of comodule algebras (see for example [10,
10.5.3]).

7.3.2. Taft algebras.Let N be an integerě 2 andq a root of unity of orderN. The
Taft algebraof dimensionN2 is the algebraHN2 generated by two generatorsg, x
subject to the relations

gN “ 1, xN “ 0, xg “ q gx.

It is a Hopf algebra with

∆pgq “ g b g, ∆pxq “ 1 b x ` x b g, εpgq “ 1, εpxq “ 0.

This Hopf algebra is neither commutative, nor cocommutative. WhenN “ 2, the
four-dimensional Hopf algebraH4 is known under the name ofSweedler algebra.

For anys P C consider the algebra

As “ C x G,X y{
`
GN ´ 1, XN ´ s, XG ´ qGX

˘
.

It is a rightHN2-Galois object with coaction given by

∆pGq “ G b g, ∆pXq “ 1 b x ` X b g.

By [44, Prop. 2.17 and Prop. 2.22] (see also [16]) anyHN2-Galois object is isomor-
phic to As for some scalars, and any two such Galois objectsAs andAt are iso-
morphic if and only ifs “ t. Therefore,

GalHN2 pCq – C,
which is an abelian group although the Hopf algebraHN2 is not cocommutative.

See also [5, 6, 47, 48] for the determination of GalHpCq for other finite-dimen-
sional Hopf algebrasH generalizing the Sweedler algebra.

7.3.3. The quantum enveloping algebra Uq g. Masuoka [45] determined GalHpCq
when H “ Uq g is Drinfeld–Jimbo’s quantum enveloping algebra mentionedin
Sect. 5.3, Remark 5.9. A partial result had been given in [38,Th. 4.5] under the
form of a surjection

GalHpCq։ H2pZr ,Cˆq – pCˆqrpr´1q{2,

wherer is the size of the corresponding Cartan matrix (see also [4]).

7.4. Push-forward of central Hopf Galois extensions.In Sect. 2.4 we saw that,
given a continuous mapϕ : X1 Ñ X, there is a functorial map

ϕ˚ : IsoGpXq Ñ IsoGpX1q
induced byP ÞÑ ϕ˚pPq.

In our algebraic setting we may wonder whether, given a Hopf algebraH and a
morphism of algebrasf : B Ñ B1, there exists a functorial map

f˚ : GalHpBq Ñ GalHpB1q
5The concept of the cotensor product of comodules was first introduced in [20]. See also [46, 58].
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which would be the algebraic analogue of the pull-back of bundles. The most
natural way to construct such apush-forwardmap f˚ is the following. LetA be an
H-Galois extension ofB. SinceB is a subalgebra ofA, we can considerA as a left
B-module. Given a morphism of algebrasf : B Ñ B1, we can then define the left
B1-module f˚pAq as

f˚pAq “ B1 bB A.

Here we have used the fact thatB1 is a rightB-module via the morphism of alge-
bras f . It is clear that ifg : B1 Ñ B2 is another morphism of algebras, then we
have a natural isomorphismpg ˝ f q˚pAq – g˚p f˚pAqq of B2-modules.

There is however a serious problem with this construction: in generalf˚pAq “
B1bBA is not an algebra! To circumvent this difficulty, we will restrict tocentral H-
Galois extensions, namely to those for whichB is contained in the center ofA; this
implies of course thatB is a commutative algebra (central Hopf Galois extensions
were first discussed in [52]). The algebraAH defined in Sect. 8.2.2 below is an
(important) example of a centralH-Galois extension.

We denote by ZgalHpBq the set of isomorphism classes of centralH-Galois ex-
tensions ofB. Then a morphism ofcommutativealgebrasf : B Ñ B1 induces a
push-forward mapf˚ : ZgalHpBq Ñ ZgalHpB1q given byA ÞÑ f˚pAq and satisfying
the desired functorial properties6 (see [32, 38]).

In particular, letχ : B Ñ C be a character ofB. ThenA ÞÑ χ˚pAq induces a map
χ˚ : ZgalHpBq Ñ ZgalHpCq. Observe that ZgalHpCq “ GalHpCq whenB “ C is
the ground field, as the latter is always central. In analogy with the case of a fiber
bundle (see Exercise 2.1 (a)), we callχ˚pAq “ C bB A the fiber of the H-Galois
extensionA atχ. Note thatχ˚pAq “ A{mA, wherem is the kernel ofχ.

7.5. Universal central Hopf Galois extensions.A non-commutative analogue of
the classifying spaceBG mentioned in Sect. 2.4 would be a centralH-Galois ex-
tensionAH of some commutative algebraBH such that for any commutative al-
gebraB and any centralH-Galois extensionA of B there exists a morphism of
algebrasf : BH Ñ B such thatf˚pAHq – A. In other words, we would have a
functorial surjection

AlgpBH , Bq։ ZgalHpBq
induced by f ÞÑ f˚pAHq. Here AlgpBH , Bq is the set of morphisms of algebras
fromBH to B.

Does such a centralH-Galois extensionAH exist for an arbitrary Hopf alge-
braH? It is an open question. We do not even know whether in generalthere exists
a centralH-Galois extensionBH Ă AH with a natural surjection

AlgpBH ,Cq։ ZgalHpCq “ GalHpCq
from the set of characters ofBH to the set of isomorphism classes ofH-Galois
objects. If such a surjection existed and was even bijective, then theH-Galois
objects would be classified up to isomorphism by the characters ofBH.

Example 7.17. Let us give an example for whichH-Galois objects can be classi-
fied by the characters of a commutative algebraB. Take the Taft algebraHN2 intro-
duced in Sect. 7.3.2. LetB be the polynomial algebraCrss andA “ As considered
as aCrss-module, whereAs is the Galois object defined inloc. cit. Each complex
numbersgives rise to a unique characterχs of Crss; it is tautologically defined by

6For this to hold we need the extra faithful flatness conditionmentioned in Sect. 7.1, Remark 7.3.
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χpsq “ s. The maps ÞÑ χs induces a bijectionC Ñ AlgpCrss,Cq “ AlgpB,Cq.
Now the assignmentχs ÞÑ pχsq˚pAq induces a bijection

AlgpB,Cq –ÝÑ GalHN2 pCq.
When in 2005 I lectured on Hopf Galois extensions at theXVIo Coloquio Latino-

americano de Álgebrain Colonia del Sacramento, Uruguay, I raised the question
of the existence of a universal central Hopf Galois extension. Eli Aljadeff imme-
diately suggested the use of an appropriate theory of polynomial identities, based
on his joint work [2] with Haile and Natapov on group-graded algebras. In [3] we
implemented Aljadeff’s idea, using a theory of polynomial identities for comodule
algebras. Given a Hopf algebraH and anH-comodule algebraA, we constructed a
“universalH-comodule algebra”UHpAq out of these identities. LocalizingUHpAq,
we obtained a centralH-Galois extensionAH of some commutative algebraBH,
the latter being a nice domain. The Hopf Galois extensionBH Ă AH comes with
a map of the form

AlgpBH ,Cq Ñ GalHpCq ; χ ÞÑ χ˚pAHq.
In the next section we will construct this centralH-Galois extension directly,

without passing through polynomial identities. Nevertheless the reader interested
in polynomial identities, the universalH-comodule algebraUHpAq and the precise
connection with the centralH-Galois extension constructed in Sect. 8.2, may learn
the details from [3, 34].

8. Flat deformations of Hopf algebras

De pronto me sentí poseído por un aura
de inspiración que me permitió improvisar
respuestas creíbles y chiripas milagrosas.

Salvo en las matemáticas, que no se me
rindieron ni en lo que Dios quiso.[21]

Let H be a Hopf algebra. The aim of this final section is to constructthe com-
mutative algebraBH and the centralH-Galois extensionAH of BH we have just
mentioned. WhenH is finite-dimensional, the algebraBH is the coordinate algebra
of a smooth algebraic variety whose dimension is equal to dimH. The algebraAH

is a deformation ofH as anH-comodule algebra; this deformation is parametrized
by the characters ofBH.

We conclude these notes by showing how to apply these constructions to the
quantum enveloping algebraUq slp2q and to its finite-dimensional quotientsud.

8.1. A universal construction by Takeuchi. LetC be acoalgebra, that is a vector
space equipped with two linear maps∆ : C Ñ C b C (called thecoproduct) and
ε : C Ñ C (called thecounit) satisfying the coassociativity identity (4.2) and the
counitality identity (4.3). There is a coalgebra underlying any bialgebra or any
Hopf algebra.

Takeuchi [59, Chap. IV] proved the following result.

Theorem 8.1. Given a coalgebra C, there exist a commutative Hopf algebraSC

and a morphism of coalgebras t: C Ñ SC such that for any morphism of coalge-
bras f : C Ñ H1 to a commutative Hopf algebra H1 there is a unique morphism of
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Hopf algebras
rf : SC Ñ H1

satisfying f“ rf ˝ t. The Hopf algebraSC is unique up to unique isomorphism.

We say thatSC is thefree commutative Hopf algebraover the coalgebraC. It
can be constructed as follows.

8.1.1. Construction ofSC. Pick a copytC of the underlying vector space ofC, that
is to say we assign a symboltx to each elementx P C so that the mapx ÞÑ tx is
linear and defines a linear isomorphismt : C Ñ tC. Let SymptCq be thesymmetric
algebraover the vector spacetC. It means concretely the following: iftxiuiPI is a
basis ofC, then SymptCq is the algebraCrtxi siPI of polynomials in the variablestxi .

The commutative algebra SymptCq is a bialgebra with coproduct and counit
given on the generatorstx (in terms of the Heyneman–Sweedler notation) by

(8.1) ∆ptxq “
ÿ

pxq

txp1q
b txp2q

and εptxq “ εpxq. px P Cq

In general, the bialgebra SymptCq does not have an antipode: indeed, ifx P C
is a group-like element, then by (4.15) we have∆ptxq “ tx b tx andεptxq “ 1. If
there existed an antipodeS, then it would follow from the previous equalities and
from (4.12) thatSptxqtx “ 1, henceSptxq “ 1{tx, which is not a polynomial. But
this computation gives us hope that we may turn the bialgebraSymptCq into a Hopf
algebra by using rational algebraic fractions instead of mere polynomials. This can
indeed be done thanks to the following fact.

Let us denote by Frac SymptCq the field of fractions of SymptCq: if txiuiPI is a
basis ofC, then Frac SymptCq is the algebra of rational algebraic fractions in the
variablestxi (i P I ). There exists a unique linear mapt´1 : C Ñ Frac SymptCq such
that ÿ

pxq

t´1
xp1q

txp2q
“ εpxq1 “

ÿ

pxq

txp1q
t´1
xp2q

for all x P C (for a proof, see [3, Lemma A.1]). Then the subalgebra of FracSymptCq
generated by all elementstx and t´1

x (x P C) satisfies the requirements of Theo-
rem 8.1 to be the free commutative Hopf algebraSC. This subalgebra is a Hopf
algebra with coproduct and counit given by (8.1) and the additional formulas

∆pt´1
x q “

ÿ

pxq

t´1
xp2q

b t´1
xp1q

and εpt´1
x q “ εpxq. px P Cq

The antipode is given on the generatorstx andt´1
x by

Sptxq “ t´1
x and Spt´1

x q “ tx.

To check the universal property in Theorem 8.1, define the morphism rf : SC Ñ H1

by rf ptxq “ f pxq and rf pt´1
x q “ S1p f pxqq, whereS1 is the antipode ofH1.

It follows by construction thatSC, being a subalgebra of some field of rational
functions, is adomain, i.e. an algebra without zero divisors.

In the sequel we will apply Takeuchi’s construction to the underlying coalgebra
of an arbitrary Hopf algebraH, thus leading to the commutative algebraSH.
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8.1.2. Pointed Hopf algebras.A Hopf algebra ispointedif any simple subcoalge-
bra is one-dimensional. Group algebras, Taft algebras, enveloping algebras of Lie
algebras, Drinfeld-Jimbo quantum enveloping algebrasUq g and their quotients are
examples of pointed Hopf algebras.

WhenH is a pointed Hopf algebra, then the free commutative Hopf algebraSH

over the coalgebra underlyingH has a simple description in terms of the group
GrpHq of group-like elements introduced in Sect. 4.3, namely

(8.2) SH “ SymptHq
„

1
tg



gPGrpHq

.

Example 8.2. If H “ CrGs is a group algebra, then SymptHq is the polynomial
algebra

SymptHq “ CrtgsgPG.

SinceH is pointed and GrpHq “ G Ă CrGs, then by (8.2) the free commutative
Hopf algebraSH is the algebra ofLaurent polynomialson the symbolstg (g P
G), or equivalently the algebra of the free abelian groupZpGq generated by the
symbolstg:

SH “ Crtg, t´1
g sgPG “ CrZpGqs.

Example 8.3. Let G be a finite group andH be the function algebraOpGq (this
Hopf algebra is not pointed whenG is not abelian). Then SymptHq “ Crtg | g P Gs
and

SH “ CrtgsgPG

„
1
ΘG


,

whereΘG “ detptgh́ 1qg,hPG is Dedekind’s group determinant(see [3, App. B]).

8.2. The generic Hopf Galois extension associated with a Hopf algebra. In
this section we associate with any Hopf algebraH a centralH-Galois extension
BH Ă AH, where the “base space”BH is a nice commutative algebra whose size
is related to the dimension ofH. We can seeAH as a deformation ofH over the
parameter spaceBH.

8.2.1. The algebraBH. Let H be a Hopf algebra. In order to construct the “base
space”BH we apply Takeuchi’s theorem to the situation whereC is the coalgebra
underlyingH andH1 “ Hab is the largest commutative Hopf algebra quotient ofH:
it is the quotient ofH by the ideal generated by all commutatorsxy´ yx (x, y P H).

Let π : H Ñ Hab be the canonical Hopf algebra surjection. Then by Theo-
rem 8.1, for the free commutative Hopf algebraSH there exists a unique morphism
of Hopf algebrasrπ : SH Ñ Hab such thatπ “ rπ˝ t. The Hopf algebraSH becomes
anHab-comodule algebra with coaction

(8.3) δ “ pid brπq ˝ ∆.
On the generators ofSH the coaction is given by

δptxq “
ÿ

pxq

txp1q
b rπpxp2qq and δpt´1

x q “
ÿ

pxq

t´1
xp2q

b rπ
`
Spxp1qq

˘
.

Definition 8.4. ThealgebraBH associated with a Hopf algebra H is the subalgebra
of coinvariants ofSH for this coaction:

BH “ Scó Hab
H “ ta P SH | δpaq “ a b 1u .
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We callBH thegeneric base algebraof the Hopf algebraH. It has the following
nice properties (see [35, Th. 3.6 and Cor. 3.7] and [36, Prop.3.4]).

Theorem 8.5. Let H be a finite-dimensional Hopf algebra.
(a) The algebraBH is a finitely generated smooth Noetherian domain; its Krull

dimension7 is equal todim H.
(b)SH is a finitely generated projectiveBH-module.
(c) If in addition H is pointed, then

BH “ Cru˘1
1 , . . . , u˘1

ℓ
, uℓ`1, . . . , uns,

where n“ dim H andℓ “ card GrpHq and where u1, . . . , un are monomials in the
generators tx of SymptHq.

Example 8.6. If H “ CrGs be a group algebra, thenHab “ CrΓs, whereΓ “
G{rG,Gs is the maximal abelian quotient ofG, i.e. the quotient by the normal
subgroup generated by all elements of the formghǵ 1h´1. Let p : ZpGq Ñ Γ be
the homomorphism sending each generatortg to the image ofg in Γ. Let YG be the
kernel ofp. Then by [2, Prop. 9 and Prop. 14],

BH “ CrYGs.

WhenG is a finite group, thenYG is a free abelian subgroup ofZpGq of finite index
(equal to the order ofΓ). A basis ofYG is given in [36, Lemma 4.7] (see also [27,
App. A]).

Example 8.7. For a Hopf algebraH it may happen thatHab “ CrΓs is the algebra
of an abelian groupΓ, for instance when the commutative Hopf algebraHab is
finite-dimensional and pointed (see [36, Lemma 2.1]). Then by Proposition 6.6 the
algebraSH is Γ-graded withSH “

À
γPΓ SHpγq, where

SHpγq “ ta P SH | δpaq “ a b γu ,

andBH “ SHp0q is the component ofSH corresponding to the unit element 0P Γ.

Example 8.8. Let G be a finite group andH “ OpGq. Since this Hopf algebra is
commutative, we haveHab “ H. Therefore the morphism of Hopf algebrasrπ :
SH Ñ H is split by the morphism of coalgebrast : H Ñ SH, i.e.,rπ ˝ t “ idH. The
coaction (8.3) turnsSH into anOpGq-comodule algebra. Thus by Proposition 6.13,
SH is aG-algebra. One checks thatG acts onSH “ CrtgsgPGr1{ΘGs by g ¨ th “ tgh

(g, h P G) and that the squareΘ2
G of the Dedekind group determinant isG-invariant.

Therefore,

BH “ CrtgsG
gPG

«
1

Θ2
G

ff
,

whereCrtgsG
gPG is the subalgebra ofG-invariant polynomials.

The algebraBH has also been completely described for the Sweedler algebra
in [3] (see also [33]), for the Taft algebras and other natural generalizations of the
Sweedler algebra in [27].

7The Krull dimension ofBH is the dimension of the algebraic varietyV such thatBH “ OpVq.



NON-COMMUTATIVE PRINCIPAL FIBER BUNDLES 41

8.2.2. The algebraAH. To construct what we call thegeneric H-Galois exten-
sionAH we need the bilinear formσ : H ˆ H Ñ SH with values inSH defined
by

(8.4) σpx, yq “
ÿ

pxqpyq

txp1q
typ1q

t´1
xp2qyp2q

. px, y P Hq

By [36, Prop. 3.4] the bilinear mapσ actually takes values in the subalgebraBH

of SH. We can then equip the vector spaceAH “ BH b H with the following
product:

(8.5) pb b xq ˚ pc b yq “
ÿ

pxqpyq

bcσpxp1q, yp1qq xp2qyp2q

(b, c P BH andx, y P H).
The following properties ofAH were established in [3, 35] (see also [33]).

Theorem 8.9. Let H be a finite-dimensional Hopf algebra.
(a) The product̊ turnsAH into an associative unital algebra.
(b) The algebraAH is a central H-Galois extension ofBH “ BH b 1 with

coactionδ “ idBH b∆, where∆ is the coproduct of H. Moreover,AH is free as a
BH-module.

(c) Letχ0 : BH Ñ C be the character defined as the restriction toBH of the
counit ofSH. Then there is an isomorphism of H-comodule algebras

C bBH AH “ AH{ kerpχ0qAH – H.

(d) For any characterχ : BH Ñ C ofBH, the fiber ofAH at χ

C bBH AH “ AH{ kerpχqAH

is an H-Galois object.

This means thatBH Ă AH is a “non-commutative principal fiber bundle” with
“fiber” H. We can also seeAH as a deformation ofH over the parameter spaceBH

or, if one prefers, over the set AlgpBH ,Cq of characters ofBH. By the last statement
of the theorem,χ ÞÑ χ˚pAHq induces a map AlgpBH ,Cq Ñ GalHpCq.
Exercise 8.10.Check that the product (8.5) is associative with unitt´1

1 b 1H .

8.3. Multiparametric deformations of Uq slp2q and of ud. We now illustrate
the previous constructions on the cases whereH is the quantum enveloping al-
gebraUq “ Uq slp2q (defined in Sect. 5.3) and its finite-dimensional quotientsud

(defined in Sect. 5.4). BothUq andud are pointed Hopf algebras. Theorems 8.12
and 8.13 below are new.

8.3.1. The generic base algebra of Uq . The Hopf algebraUq is infinite-dimen-
sional with basistEiF jKℓui, jPN; ℓPZ. Its group GrpUq q of group-like elements con-
sists of all powers (positive and negative) ofK. Therefore, by (8.2) the free com-
mutative Hopf algebraSUq is described by

SUq “ C rtEi F j Kℓsi, jPN; ℓPZ

„
1

tKm



mPZ

.

The maximal commutative quotient Hopf algebrapUq qab is generated by four

generatorsE, F, K, K
´1

subject to the same relations as the corresponding gen-
erators inUq in Sect. 5.3 plus the additional relations expressing thatpUq qab is
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commutative. We thus have

EK “KE “ q2EK,

which impliesE “ 0 in pUq qab sinceq2 ‰ 1 andK is invertible. Similarly,F “ 0.
Finally the relation

K ´K
´1 “ pq ´ q´1q

´
EF ´FE

¯
“ 0

shows thatK “ K
´1

, henceK
2 “ 1 in pUq qab. Therefore

pUq qab “ CrKs{pK2 ´ 1q – CrZ{2s,
which is the algebra of the groupZ{2.

As noted in Example 8.7, the isomorphismpUq qab – CrZ{2s implies thatSUq is
a superalgebra:SUq “ SUq p0q

À
SUq p1q, and that the generic base algebraBUq

coincides with the 0-degree component:

BUq “ SUq p0q.
On the generatorstE, tF, tK the coproduct ofSUq is given by

∆ptEq “ t1 b tE ` tE b tK , ∆ptFq “ tK´1 b tF ` tF b t1, ∆ptKq “ tK b tK .

SincerπptEq “ E “ 0, rπptFq “ F “ 0, andrπptKq “ K, the coactionδ of pUq qab

onSUq satisfies

δptEq “ tE b K, ∆ptFq “ tF b 1, ∆ptKq “ tK b K.

Therefore,tF is an even element, i.e. it belongs toSUq p0q “ BUq while tE andtK
are both odd, that is belong toSUq p1q. It can be proved more generally thattEi F j Kℓ

belongs toBUq if and only if i ` ℓ is even, and thatt´1
Km belongs toBUq if and only

m is even.

Exercise 8.11.SetuEi F j Kℓ “ tEi F j Kℓ if i ` ℓ is even, anduEi F j Kℓ “ tEi F j Kℓ t´1
K if

i ` ℓ is odd. Show that

BUq “ C ruEi F j Kℓsi, jPN; ℓPZ

„
1

uKm



mPZ

.

8.3.2. The algebraAUq . We have the following result.

Theorem 8.12. The generic Uq -Galois extensionAUq is theBH-algebra gener-
ated by E, F, K, Ḱ 1 subject to the relations

K ˚ K´1 “ K´1 ˚ K “ tK tK´1

t1
,

K ˚ E “ q2 E ˚ K ` p1 ´ q2q tE
tK

K ˚ K,

K ˚ F “ q´2 F ˚ K ` p1 ´ q´2q tF K,

E ˚ F ´ F ˚ E “ t1
ptK´1{tKq K ´ K´1

q ´ q´1
` pq´2 ´ 1q

ˆ
tE
tK

F ˚ K ´ tEtF
tK

K

˙
.
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The algebraAUq is anUq -comodule algebra with coaction given by the same
formulas as for the coproduct ofUq . The algebra depends continuously on the
parameterstE, tF which can take any complex values and on the parameterst1,
tK , tK´1 which can take anynon-zerocomplex values. Note that all monomials in
the t-variables occurring in the previous relations belong toBUq (they are all of
degree 0 in the superalgebraSUq ).

If we specialize the parameterst1, tK , tK´1 to 1 and the parameterstE, tF to 0, we
recover the defining relations ofUq andAUq becomesUq . In other words,AUq

is a 5-parameter deformationof Uq as a non-commutative principal bundle.

Proof. We use an observation made in [3, Sect. 6]: in order to find relations be-
tween elements 1b x inAH, wherex is an arbitrary element of a Hopf algebraH,
it is enough to find the relations between the following elements of the tensor prod-
uct algebraBH b H:

Xx “
ÿ

pxq

txp1q
b xp2q.

It follows from the formula for the coproduct ofUq (see Sect. 5.3) that we have

X1 “ t1 1, XK “ tK K, XK´1 “ tK´1 K´1,

XE “ t1 E ` tE K, XF “ tK´1 F ` tF 1.

(Here we dropped the tensor product signs since we may consider the commutative
algebraBH as an extended algebra of scalars.)

To prove the relations betweenK andK´1, it suffices to computeXKXK´1 and
XK´1XK . We have

XKXK´1 “ tK tK´1 KK´1 “ tK tK´1 “ tK tK´1

t1
X1,

which is also equal toXK´1XK; this implies the desired formulas forK ˚ K´1

andK´1 ˚ K.
For the relation betweenK andE inAH, it is enough to compute the following:

XKXE ´ q2 XEXK “ tK t1 KE ` tK tE K2 ´ q2 t1tKEK ´ q2 tEtK K2

“ t1tK pKE ´ q2 EKq ` p1 ´ q2q tEtK K2

“ p1 ´ q2q tEtK K2.

Now, pXKq2 “ t2K K2. Therefore,

XKXE ´ q2 XEXK “ p1 ´ q2q tEtK{t2K pXKq2 “ p1 ´ q2q tE{tK pXKq2.

We leave the computation of the relation betweenK andF inAH as an exercise
to the reader. For the commutator ofE andF inAH, we have

XEXF ´ XFXE “ pt1 E ` tE KqptK´1 F ` tF 1q ´ ptK´1 F ` tF 1qpt1 E ` tE Kq
“ t1tK´1 pEF ´ FEq ` pq´2 ´ 1q tEtK´1FK

“ 1

q ´ q´1
t1tK´1 pK ´ K´1q ` pq´2 ´ 1q tEtK´1FK

“ 1

q ´ q´1
t1

ˆ
tK´1

tK
XK ´ XK´1

˙
` pq´2 ´ 1q tEtK´1FK.

It remains to computeFK in terms of theX-variables. We have

XFXK “ tK tK´1 FK ` tFtK K “ tK tK´1 FK ` tF XK ,
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so that

tEtK´1FK “ tE
tK

XFXK ´ tEtF
tK

XK .

Combining these equalities, we obtain a formula forXEXF ´ XFXE in terms of the
X-variables, hence the desired formula forE ˚ F ´ F ˚ E. � �

8.3.3. A deformation ofud. Let q be a root of unity of orderd ě 3. Consider
the finite-dimensional Hopf algebraud defined in Sect. 5.4. We know that it has
a basis consisting of thee3 elementsEiF jKℓ, where 1ď i, j, ℓ ď e ´ 1. Recall
thate “ d{2 if d is even ande “ d if d is odd. The group Grpudq consists of the
eelements 1,K,K2, . . . ,Ké 1; it is a cyclic group of ordere.

By (8.2) the free commutative Hopf algebraSud is given by

Sud “ C rtEi F j Kℓs0ďi, j,ℓďé 1

„
1

tKm



0ďmďé 1
.

The maximal commutative quotient Hopf algebrapudqab is the quotient ofpUq qab

by the additional relationK
e “ 1. SinceK

2 “ 1, we conclude that

pudqab “
#

C if e is odd,

pUq qab – CrZ{2s if e is even.

Therefore, ife is odd, thenSud is trivially graded, which impliesBud “ Sud. If e is
even, thenSud is a superalgebra and the generic base algebra isBud is its even part
(see Exercise 8.14 below for a complete description).

Theorem 8.13. The algebraAud is the quotient ofAUq by the two-sided ideal
generated by the relations

K˚e ´
teK
t1

“ 0,

ˆ
E ´ tE

tK
K

˙˚e

“ 0,

ˆ
F ´ tF

t1

˙˚e

“ 0.

If we sett1 “ tK “ tK´1 “ 1 andtE “ tF “ 0 in the defining relations ofAud
(see Theorems 8.12 and 8.13), we recover those ofud.

Proof. We proceed as in the proof of Theorem 8.12 by checking the relations be-
tween the correspondingX-variables inBud b ud. We have

pXKqe ´
teK
t1

X1 “ teK Ke ´ teK “ 0

sinceKe “ 1 in ud. Next, in view ofEe “ Fe “ 0 in ud, we have
ˆ

XE ´ tE
tK

XK

˙˚e

“ te1 Ee “ 0 and

ˆ
XF ´ tF

t1
X1

˙˚e

“ teK´1 Fe “ 0.

This completes the proof. � �

Let us determine the “parameter space” AlgpBud ,Cq whene is odd. In this case,
Bud “ Sud. SinceSud “ C rtEi F j Kℓs0ďi, j,ℓďé 1 r1{tKms0ďmďé 1, a character ofBud
is completely determined by its values on the generatorstEi F j Kℓ ; each of these
generators can take any complex value, except in the casepi, jq “ p0, 0q, where the
corresponding value has to be non-zero. It follows that

AlgpBud ,Cq – Cepe2´1q ˆ pCˆqe,

which is an open Zarisky subset of the affine space of dimensione3.
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Exercise 8.14.Assumee is even (equivalently,d is divisible by 4). DefineuEi F j Kℓ

as in Exercise 8.11. Show that

Bud “ C ruEi F j Kℓs0ďi, j,ℓďé 1 r1{uKms0ďmďé 1.

Hence, AlgpBud ,Cq – Cepe2´1q ˆ pCˆqe holds in this case too.
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bourg, 7 rue René Descartes, 67084 Strasbourg, France

E-mail address: kassel@math.unistra.fr


	1. Introduction
	2. Review of principal fiber bundles
	2.1. Fiber bundles
	2.2. Pull-backs
	2.3. Principal fiber bundles
	2.4. Functoriality and classification

	3. Basic ideas of non-commutative geometry
	3.1. Two classical dualities between spaces and algebras
	3.2. Non-commutative algebras
	3.3. Extending basic operations to non-commutative spaces

	4. From groups to Hopf algebras
	4.1. Algebraic groups
	4.2. Bialgebras
	4.3. Hopf algebras
	4.4. Examples of Hopf algebras from finite groups
	4.5. The Heyneman–Sweedler sigma notation

	5. Quantum groups associated with SL2(C)
	5.1. The quantum coordinate algebra of SL2(C)
	5.2. A quotient of SLq(2)
	5.3. The quantum enveloping algebra of sl(2)
	5.4. A finite-dimensional quotient of Uq sl(2)

	6. Group actions in non-commutative geometry
	6.1. Comodule-algebras
	6.2. Group-graded algebras
	6.3. Algebras with group actions
	6.4. The quantum plane and its SLq(2)-coaction
	6.5. Quantum homogeneous spaces

	7. Hopf Galois extensions
	7.1. Definition and examples
	7.2. The classification problem
	7.3. The set GalH(C) may be non-trivial
	7.4. Push-forward of central Hopf Galois extensions
	7.5. Universal central Hopf Galois extensions

	8. Flat deformations of Hopf algebras
	8.1. A universal construction by Takeuchi
	8.2. The generic Hopf Galois extension associated with a Hopf algebra
	8.3. Multiparametric deformations of Uq sl(2) and of ud
	Acknowledgements

	References
	Index

