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PRINCIPAL FIBER BUNDLES IN
NON-COMMUTATIVE GEOMETRY

CHRISTIAN KASSEL

AsstrAcT. These are the expanded notes of a course given at the Sucthmet s
“Geometric, topological and algebraic methods for quanfigid theory” held
at Villa de Leyva, Colombia in July 2015. We first give an imuation to non-
commutative geometry and to the language of Hopf algebrasnéit build up a
theory of non-commutative principal fiber bundles and cdeisivarious aspects
of such objects. Finally, we illustrate the theory using go@ntum enveloping
algebral, sI(2) and related Hopf algebras.
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1. INTRODUCTION

These are the expanded notes of a course given at the Suntroel ‘¥6eomet-
ric, topological and algebraic methods for quantum fieldtieheld at Villa de
Leyva, Colombia in July 2015. The main objective of this mauwas twofold:

(1) to give an introduction to non-commutative geometry tmthe language
of Hopf algebras;

(2) to build up a theory of hon-commutative principal fibentles, consider
various aspects of these non-commutative objects, hightite similari-
ties and the dferences with their classical counterparts, and illustitate
theory with significant examples.

Non-commutative geometry is based on the idea that insteagking with
the points of a topological space (or a C*-manifold, or an algebraic variety)
we may just as well work with the algebt@(X) of continuous (orC*, or reg-
ular) functions onX. Many geometrical constructions ofican be expressed by
algebraic constructions on the commutative algeB(X), which in turn can be
extended to non-necessarily commutative algebras. Thessigg of passing from
commutative algebra to non-commutative ones originatas fshysics; according
to [9],

[it] arises from the general indication that the small-scgttucture
of space-time is not well-modelled by usual continuous getoyn
At the Planck scale one may reasonably expect that our nofion
geometry has to be modified to include quantufieats as well.
Non-commutative geometry has the potential to do this.

Keeping in mind the geometric origin of such non-commutatienstructions, it is
natural to use the phrase “non-commutative spaces” forcoommutative algebras.
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In mathematics such generalized spaces have appeared188dis in the work
of Connes on group actions and on foliations ($eé [13]), =mat i} the theory of
guantum groups, which originated in the work of Faddeewmset; of Drinfeld, of
Jimbo, and of Woronowicz (see [17,/118, 30| 51}, 61]).

Quantum groups are non-commutative algebras dependingpamaanetery.
Whenq takes the value 1, then quantum groups specialize to césgiects such
as groups of symmetries. The construction of quantum gragssinspired by the
“quantum inverse scattering method”, a method deviseddosiructing integrable
guantum systems and mostly developped by L. D. Faddeev antbhaborators.
The discovery of quantum groups was a major event with speletaapplications
not only in quantum physics, but also in domains of pure nmaiies such as
representation theory and low-dimensional topology. Lsetguote Drinfeld on
quantization from the introduction of[18]:

. both in classical and quantum mechanics there are twio bas
concepts: state and observable. In classical mechanjastjserv-
ables are functions on [a manifoldj. In the quantum case [...]
observables are operators in [a Hilbert spat¢]..] [O]bservables
form an associative algebra which is commutative in thestdas
case and noncommutative in the quantum case. So quantizstio
something like replacing commutative algebras by noncotamu
tive ones.

Technically speaking, quantum groups are what algebrargtsopologists call
Hopf algebras. Therefore, the first aim of this course waattoduce the concept
of a Hopf algebra and to illustrate it with significant exaeglsuch as the ones
related to the special linear grogi,(C).

Our second aim was to define non-commutative analogues ncipal fiber
bundles. Principal fiber bundles are ubiquitous geométiggects in mathematics
and gauge theory. For instance, given a Lie (or algebram)m@ and a closed
subgroupG’, the projectionG — G/G’ onto the homogeneous spaGgG’ is a
principal fiber bundle. To quantize homogeneous spaces ea aie adequate no-
tion of quotient of Hopf algebras and more precisely the epts of comodule
algebras and Hopf Galois extensions. There are numerousimgéa examples of
non-commutative principal fiber bundles; se€e [9,[14] 2449541 49 50].

Let us give an overview of these notes. In Sdct. 2 we reviewd#imition of
classical principal fiber bundles and state their main ptg®= In Secf{.3 we un-
dertake the crucial passage from commutative to non-coativetalgebras; we
concentrate on two simple situations in which a spdaan easily be replaced by
its function algebra(X), namely wherX is a finite set or when it is arfiéne alge-
braic variety. To make things even simpler, all objects dgdlaas considered in
these notes are defined over the fi€ldf complex numbers. We also give in Séc¢t. 3
our first example of a non-commutative space, namely therifgua plane”, a one-
parameter deformation of the ordinary complex plane, andxtend certain basic
operations from ordinary spaces to hon-commutative ones.

In Sect[4 we consider the case when a space has an additiongl gfructure.
This naturally leads us to the notion of a Hopf algebra. Int8e4 we present two
mutually dual Hopf algebras constructed from a finite group.
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In Sect[5 we introduce two quantum groups associated wethithgroupS Ly(C);
one is its quantum coordinate algebra;&), the other one is the quantum envelop-
ing algebralq sl(2) of the Lie algebra o8 Ly(C). We also construct a duality map
between them and consider two interesting quotients.

In Sect[6 we extend the notion of a group action to the nonrcotative world.
This leads us to the concept of a comodule algebra over a Hopbia. We give
various examples of comodule algebras, thus showing tlistctincept covers
much more than just group actions. In particular, any grotguled algebra is a
comodule algebra over a suitable Hopf algebra. We also slwwth equip the
guantum plane with the structure of a comodule algebra dveqtiantum coordi-
nate algebra o8 Ly(C).

SectiorY is entirely devoted to Hopf Galois extensions cilaire non-commu-
tative analogues of principal fiber bundles. We pose thelprolof classifying
them and show that, contrary to the classical case, thereeristy(infinitely many)
non-isomorphic non-commutative principal fiber bundlesroa point. We also
define the non-commutative version of the pull-back of a beind

In the final section (Sect] 8), for any Hopf algelbtave construct a non-commu-
tative principal fiber bundle in the form of a deformatigty of H over a parameter
spaceBy which is the coordinate algebra of a smooffiree algebraic variety of
the same dimension &3. We give explicit formulas for this non-commutative
principal fiber bundle whe#l is the quantum enveloping algelug si(2) or some
of its finite-dimensional quotients.

We will not give the proofs of all statements in these notes. ¥6me of them
we will refer to the relevant publications or to exercisethdy turn out to be rather
simple. Except for Theorerhs 8]12 and 8.13 in Secfion 8.3thterial presented
in these notes already exists in the literature.

2. REVIEW OF PRINCIPAL FIBER BUNDLES

La geometria fue mas compasiva tal vez por
obra y gracia de su prestigio literarid21]

We start by recalling the definition and the basic propeuigger bundles and
of principal fiber bundles. In Sef. 7 we will define non-contative analogues of
such bundles.

2.1. Fiber bundles. Let F be a topological space. Recall thdilzer bundlewith
fiber F is a locally trivial continuous map : P — X from a topological spack,
called thetotal spaceof the bundle, to a topological spa¥ecalled thebase space
such that eacfiber 7~1({x}) is homeomorphic td=. Locally trivial means that
for eachx € X there is a neighbourhood < X of x and a homeomorphism
¥ 1~ Y(U) = U x F such thatr = py o ¢, wherep; : U x F — U is the first
projection ontaJ.

In the sequel we assume that the topological spaces we eorssiel Hausddi
and paracompact (the latter means that every open coverlbaslly finite open
refinement). These conditions are satisfied by most spacesajly considered.

A fiber bundle magrom a fiber bundler’ : P — X’ to another fiber bundle
7 : P — Xwith the same fibeF is a pair(¢ : P — P, ¢ : X’ — X) of continuous
maps such that o ¢ = ¢ o /. The composition of two such maps is again a fiber
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bundle map. A fiber bundle map is said to beaneomorphism of fiber bundliés
bothg : PP — P andy : X’ — X are homeomorphisms.

The simplest example of a fiber bundle with fideand base spack is given
by the first projectiorp; : X x F — X. Any fiber bundle homeomorphic to such a
fiber bundle is called #ivial fiber bundle

2.2. Pull-backs. We now deal with an important functoriality property. Anydib
bundler : P — X with fiber F and base spacetogether with any continuous map
¢ : X' = Xinduces a fiber bundle : ¢*(P) — X’ with the same fibeF and with
base spacX’. The space*(P) is defined by

¢*(P) = {(X.p) e X' x P| o(X) = n(p)}

and the map’ : *(P) — X' is equal to the composite magi(P) = X' x P % X'
The fiber bundler’ : ¢*(P) — X' is called thepull-backof the bundler : P — X
along the map : X' — X.

Clearly, if¢’ : X” — X' is another continuous map, then

¢ (¢*(P)) = (g o ¢')*(P).
Ifid : X — Xis the identity map o, then id'(P) = P. It follows that any
homeomorphisnyp : X’ — X induces a homeomorphisai (P) =~ P.

Exercise 2.1.(a) Letr : P — X be a fiber bundle. Prove thatiif {x} — Xs the
inclusion of a pointx in X, theni*(P) = n~1({x}) is the fiber of the bundle at

(b) Show that any fiber bundle with base space equal to a poirivial.

(c) Prove that the pull-back of a trivial fiber bundle is tali

(d) Let X be acontractiblespace, i.e. such that there is an elemgnt X and a
continuous map : X x [0, 1] — X such thatj(x,0) = x andn(x,1) = X for all
x € X. Show that any fiber bundle with base sp&cis trivial.

For more on fiber bundles, see the classical references 726, 5
2.3. Principal fiber bundles. We fix now a topological groufs.

Definition 2.2. A principal G-bundleis a fiber bundler : P — X with a continuous
left action Gx P — P satisfying the following two conditions:

(i) we haver(gp) = n(p) for allg € G and pe P,
(i) forall p,p’ € P withz(p) = n(p’) there is a unique elementg G such
that gp= p'.

In other words, in a principa-bundle the group action preserves each fiber
n~1(x) and the action o6 on each fiber is free and transitive. It follows that each
fiber is in bijection withG and that the space of orbi®&\ P is homeomorphic to the
base spac¥.

An equivalent way to express Conditions (i) and (ii) abovigequire that the
map

(2.1) y:GxP—->PxP; (g.p — (gp.p)
is a bijection fromG x P onto the subspace
PxxP={(pp)ePxP|x(p)=n(p)}.
Given principalG-bundlesr : PP — X’ andr : P — X, amap of principal G-

bundlesfrom the first one to the second one is a fiber bundle (@ap) compatible
with the G-action, i.e. such that(gp') = gg(p’) forallge Gandp' € P'.
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Example 2.3. Given a topological spack, letG act onP = G x X by d/'(g, x) =
(d'g,x) (9.9 € G, x € X). This is a principalG-bundle. Any principalG-bundle
homeomorphic to such a bundle is callettigial principal G-bundle

Example 2.4. Consider the grou* of complex numbers of modulus one. Given
an integem > 1, the mapr, : St — S?! defined byr,(2) = 2" is a principal
G-bundle, wherés is the cyclic grougZ/n of ordern.

Exercise 2.5.Prove that the principat/n-bundlen, : St — S of Exampld 2.4 is
trivial if and only if n = 1.

2.4. Functoriality and classification. We now record important properties of prin-
cipal G-bundles. For the proofs we refer to [26, Chap. 4] of 10 [57].

Theorem 2.6.(a) If # : P — X is a principal G-bundle ang : X’ — X is a
continuous map, then the pull-bagk: ¢*(P) — X’ is a principal G-bundle.

(b) If # : P — X is a principal G-bundle angbg, ¢; : X’ — X are homotopl?t
continuous maps, then the principal G-bundig¢P) and ¢} (P) are homeomor-
phic.

(c) There exists a principal G-bundig; : EG — BG such that for any principal
G-bundlerr : P — X there is a continuous map: X — BG such that*(EG) is
homeomorphic tar : P — X; the mapy is unique up to homotopy.

The base space of the princigalbundlerg : EG — BGis called theclassify-
ing spaceof the groupG. The terminology is justified by the following immediate
consequence of the theorem.

Corollary 2.7. The mapp — ¢*(EG) induces a bijection between the $¥t BG|
of homotopy classes of continuous maps from X to BG and thisggtX) of
homeomorphism classes of principal G-bundles with baseesia

[X, BG] =~ Isog(X).

Starting from the next section, we shall build up the algeblenguage neces-
sary to define non-commutative analogues of principal fibedkes.

3. BASIC IDEAS OF NON-COMMUTATIVE GEOMETRY

As we stated in the introduction, non-commutative geomistbased on the idea
of (a) replacing a spac¥ by its (commutative) function algeb@(X), (b) passing
from commutative algebras to non-commutative algebrashithsection we start
with two simple geometric situations, namely wheris a finite set and when it is
an dline algebraic variety. In Seft. 8.2 we present our first eléangexample of
a non-commutative space, namely the quantum plane, andiisS® we extend
certain basic operations from spaces to non-commutatigs.on

For deformation quantizatignwhich is another way, inspired by quantum me-
chanics, to pass from commutative algebras to non-comiveitalgebras see the
lecturesl[[23] by Simone Guitt.

IThat is, there exists a continuous ma@p: X’ x [0,1] — X such that®d(x,0) = ¢o(x) and
D(x, 1) = ¢1(x) forall xe X'.
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3.1. Two classical dualities between spaces and algebraket us now present
two well-known correspondences between spaces and aigeBtbalgebras we
consider in these notes atkalgebras (i.e. defined over the fietdof complex

numbers). We furthermore assume that all algebras areiagge@nd unital. We
denote the unit of an algebraby 1, or by 1 to avoid any confusion.

3.1.1. Finite sets.In the first example, the spaces which we consider are merely
sets, or if one prefers, discrete topological spaces. Tosahy we associate
its function algebraO(X), which consists of all complex-valued functions ¥n
Given two such functiongay, u, : X — C, we may consider any linear combination
A1ug + AxUp, whered; and A, are complex numbers; the functidau; + Aoup is
defined by

(/l]_U]_ + /12U2)(X) = /l]_U]_(X) + /12U2(X)
for all x e X. Similarly, the producti;u, of two functionsus, u, € O(X) is defined
by (uru2)(X) = ui(X)uz(x) for all x € X. These operations provid@(X) with
the structure of a commutative associative and ur@itallgebra. The unit is the
constant function whose values are all equal to 1.

For anyx e X, consider the-function 6y defined for ally € X by 6x(y) = dxy,
wheredyy is the Kronecker symtﬁal The product of twas-functions is clearly
given by

Sx Oy = Oxy Ox.
This means that eaghfunction is an idempotent, i.ei2 = d, and that the product
of two distincts-functions is zero.

If the setX is finite, then the se{dy}xex Of 6-functions forms a basis @(X)
considered as a vector space over the complex numbers. dindeecan expand
any functionu : X — C in the following unigque way:

U= > u(x)ox.

Note that the unit 0O(X) is the sum of thé-functions: 1= >,y dx.
If the setX is of cardinalityN, we can order the elements Xfand assume that
X = {X1,...,xn}. Consider the linear map

ue O(X) — (u(x1),...u(xn)) e CN.
This map is clearly an isomorphism fro@(X) onto the N-dimensional vector
spaceCN. It is also an algebra isomorphism if we end6 with the product
(Xl, .. XN)(yl, .. yN) = (lel, ... XNyN).

In particular, the dimension @(X) is equal to the cardinality ok. Since a finite
set is determined up to bijection by its cardinality, it &alis that a finite seX can
be recovered (up to bijection) from its function algeti).

3.1.2. Algebraic varieties.The next correspondence is more substantial, namely
the one between algebraic varieties and commutative agelitecall that aom-

plex algebraic varietyis the set of solutions of a system of polynomial equa-
tions over the complex numbers: more precisely,3die a set of polynomials

in C[X4, ..., Xn]; then the corresponding algebraic variety is given by

V={(Xt,...,%) €C"| P(Xg,..., %) =0 forallPeX}.

%Recall that,y, = 1 if x = y anddyy = 0 otherwise.
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To V we associate the quotient-algebra
O(V) = C[Xg, ..., Xn]/lx,

wherely is the ideal ofC[ Xy, . .., Xn] generated bj. We say thaO(V) is thecoor-
dinate algebraof the algebraic variety. The algebrad(V) is a finitely generated
commutativeC-algebra.

Conversely, let us start from a finitely generated commuaadi-algebraA. It
can be written as the quotient of a polynomial algebras wiikefly many variables,
i.e. itis of the form

A=C[Xq,..., %]/

for some ideal < C[Xy,...,Xn]. ThenA = O(V), whereV is the set of points
(X1, ..., %) € C" satisfying the system of polynomial equatidP&, . .., Xn) = 0
forallPel.

There is another way to find such thatA = O(V) for a given finitely generated
commutativeC-algebraA. Namely consider the set Al§, C) of characters of.
A characterof A is an algebra homomorphisgnfrom A to C, i.e. a linear form
satisfying the conditions

x(ab) = x(ay(b) and x(1) =1

Now, if A = C[Xy,...,Xy]/I, then a charactey : A — C is determined by its
valuesy(Xi) = x € C on the generatorXj, ..., Xn. Sincey must be zero on the
ideal I, this means that the-tuple (xy, ..., X,) € C" of values must be a solution
of the equation$(xy, ..., %,) = 0 for all P € I. Such solutions form an algebraic
varietyV and we haveA = O(V).

Let us also observe that the characters of a finitely gereei@mmutativeC-
algebraA are in bijection with its maximal ideals. Indeed, start francharacter
x : A— C;itskernelmis an ideal ofA. Sincey is surjective, we havA/m =~ C by
Noether’s firstisomorphism theorem. Therefards a maximal ideal. Conversely,
let m be a maximal ideal oA. ThenA/m is a field which is isomorphic t&€
by Zarisky’s lemma or by Hilbert’s Nullstellensatz. The qoosed algebra map
x :A— A/m =~ Cis a character oA.

Let us now give some elementary examples of commutativebedgecorre-
sponding to algebraic varieties.

Example 3.1. The coordinate algebra of a pointGssince AlgC, C) consists only
of one element, namely the identity map. This follows alsworfthe description of
the function algebra of a finite set given in SEct. 3.1.1.

Example 3.2. The one-variable polynomial algeb@dX] is the coordinate algebra
of the complex lineC since any algebra homomorphisitpX] — C is determined
by its value on the variablX; equivalently, AlC[X],C) = C.

Similarly, the two-variable polynomial algeb@ X, Y] is the coordinate algebra
of thecomplex planeC?: any algebra homomorphis@[X, Y] — C is determined
by its values orX andY. We have AlgC[X, Y],C) = C2.

Example 3.3. Let us now consider the algebfa= C[X, X~1] of Laurent poly-
nomials in the variableX. SinceXX~1 = 1, this algebra can also be seen as
the quotient-algebr&[X, Y]/(XY — 1). Here also any algebra homomorphism
x : A — Cis determined by its valug(X) = x € C on the variableX, but contrary
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to the case of’[X], the fact thaiX is invertible inA puts the following restriction
on x, namely

Xx(X7H) = x(X) ¢ (XY = (XX = x(1) = 1.
Therefore,x is invertible in the fieldC, which is equivalent tx = 0. We deduce
Alg(A,C) =~ C*, whereC* = C\{0}. In other words, the algebr@[X, X 1] of
Laurent polynomials is the coordinate algebra ofdhee-punctured complex line

Example 3.4. The algebraC[X, Y]/(Y2 — X3 4+ X — 1) is the coordinate algebra of
the elliptic curveconsisting of the pointgx, y) e C? satisfying the equation

Y =x—x+1

Example 3.5. Let xg, ..., Xy be distinct points in the complex lir@ Consider the
quotient-algebraA = C[X]/(X — X1,..., X — X,). Since the polynomialX — x;
are coprime, we also have= C[X]/(P), whereP is the degre& polynomial

P=(X—x1) (X~ X).
The assignmen® € C[X] — (Q(x1),...,Q(xn)) € CN induces an algebra iso-

morphismA =~ CN. This example shows that a finite set can be seen as a special
case of an algebraic variety.

3.2. Non-commutative algebras. From now on we deal with non-necessarily com-
mutative algebras. We recall that all algebras we conside@associative unital
C-algebras.

3.2.1. Non-commutative polynomiald.he prototype of a finitely generated com-
plex commutative algebra is the algebra of polynomi@X, ..., X,] in finitely
many variables. In an analogous way the prototype of a finigeiherated not
necessarily commutative complex algebra is the algekPé, . . ., Xp) of polyno-
mials inn non-commuting variablesiX .., X,. Any element ofC (Xy, ..., Xp) is
a finite linear combination (with complex dbeients) of finite words in the letters
X1,...,Xn. Such a linear combination is unique because such words ddvasis
of C{Xy, ..., Xn) considered as a vector space over the complex numbers.
Mind the diference between these two kinds of polynomial algebras: lthe e
mentXY — Y Xis non-zero inC (X, Y) whereas it vanishes i@i[X, Y].
Any finitely generated complex algebfds a quotient-algebra @ (X, ..., Xn)
for somen, which means thah can be expressed as

A=C{X1, ..., %)/l

for some two-sided idedlof C (X, ..., X,). For instance, for the algebra of ordi-
nary polynomials im variables, we have

CX1, ..., Xn] = C{Xg, ..., X/,
wherel is the two-sided ideal generated by all elements of the f&H) — X;X;
(,je{1,....n?.

3.2.2. The quantum planelLet q be a non-zero complex number. Consider the
algebraC (X, Y) of polynomials in two non-commuting variabl&sY and the two-
sided idealq of C (X, Y) generated by X — gXY. The quotient-algebra

CqlX Y] = T Y/l
is not commutativeinlessqg = 1.
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Whenq = 1, then the algebr@gy[ X, Y] is isomorphic taC[X, Y], which is the co-
ordinate algebra of the plane. Th@g,[X, Y] is a one-parameter non-commutative
deformation (or a quantization) of the coordinate algelirthe plane. For this
reason and by extensio@ig[X, Y] can be considered as the coordinate algebra of
a “space” in an extended sense, of a so-catled-commutative spacén this par-
ticular instance, this non-commutative space is known @litierature under the
namequantum plane

The set{X'Y1}; ;o0 forms a basis ofZ4[X, Y], independently ofy (see Exer-
cis€ 3.6 below). Notice that the defining relatigiX = gXY implies the following
product formula for two monomials ifig[ X, Y]:

(XY (XKYE) = gk xRyl +, (i, j.k, £ = 0)

In Sect[3.1.2 we showed how to recover an algebraic vakiefsom its co-
ordinate algebra, using its characters. Let us look at thé\lggCqy[X, Y], C) of
characters ofy[X, Y]. As with the usual polynomial algeb@X, Y], a character
x  Cy[X, Y] — Cis determined by its valueg(X) = x andy(Y) = y on the
generatorsX andY. Now the set AlgCq4[X, Y],C) is in bijection with the set of
points (x,y) € C2? such thatyx = gxy. In C the valuesx andy commute, so that
yx = qgxyis equivalent tqq — 1)xy = 0. Whenq # 1, then AlgCq4[X, Y],C) can
be identified with the subset @ defined byxy = 0; this subset is the union of

the linesL; = {0} x CandL, = C x {0}  C2. The coordinate algebra bf U L
is the commutative algebr@[X, Y]/(XY). We thus have bijections

Alg(C[X,Y],C) = C? if =1,
Alg(C[X, Y]/(XY),C) =Liul, ifg##1l

This shows that from the point of view of characters, themejisnp when we pass
from g = 1 to an arbitrary complex numbgr Observe also that as a vector space,
C[X,Y]/(XY) has a basis given b§X'}i>o U {Y/}j>1; this basis is clearly very
different from the basiéX'Y1}; ;>0 of Cq[X, Y].

Alg(C4[X.Y].C) = {

Exercise 3.6.(A basis of the quantum plane)

(a) Letr andv be the endomorphisms of the polynomial algetfd defined
on any polynomiaP(t) by 7(P(t)) = tP(t) andu(P(t)) = P(qt). Show that there
is a unique algebra morphism: Cq[X, Y] — End(C[t]) such thajp(X) = 7 and
oY) =w.

(b) Deduce thafX'Y!}; jay is a basis ofC4[X, Y]. Hint: use the morphism to
prove linear independence.

3.2.3. Non-commutative spacen view of the previous examples, non-commuta-
tive algebras will henceforth often be calledn-commutative space$he special
case of the quantum plane shows that characters are fimient to characterize
non-commutative spaces. As written in the introductiomd8i|

... in noncommutative geometry there are no points.

This is a significant dference with ordinary spaces. Such figtence is also well
explained inl[55, Sect. 2].

3.3. Extending basic operations to non-commutative spacesiNe now show
how to extend certain basic operations on spaces to the wbrldn-commutative
spaces, i.e. of non-necessarily commutative algebras.
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3.3.1. From maps to algebra homomorphismiset ¢ : X — Y be a map between
algebraic varieties. Then we can define a mpap O(Y) — O(X) by

(3.1) ¢*(u) =uog

forallue O(Y). Itis easy to check thai* is a morphism of algebras.

If y : Y — Zis another map between algebraic varietiesghdO(Z) — O(Y)
is the corresponding morphism of algebras, then we haveotlweving equality of
morphisms fronO(Z) to O(X):

o) =¢"oy”

3.3.2. From products to tensor productssiven algebraic varietieX, Y, we can
consider their product x Y. We denote bytx : XxY — Xandry : XxY — Ythe
canonical projections. The produ€ix Y satisfies the following universal property:
for all mapsyyx : Z — X andey : Z — Y from another algebraic varie®, there
exists a unique map : Z — X x Y such thatrx o ¢ = px andny o ¢ = ¢y.

Applying the contravariant functap — ¢* defined byl(3.1), we see that the
coordinate algebr@(X x Y) comes with two algebra morphisms

0% :0O(X) = O0(XxY) and ¢§:0(Y) - O(XxY)

satisfying a universal property that is easily deduced filoenuniversal property of
the productX x Y. It follows that we have a canonical algebra isomorphism

(3.2) O(X x Y) = O(X) ®O(Y),

whereO(X) ® O(Y) is the tensor product of the algeb@sX) andO(Y).

Let us recall that théensor product UR V of two complex vector spacdg
andV consists ofC-linear combinations of symbols of the form® v, where
u e U andv € V. By definition, the map) x V — U ® V sending each couple
(u,v) € U x Vtou® vis C-bilinear, i.e. C-linear both inu and inv. It satisfies
the following universal property: for ang-bilinear mapf : U x V — W to
another vector spad#, there is a unigu€-linear mapf~: U ®V — W such that
f(u,v) = flu®v) forall (u,v) € U x V. Moreover, if{u;}ic| is a basis ofJ and
{Vj}jes is a basis oW, then

{Ui ®Vj}ijelx
is a basis ofJ ® V. As a consequence, dild ® V) = dim(U) dim(V).
If A, B are (not necessarily commutative) algebras, then thegoteproduct
A® B carries a structure of algebra with multiplication detered by
(g ®br)(az ® b)) = ayar ® biby

for all a;,a» € Aandby, by € B. The algebraA ® B has a unit given by
lage = 1a® 1.
The tensor product of algebras satisfies the following usaleproperty.

Proposition 3.7. Let f : A — C and g: B — C be morphisms of algebras such
that f(a)g(b) = g(b)f(a) in C for all a € A and be B. Then there exists a unique
morphism of algebras ® g : A® B — C such that f ® g)(a® b) = f(a)g(b)
for alla € A and be B.



12 CHRISTIAN KASSEL

Using the notation AlgA;, Ay) for the set of morphisms of algebras frofa
to Ay, we can paraphrase the previous proposition by saying tligi\® B, C) is
isomorphic to the subset of Al§, C) x Alg(B, C) consisting of all pairgf, g) of
morphisms whose images commutednin particular, ifC is commutative, then

Alg(A® B,C) =~ Alg(A,C) x Alg(B,C).

For this reason we may consider the tensor product of algedsathe non-
commutative analogue of the product of spaces.

Exercise 3.8.Prove Proposition 31 7.

4. FRoM GROUPS TO HOPF ALGEBRAS

In this section we introduce the concept of a Hopf algebraillustrate it with
several examples which will show up repeatedly in thesesndter general refer-
ences on Hopf algebras, se&l[1](31,/46, 58].

4.1. Algebraic groups. Let G be analgebraic group i.e. an algebraic variety
equipped with the structure of a group such that the prodiagium G x G — G
is a map of algebraic varieties.

The basic example of an algebraic group is ge@eral linear group GL(C),
which consists of all invertibldN x N-matrices with complex entries, equipped
with the usual matrix product. This product is given by palgmal formulas in the
entries. The coordinate algebra®Ey (C) is the algebra

(4.1) O(GLn(C)) = CIt, (&j)1<ij<n]/(tdeta ;) — 1).

Any subgroup ofGLy(C) defined by the vanishing of polynomials is also an
algebraic group. For instance, thpecial linear group S{(C), which consists of
all N x N-matrices whose determinant is 1, is an algebraic groupcoldsdinate
algebra is the algebra

O(S(C)) = C[(aij)1<ij<n]/(det(aj) — 1).

It is obtained fromO(GLy(C)) by settingt = 1.

By (3.1) the product map : G x G — G of an algebraic group induces a
morphism of algebrag* : O(G) — O(G x G). We can composg* with the
canonical isomorphis®(G x G) =~ O(G) ® O(G) (seel(3.R)), which yields a
morphism of algebras

A:O0(G) - 0O(G)®O(G),
which we call thecoproductof O(G).
The producl: of G is associativewhich means that we have

# (1(91,92), 93) = p (91, (G2, G3))

for all 91,092,093 € G. This identity, which readg o (1 ® id) = p o (id®u),
transposes to the followingpassociativityidentity for the coproduct:

(4.2) (A®id) oA = (id®A) o A.

Similarly, the unit e of the groupG, which can be seen as a homomorphism
e: {1} — G (sending 1 te), induces the morphism of algebras

e=8&:0(G) - 0({1}) = C,



NON-COMMUTATIVE PRINCIPAL FIBER BUNDLES 13

which we call thecounit of O(G). The identitiesu(e,g) = g = u(g.€) (g € G)
read

po(e®id) =id = po (id®e),
where we have identifiedll} x G andG x {1} with G. They transpose to the
counitality identities

(4.3) (e®id) oA =id = (id®&) o A O(G) — O(G),

where we use the natural identificatiob® O(G) ~ O(G) andO(G)® C =~ O(G).
In a groupG any element possesses dnverse i.e. an elemeng ! such that

(4.4) pgg ) =e=p(gtg).
The map inv ;g — g~1induces a mag = inv* : O(G) — O(G), which we call
the antipodeof O(G). The identities[(414) imply identities for the antipode,iath
we shall display in Sedt. 4.3.
WhenG = GLy(C) is the general linear group, the coproduct of the coordinate
algebraO(GLy(C)) is defined on the generatdrsa; ; of O(GLn(C)) by

N
(4.5) A =t®t and A(aj) = ) ax®a;
k=1

and the counit by
(4.6) et)=1 and s(a;,j) = 0,

for all i,j € {1,...,N}. For the antipode, leA be theN x N-matrix A =
(a.j)1<ij<n. Denote byA; the determinant of th¢N — 1) x (N — 1) matrix
obtained from deleting Rowand Columnj of A. Then for each generata ;
(,j€{1,...,N}) we have

Aj’i
detA)

By the definition[[4.1l) the generatois invertible with inverse¢—! = det(A) and
its antipode is given b$(t) = t~1 = det(A).

The values ofA(a; j), £(&,j) and S(a; j) given in Formulad(4]5)E(4.7) above
also determine the coproduct, counit and antipod@(@ Ly(C)), whereS Ly(C)
is the special linear group.

4.7) S(ayj) = (1)

Exercise 4.1.Prove the claims of this section.

4.2. Bialgebras. Before defining Hopf algebras, we present the concept ofla bia
gebra.

Definition 4.2. A bialgebrais an associative unital algebra equipped with two
linear mapsA : H - H ® H ande : H — C satisfying the following conditions:

(i) The maps\ ande are morphisms of algebras.
(i) We have the following equalities:

(4.8) (A®Rid) oA = (Id®A) o A.
and, identifyingC ® H and H® C with H,
(4.9) (e®id)oA =id = (id®e) o A.
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The mapA is called thecoproductof H ande¢ is its counit It is sometimes
convenient to denote the product of the bialgeHrdy 1 : H® H — H and to
introduce the unique morphism of algebras C — H, which we call theunit
of H; we haven(1) = 1.

Given a bialgebrad with coproductA, we define thepposite coproduct

A%®:H—>H®H

by A°P = 7o A, wherer : H® H — H® H is theflip defined byr(x®y) = y® x
for all x,y € H. We say thaH is cocommutativéf A°P = A.

Exercise 4.3.Let C[t] be the polynomial algebra in one varialile Show that
C|t] is a bialgebra with coproduet and counite determined byA(t) = t ® t and
£(t) = 1. Check that this bialgebra is cocommutative.

Exercise 4.4.(a) LetH be a bialgebra with coproduet and counite. Consider
thelinear dual H'= Hom(H, C) of H. Define a product”: H'® H™— H" for all
xe€ Handa,B € H by

(4.10) K (@®B)(x) = (@®B)(AX) = Y a(X)B(X),

|
whenA(x) = > X ® x’. Show that

() u”is an associative product with unit equalte H",
(i) H” is cocommutative iH is a commutative algebra.

(b) Now assume thdi is finite-dimensional as a vector space o@er

(i) Show thatH™ is a bialgebra with coproduét™: H"— H"® H™ and counit
g: H"— C defined by

A(a)(x®y) = a(xy)
ande™(a) = a(1y) foralla € H.
(i) Prove thatH™ is commutative ifH is cocommutative.

Remark 4.5. It follows from Exercis€ 414 that the dual of a finite-dimersl
bialgebra is another (finite-dimensional) bialgebra. Teed such a duality to the
case wherH is an infinite-dimensional bialgebra, we have to replacelitiear
dualH™ by therestricted dual H defined by

H° = {a € H"| a(l) = O for some ideal such that dimH/I < oo} .
Seel[46, Sect. 1.2] or [68]. We hat = H™ if dim H < oo.

4.3. Hopf algebras. Let H be a bialgebra with produgt, unit 5, coproductA,
and counite. Given two linear endomorphismfs g of H we define a new linear
endomorphisnf = g of H by

(4.11) frg=po(f®Qg)oAeENdH).
We now define the concept of a Hopf algebra.

Definition 4.6. Let H be a bialgebra.
(a) Anantipodeof H is a linear endomorphism S of H such that

(4.12) Sx*idy =noe=idy *S.
(b) AHopf algebras a bialgebra together with an antipode.
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(c) A morphism of Hopf algebrag : H — H’ between Hopf algebras is a
morphim of bialgebras such that

Nof=(f®f)oA, of=g Sof=foS

whereA (resp.A’) is the coproductg (resp.£’) is the counit and S (resp./Sis the
antipode of H (resp. of H.

Example 4.7. If G is analgebraic group then its coordinate algeb@(G) equip-
ped with the map4, ¢, andS defined in Sect. 411 is a Hopf algebra. Actually, the
axioms of a Hopf algebra are derived from this example.

Hopf algebras have two important features which are wortplersizing:

e The concept of Hopf algebrasself-dual the restricted duaH® of a Hopf
algebraH is again a Hopf algebra (see Exercise$ 4.4 (byand 4.11 feefini
dimensional Hopf algebras). This duality allows also toeext the Pon-
tryagin duality of abelian groups to non-abelian ones (sexrdisd 4.15).

e The category of lefH-modules, wheréd is a Hopf algebra, is éensor
category Recall that a lefH-moduleV is a vector space together with a
bilinear mapH x V — V; (X, v) — xv (X € H,v € V) such that

(4.13) (xy)v=x(y(v)) and Jv=v
for all x,y € H andv e V. The map(x,v) — xvis called the action.

If V; andV, are leftH-modules, then so is the tensor produgt® V.
Indeed one defines an actiontéfon V1 ® V, by

(4.14) X(V1 ® V2) = A(X) (Vi @ V2) = Z Xv1 ® X'Va

it A(X) =25 X ® X
Exercise 4.8.Check that the actiof (4.114) éf onV; ® V, satisfies[(4.13).

Remark 4.9. In many cases, for instance whilns a quantum group as in Sddt. 5,
V1 ® Vs is naturally isomorphic as ad-module toVo ® Vi. It is this feature that
leads to braid group representations and knot invariante. will not say more
about this; se€[31, Part Three] for details on this vastesaibj

Exercise 4.10.Show that the product on the algebra Er{éH) of linear endomor-
phisms of a Hopf algebril given by [4.11) is associative with unit equalito ¢.
Prove that an antipode is unique if it exists.

Exercise 4.11.Show that the duaH™ of a finite-dimensional Hopf algebid is a
Hopf algebra.

Exercise 4.12.(A bialgebra without antipodd)et C[t] be the bialgebra considered
in Exercisé€ 4.B. Prove that it has no antipode [hint: agp}#to the elemert.

The following properties of the antipode of a Hopf algebmaorth mentioning
(seell31, 111.3] or[58]).

Proposition 4.13. Let H be a Hopf algebra with coprodud, counite, and an-
tipode S.
(a) The antipode S is an anti-morphism of algebras, i.e.afbx,y € H,

S(xy) = SWS() and 1) =1
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and we have
(S®S)oA=A®0S and oS =c¢.

(b) If H is commutative or cocommutative, then the antipodg & involution,
i.e. & =idy.

Another useful concept is the following. An elemenof a Hopf algebreH is
calledgroup-likeif

(4.15) A(X) =x®x and g(x) =1
Let Gr(H) be the set of group-like elements laf

Proposition 4.14. The setGr(H) of group-like elements of H is a group under the
product in H. The inverse of an element >3n(H) is S(x).

Proof. Let x,y € H be group-like elements. Singe and & are morphisms of
algebras, we have

A(xy) = AXA(Y) = (X® X)(YRY) = Xy® Xy

ande(xy) = &(x)e(y) = 1. This shows that GH) is preserved under the product.
Clearly, the unit 1 oH is group-like and is a unit for the product in ().

Applying (4.12) to a group-like element we obtainS(x)x = 1 = xS(x),
which shows thaS(x) is the inverse oik. To conclude that GH) is a group, it
remains to check th&(x) is group-like. Indeed, by Propositibn 4113 (a),

AP(S(x)) = (S®S)(A(X) = S(X) ® S(¥),

which impliesA(S(x)) = S(x) ® S(x). We also have(S(x)) = &(x) = 1. Thus,
S(x) is group-like. i m]

Examples of group-like elements and computations ¢H3mwill be given in
Exercisé 4.9 below.

4.4. Examples of Hopf algebras from finite groups. To familiarize the reader
with the concept of a Hopf algebra, we now present the folhgwivo basic exam-
ples, both constructed from a group.

4.4.1. The function algebra of a finite groupL.et G be a finite group with unie
andO(G) be its function algebra, as defined in SeECt. 3.1.1. Itis a laye#bra with
coproductA, counite, and antipodés given by

(4.16) A(u)(g.h) = u(gh),  e(u)=u(e), S(u)(g) =u(g™)

(
for all g,h € G andu € O(G). Here we have identified(G) ® O(G) with the
function algebrad(G x G) of the product grous x G.
We can also express, ¢, andS in terms of thes-functions introduced iroc.
cit. Namely we have

1 ifg=e

A(dg) = Oh ®On-1g, S(0g) = 0g-1, &(6g) = :
(%) é h@dh-ig S(0g) = dgi, &(dg) {O otherwise.

Since the inverse map— g~ in a group is an involution, it follows froni (4.16)
that the antipodé is an involution as well, which is in agreement with Proposi-

tion[4.13 (b) applied to theommutativeHopf algebraD(G).
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4.4.2. The convolution algebra of a groug.et G now be an arbitrary group, not
necessarily finite. We defing[G| to be the vector space spanned by the elements
of G. This means that any element@fG] is a linear combination of the form

Z Ag 0,

geG

where the cofiicients g are complex numbers, all of which are zero except for
a finite number. We also assume that the{sgtcc is a basis ofC[G], which is
equivalent to the implication

<Z /lgg=0> = (lg=0forallgeG).

geG

The vector spac€[G] is equipped with a product, often called thenvolution
product defined by the formula

(3 08) () = 5 (3 o)

The convolution product possesses a unit, which-jg;1= e, wheree s the unit
of the groupG. The algebr&[G] is called theconvolution algebraf G, or simply
the group algebraof G.
We now claim thatC[G] is a Hopf algebra. Its coproduct, counit, and antipode
are given by

(4.17) A<Z agg> = > 49®0, s(Z agg> =>4,

geG geG geG geG

(4.18) S <Z g g) = 207t =) Ag1g

geG geG geG

We can see on Formula(4]17) for the coproduct ft8t= A, which means that
the Hopf algebraC[G] is cocommutativeBy Proposition 4.13 (b) this implies that
the antipodeS is an involution, which can easily be seenon (4.18).

Exercise 4.15.Prove the claims in Set. 4.4.2.

Exercise 4.16.(Duality between the function algebra and the group algéhet G
be afinite group. Define a bilinear for®(G) x C[G] — C by

<U,Z Q9 )= Z Agu(g)

geG geG

forallue O(G), g€ G, andiq € C. Itinduces a linear map : O(G) — C[G]| by
w(u) = {u,—) (ue 0(G)). Recall thatC[G]" is the dual Hopf algebra ¢f[G], as
defined in Exercise 4.4. Prove the following:

(i) The linear mapv : O(G) — C[G]  is bijective.
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(i) Forallu,ve O(G), g,he Gwe have

gy = Ugv.9),
(A(u),g®h) = <(u.gh),
e(u) = (ue,

Su),g = ug.
(iii) Deduce thatw : O(G) — C[G]" is an isomorphism of Hopf algebras.

Exercise 4.17.(Duality for finite abelian groupsl.et G be a finiteabeliangroup
andG = Hom(G, C*) be its group of characters. We recall thatharacterof G is
a group homomorphism froi@ to the multiplicative grougC* of non-zero com-
plex numbers. Since any element®@fis of finite order, the values of a character
of G are roots of unity, which are complex numbers of modulus 1.

The setG is a group under pointwise multiplication; it is also calldnd Pon-
tryagin dualof G.

(i) Show thatGl/Ez >~ (?1 X @ wheneveiG; andG; are finite abelian groups.

(ii) Determine all characters of a cyclic group of oraesind conclude that there
is a (non-unique) isomorphism//\n ~ Z/n.

(iii) Deduce from (i) and (ii) tha = G for any finite abelian grou.

~

Exercise 4.18.(The Hopf algebra€[G] andO(G)) Let G be a finite abelian group
andG be its group of characters, as defined in the previous exerdnsider
the function algebra)(é), which is a Hopf algebra by Sect.4.4.1. Observe that
this Hopf algebra is not only commutative, but also coconativg sinceG is
abelian (see Formula(4.116) for the coproduct). On the dtlaed we have the
cocommutative Hopf algebr&@|G]|, which is commutative becausg is abelian.
Prove that the linear map[G] — O(G) defined byg e G — (x — x(9)) ¢ is an
isomorphism of Hopf algebras.

Exercise 4.19.(Group-like elements)

(a) Show that the only group-like elements of a group alg€l@] are of the
form dee Ag0, where all cofficients 4 are zero, except for exactly one, which
is equal to 1. Deduce a group isomorphism{@G]) =~ G.

(b) Given a finite groufs, show that an elemente O(G) is group-like if and
only if u(e) = 1 andu(gh) = u(g)u(h) for all g.h € G, i.e. if and only ifuis a
character ofs. Deduce a group isomorphism @(G)) ~ G = Hom(G, C*).

4.5. The Heyneman-Sweedler sigma notationLet H be a Hopf algebra with
coproductA, counite and antipodes. It is often convenient to use the following
notation (due to Heyneman and Sweedler) for the image ofeanaxitx € H under
the coproduct:

AX) = 2, X1 ® X
(%)
The coassociativity identity (4.8) expressed in this notabecomes

2 ) ® (X))@ ® X2 = D Xy ® (X2) ) ® (X2))(2)-
) )



NON-COMMUTATIVE PRINCIPAL FIBER BUNDLES 19

To simplify we will express both sides of the previous egyaily

D X ® X2 @ Xa).
()

In this notation the counitality identitjy (4.9) becomes

(419) Z S(X(l)) X(z) = X= Z X(l) S(X(z)).
(%) (%)
The defining equation (4.12) for the antipode becomes

(4.20) Z S X(2 = 8( )1 = Z X(1) S(X(z))
)
The fact thatA is a morphism of algebras can be expressed in this notation by

Z (XY) (1) ® (XY)(2) = (Z X1) ® X(2)) (Z Y1) ®Y(2))-

(xy) (%) V)
It is convenient to write the previous right-hand side siyrged

D XwYn ® X2)Ye)
(X))

5. QUANTUM GROUPS ASSOCIATED WITH S Lp(C)

In this section we will present two Hopf algebras which weiscavered in
the 1980’s and are quantizations of the special linear g&LgC) and of its Lie
algebrasl(2), the latter consisting of all Z 2-matrices of trace 0. These Hopf
algebras depend on a parameater They have the particularity of being neither
commutative, nor cocommutative. They are instances oafledruantum groups

The term “quantum group” was introduced by Drinfeld in hisrigdey 1986
ICM address [1@. As we mentioned in the introduction, the discovery of quant
groups was a major event with spectacular applications preeentation theory,
low-dimensional topology and theoretical physics. Thelezanay learn more on
guantum groups in the monographies|[11,[29] 31} 37, 42].

5.1. The quantum coordinate algebra ofS L,(C). In Sect[4.] we considered the
special linear grou Ly(C) and its coordinate algebra

O(S(C)) = Cl(aj)1<ij<n]/(det(a ) — 1).
Let us now restrict to the casé = 2. For simplicity, set S[2) = O(S Ly(C)).
We have
SL(2) = C[a,b,c,d]/(ad — bc— 1),
wherea = aj1, b = a;2, ¢ = ap1 andd = az,. We can rewrite Formulas(4.5)—
(4.1) for the coproduch, the counits and the antipod8 of the Hopf algebra S(2)
in the following compact matrix form:

o a(EY-( e

3Drinfeld along with other invited mathematicians from thevigt Union was prevented by the
Soviet authorities to attend the conference; in Drinfeddisence his contribution was read by Cartier.
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€969
(5.3) s <‘2 3) - <_dc _ab>.

This is a compact version for the formulas

Ala) =a®a+b®c, Ab) =a®@b+b®d,
Alc) =c®a+d®c, A(d)=c®b+d®d,

S(@ =d, S(b)=-b, S(c)=-c, S(d)=a

The Hopf algebra S(2) is commutative, but not cocommutative, which can be
seen for instance on the formula fafa). Its antipode is clearly an involution,
which follows of course from the fact that the map ing = g~ is involutive.

Now we introduce anon-commutative deformatiaf the Hopf algebra S(2).
The deformation depends on a paramgtehich we take to be a non-zero complex
number. Define S§(2) to be the algebra generated by four genera#iis, c, d
subject to the relations

ba = gah ca= gac
db = gbd, dc = gcd
bc = ch, ad—da= (g~ —q)bc
ad—qlbc = 1.

If g = 1, the previous relations reduce to the fact that the geomaratb, c, d
commute and satisfy the additional relat@ah—bc = 1. Thus in this case, we have
SL4(2) = SL(2). If g # 1, then clearly SK(2) is not commutative, so it cannot be
isomorphic to SI2).

The algebra S§(2) is a Hopf algebra. Its coprodugtand counite are given by
the same formulas as for &), namely by[(5.11) and(5.2). However the antip&le
of SLy(2) is given, not by[(5.8), but by another formula (dependinggpmamely
in compact matrix form by

a b d —qb
50 @ Y-8 W)

The Hopf algebra Si(2) provides our first example of a Hopf algebra that is
(for generalg) neither commutativenor cocommutativeand with non-involutive
antipode (for the latter, see Exerdisel5.2 below). The Hépélaa Sly(2) is a
quantizationof the coordinate algebra $2); this is another way of saying that
SL4(2) is a deformation of S[2) as a Hopf algebra.

The Hopf algebra S§(2) is an example of guantum groupThe Hopf algebras
O(GLn(C)) andO(S Ly(C)) can be quantized in a similar fashion.
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Exercise 5.1.(a) Compute the following expressions ing2) ® SLq(2) involving
the coproduci defined by[(5.11):

A(b)A(a) — gA(a)A(b), A(c)A(a) — gA(a)A(c),
A(d)A(b) — gA(b)A(d), A(d)A(c) — aA(c)A(d),
A(b)A(c) — A(c)A(b), A(@)A(d) — g tA(b)A(c) — 1® 1,

A(@)A(d) — A(d)A(@) — (a—g ! A(b)A(c).

Deduce thai\ : SLy(2) — SLg(2) ® SLq(2) is @ morphism of algebras.
(b) Check that Sk(2) satisfies all axioms of a Hopf algebra.

Exercise 5.2.(The square of the antipode)

(a) Use[(5.14) to compute the squa&of the antipode of S&(2) on the genera-
torsa, b, c, d.

(b) Show thatS? has infinite order ifj is not a root of unity.

(c) If g = exp(m+/—1/N) for some integeN > 1, prove thatS? is a Hopf
algebra automorphism of Q(2) of orderN.

Exercise 5.3.Fore = 1 define Sk)(2) to be the algebra generated XyY, Z, T
and the relationXY = YX XZ = ZX, XT = TX, YZ = &ZY, YT = &£TY,
ZT = eTZandX? — Y2 — eZ? + £T? = 1.

(a) Lete = 1. Show that there is an algebra isomorphismSL,)(2) — SL(2)
such thatp(X) = (a+d)/2,¢(Y) = (a—d)/2,¢(Z) = (b+c)/2,¢(T) = (b—c)/2.
Deduce AlgSL,(2),C) = SL(C).

(b) Lete = —1. Show that AlgSL,(2), C) is the union of three quadrics lying
in three distinct planes (for further details, se€ [22, S&21).

5.2. A quotient of SLy(2). Letqbe again a non-zero scalar. Consider the algebra
CqlX, X~1,Y] generated by three generatotsX—1, Y subject to the relations

XX t=X1X=1 Y X = gXY

This algebra is non-commutative whgn# 1. Proceeding as in ExerciseB.6, the
reader may check that the sgt'Y!} wherei runs overZ and j overN is a basis
of Cq[X, X~1,Y]. The algebraCq[X, X1, Y] contains the quantum plari&[X, Y]
of Sect[3.2.P as a subalgebra.

The algebreCq[ X, X~1,Y] has the structure of a Hopf algebra with coprodtict
counite and antipodes given on the generatob§ Y by

(5.5) AX)=X®X, AY)=X®Y+YX !

(5.6) eX)=1, £Y)=0 S(X)=X1 $S(Y)=—qY

The formula forA(Y) shows thatCq[X, X~2, Y] is a non-cocommutative Hopf al-
gebra.

Moreover,Cq[ X, X~1,Y] is a quotient of the Hopf algebra §12) introduced in
Sect[5.1; we have the following precise statement, whosefpve leave to the
reader.

Lemma 5.4. There is a surjective morphism of Hopf algebras
71 SLg(2) — Cq[X X1, Y]
such thatr(a) = X, x(b) = Y,n(c) = 0, andr(d) = X~1.
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Since the morphism kills the generatoc of SLq(2), we can se€q[X, X1, Y]
as a quantization of the coordinate algebra of the subgBxapupper triangular
matrices inS Ly(C).

5.3. The quantum enveloping algebra ofl(2). We now describe another impor-
tant quantum group, which is dual to the quantum groug(3Lin a sense which
will be made precise in Lemmab.5 below.

This new algebra, denotedi, s(2), also depends on a non-zero complex param-
eterq; we furthermore assune# +1, so thaig — q—* # 0.

We defineUq sl(2) to be the algebra generated by four elemdats, K, K-1
subject to the relations

KKt =K K =1,
KE = ¢?EK, KF = q°FK,

K- K™?
q—qt

The algebrdJq sl(2) is called thequantum enveloping algelﬂa)f the Lie alge-
brasi(2). The se{ E'FIK}; ja: ez is @ basis olJq sl(2) considered as a complex
vector space (for a proof, see[31, Prop. VI.1.4]).

The algebralqsi(2) is a Hopf algebra with coprodud, counite, and an-
tipodeS given on the generators by

A(Kil) _ Kil® Kil, S(Kil) -1, S(Kil) _ KJ—r]_’
A(E)=1®E+E®K, &E)=0, S(E)=-EK,
AF)=K'®F +F®1, &F)=0 S(F)=-q'FK
The algebraJqsi(2) first appeared in a paper by Kulish and Reshetikhin; its

Hopf algebra structure is due to Sklyanetf.(39,56]).
Consider the morphism of algebras Ugq sl(2) — M3(C) given by

o = (% ). = (3 o) eP= (5 9):

It is a two-dimensional representationld si(2). For anyu € Ugq sl(2), the matrix
p(u) is of the form
_ (A B(u)
o= (&) o)

This equality defines four linear forn#s B, C, D on Ug sI(2), hence four elements
A, B,C, D on the dual algebrbly sl(2)” whose product is given by (4.110).

Lemma 5.5. There is a unique morphism of algebras SLq(2) — Uqsl(2)” such
that

EF — FE =

W@ =A u(b)=B, ¥(©)=C, u(d)-D.

For a proof we refer ta[31, Sect. VII.4]. Takeudhi[60] shaltbaty is injec-
tive; thus Slg(2) embeds into the dual of the quantum enveloping algelra(2).
Actually, the image of the morphism lies inside the restricted dual Hopf alge-
braUqsl(2)°, as defined in Remakk4.5.

“The concept of enveloping algebra of a Lie algebra is a daksbncept of the theory of Lie
algebras; see for instance [15] 28| 31, 54]. The relatipnisbiween the quantum enveloping alge-
braUg s1(2) and the enveloping algebra of the Lie algekik&) is explained in[[31L, VI.2].
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Exercise 5.6.Prove that the map : Uqgsl(2) — M3(C) defined above is a mor-
phism of algebras. Give a proof of Lemmal5.5.

Exercise 5.7.Check that the group-like elementsldf sI(2) consist of the powers
KKof K (k € Z).

Exercise 5.8.Show that the following element &f sI(2) belongs to its center:
g K +gKt

(@—a1)?
Remark 5.9. Drinfeld [17,[18] and Jimba[30] generalized the constructiof

Uqsl(2) to any symmetrizable Kac—-Moody Lie algelraThe resulting Hopf al-
gebralUq g is a quantization of the universal enveloping algebra. of

EF +

5.4. Afinite-dimensional quotient of Uq sl(2). The quantum enveloping algebra
Uqsl(2) has an interesting quotient whepis a root of unity of orded (d > 3
sinceq # +1). Assumgjis such a root of unity. Set= dif dis odd, ance = d/2
if dis even; we have > 2.

Let| be the two-sided ideal dfq sl(2) generated b¥®, F® andK® — 1. Define
the quotient algebra

g = Ugsi(2)/1.

It can be shown that the SE'F/K‘}1<; j,<e_1 Of elements ofJqsl(2) maps to a
basis ofuq (for a proof, see[31, Prop. V1.5.8]). Thereforg, is finite-dimensional
of dimension equal te®.

Moreover, there is a unique Hopf algebra structuraigisuch that the natural
projectionUq sl(2) — g is @ morphism of Hopf algebras (seel[31, Prop. IX.6.1]).

Exercise 5.10.Let q be a root of unity of orded > 3 ande as above. Show that
the element&®, F©, K€ lie in the center ofJqsl(2).

We will come back tdJq s1(2) andug in Sect[8.B.

6. GROUP ACTIONS IN NON-COMMUTATIVE GEOMETRY

Our next step is to extend the concept of a group action to thdveof non-
commutative spaces. We need to introduce the concept of adudealgebra over
a Hopf algebra. As we shall see, such a concept covers vagituations.

6.1. Comodule-algebras. Fix a Hopf algebraH with coproductA and counite.

Definition 6.1. A (right) H-comodule algebr#&s an (associative unital) algebra A
equipped with a morphism of algebras= A — A ® H, called thecoaction
satisfying the following properties:

(a) (Coassociativity)

(6.1) (6®idy)od = (Ida®A) 06,
(b) (Counitarity)
(6.2) (ida®e) 06 = ida,

where we have identified @& C with A.
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Any H-comodule algebr& contains a subalgebra, which will turn out to be of
importance to us, namely the subalgebraan which the coactiod is trivial:

A H —facA|d@ =a®1l}.
The elements oA H are calleccoinvariant

Exercise 6.2. Show thatA® " is a subalgebra oA and that the unit A of A
belongs toA®®H,

The following example of a comodule algebra shows that thigcept extends
group actions to non-commutative algebra.

Example 6.3. Let G be a finite group acting on the right on a finite XetfThen the
action, which is a maX x G — X induces a morphism of algebravetween the
corresponding function algebras

§5:0(X) > O(X x G) = 0(X) ®0O(G).
Equipped withs, the algebrad(X) becomes ami-comodule algebra for the Hopf
algebraH = O(G).
LetY = X/G be the set of orbits of the action 6fon X. Then the projection
X — Y sending each elemenrte X to its orbitxG induces an injective morphism
of algebrag0(Y) — O(X). It can be checked th&(Y) coincides with the subal-
gebra0(X)°-9(©) of coinvariant elements a@d(X).

Example 6.4. In Definition[6.]1 setA to be equal to the Hopf algebid and the

coactioné to be equal to the coprodustof H. ThenH becomes ami-comodule

algebra. We claim that any coinvariant elem&rt H is a scalar multiple of the
unit 1 of H. Indeed, applying ® id to both sides of the equalitq(x) = x® 1 and

using [4.9), we obtaix = £(x) 1, which yields the desired conclusion.

We now give more examples of comodule algebras.
6.2. Group-graded algebras. Let G be a group.

Definition 6.5. A G-graded algebr& an algebra A together with a vector space
decomposition
A=D Ay

geG
where each Qis a linear subspace of A such that
(a) AyAn < Agnfor all g, h e G, which means that the product ab belongs g A
whenever & Ag and be Ay;
(b) the unitla of Aisin A, where e is the unit of the group G.

It follows from the definition thaf is a subalgebra oA and that eacly is an
Ac-bimodule under the product éf

WhenG = Z/2 is the cyclic group of order 2, thenGgraded algebra is often
called asuperalgebra

We next show that &-graded algebra is the same a€[&]-comodule alge-
bra, whereC[G] is the convolution algebra of the gro@with its Hopf algebra
structure defined in Se€t. 4.4.2 (see also [7, Lemma4.8]).

Proposition 6.6. (a) Any G-graded algebra A is@[G]-comodule algebra. More-
over, A£°-ClCl = A,.
(b) Conversely, ang[G]-comodule algebra is a G-graded algebra.
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Proof. (a) We define a linear map: A — A® C[G] by
6(a) =a®g forallae Ag

The maps is a morphism of algebras in view of Conditions (a) and (b) efib
nition[6.5. Let us check the coassociativity and counifaciinditions of Defini-
tion[6.1 fors. Firstly, for anya e Ag,

(6®idp) cd(a) = (§®idH)(a® g) =a®g®g.
Similarly,

(ida®A)od(a) = (Ida®A)(a® Q) =a®g® g
in view of (4.17). Therefore(6 ® idy) 0§ = (ida®A) o § holds on each sub-
spaceAy, hence orA. Secondly, for anya e Ag,

(ida®e) 0 6(a) = (da®e)(a®Q) = as(g) = a

again in view of[(4.117).

The inclusionAs = A®C[Cl follows from the definition ofs and from the fact
that e is the unit of C[G]. Let us prove the converse inclusion. For a general
elementa = >, .5 ag € Awith eachag € Ag, we have

a)zz ag®g.

geG

Since the elementg € G are linearly independent iG], we see that, if is
coinvariant, i.e.f(a) = a® e, thenag = 0 for all g # e. Thus any coinvariant
element belongs tée.

(b) Assume now tha# is aC[G]-comodule algebra with coactigh Using the
natural basis{g}gc of C[G], we can expand(a) € A® C[G] for anya € A

uniquely as
= Z Py(a) @9
geG

where eaclpg(a) belongs toA. It is clear thata — pgy(a) defines a linear endo-
morphismpyg of A.
Let us now express the coassociativity of the coacfio®n one hand, we have

(6 ®idn) 0 6(a) = (5 ®idw) (Z Py(a ) =37 pr(py(a) ®h@ag.

geG 0eG heG
On the other hand,
(ida®A) 0 6(a) = (ida®A) (Z py(a > D @ ®gRa0.
geG geG
Identifying both right-hand sides in view df (6.1), we oltai

6.3 —
(6.3) Pn© Pg { 0 otherwise.
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Next, the counitarity conditior (6.2) implies that
a = (ida®e)os(a) = (ida®e) <Z pgy(a >
geG
= Z Pg(a) £(9) = Z Pg(a)

geG geG
In other words,
(6.4) . Py =ida.
geG
Define the linear subspad® = pgy(A) of Afor all g € G. The equality[(6.4)
implies >, Ag = A. Let us check that this sum is a direct sum. Indeed, let us

assume that, . Pg(ag) = 0in Afor a family (ag) of elements oA and applyp,
to it for a fixed elemenh € G. By (6.3), we obtain

= pn (Z pg(ag)> = Y, Pn(Pg(8g)) = Pnan).

geG geG
Since this holds for anig € G, we see that each summand in the stija 5 pg(ag)
vanishes.
We claim thats(a) = a® g for anya € Ag. Indeed, an element & is of the
forma = pg( ') for somea’ € A. Using [6.3), we obtain

=2, Mm@ ®h=) p(py(@))®h=py(@) ®g=awg.
heG heG

It remains to check thath belongs toAg, for all ae Ag andb € Ay, and that A
belongs toA.. For the first requirement, we hayéa) = a® gands(b) = b® h.
Sinced is a morphism of algebras, we have

d(ab) = 6(a)d(b) = (a®g)(b® h) = ab® gh,
which proves that the produab belongs toAg.

For the second requirement, we hai{@a) = 1a ® € thus, the unit of the
algebra belongs to the componéqtindexed by the unie of the group. o o

Let us give a few examples of group-graded algebras.

Example 6.7. By Exampldé 6.4 we know that the Hopf algebtdG] is itself a
C[G]-comodule algebra with coaction equal to the coproduaf C[G]. Since
A(9) = g® g by (4.17), we deduce from Propositionl6.6 and its proof this|
is a G-graded algebr&[G] = @gee Ag, Where eaclg-componentAq is one-
dimensional and consists of all scalar multiples of the eletry.

Example 6.8. (Gradings on matrix algebras)

(a) Consider the algebrsin(C) of N x N-matrices. Let;j € My(C) be the
matrix whose entries are all zero, except for {hg)-entry which is equal to 1.
TheN? matricesE; j (1 < i, j < N) form a basis oMy/(C).

The algebraMy(C) can be given many group gradings. IndeedGéte a group
and(gs, . ..,gn) be anN-tuple of elements dB. For anyg € G, let Aq be the vector
space spanned by all matricés; such thatgigjl = @, we setAy = O is there is

no couple(i, j) such tha‘gigj‘l = ¢. Then the decompositioNy(C) = @gee Ag
yields the structure of &-graded algebra oMy (C) (check this claim!).



NON-COMMUTATIVE PRINCIPAL FIBER BUNDLES 27

(b) As a special case of the previous gradings, take Z/N to be the cyclic
group generated by an elememif orderN and
(O1.....0n) = (&t t2 .. tN7D),

Then My(C) has a gradingVn(C) = @i Ax for which Ax consists of all
matrices(a; j)1<i j<n such that j = 0if i — j # k (mod N). In particular,Ae is
the subalgebra of diagonal matrices. Eédghis N-dimensional.

Example 6.9. Let H be the four-dimensional algebra@dmplex quaternionRe-
call that it has a basi§l, i, j, k} such that the multiplication dff is given by the
following rules : 1 is the unit and

i2=?=Kk=-1 ij=—ji=k jk=—-kj=i, ki=—ik=]j.
The algebral is G-graded, wher& is the group(Z/2)? of order 4: we have
Apo=Cl, Ang =Ci, Agy=Cj, Azy=Ck
There is an isomorphism of algebras H — M (C) given by

= (5 3 wi-( 25 Y0
wir= (3 o). ww= (Yt 0).

This isomorphism induces @&/2)2-grading onM(C). Such a grading is not of
the form presented in Examjile 5.8 (b) above.

6.3. Algebras with group actions. Let G be a group.

Definition 6.10. A G-algebras an algebra A together with a group homomorphism
p: G — Aut(A) such that eaclp(g) is an algebra automorphism of A.

The subspacé® consisting of all elementa € A such thaj(g)(a) = a for all
g € Aforms a subalgebra @. The elements ohA® are calledG-invariants

Any algebra has the structure ofGralgebra withG taken to be (a subgroup
of) the group of algebra automorphismsAfLet us give a few more examples of
G-algebras.

Example 6.11.If K is a finite Galois extensiorof a number fieldk with Galois
groupG, thenG acts by automorphisms dfiand we havk® = k.

Example 6.12.The general linear groupLy (C) acts by conjugation on the matrix
algebraMy(C). The GLy(C)-invariants are the scalar multiples of the identity
matrix.

Assume now that the group is finite. Consider the Hopf algeb@(G) (intro-
duced in Sect. 4.4.1) and its ba$i% }4c Of 6-functions.

Proposition 6.13. (a) Any G-algebra A is a®(G)-comodule algebra with coac-
tioné : A— A® O(G) given for all ae A by

5(a) = ) p(9)(a) ® dg.
geG
Moreover, the subalgebra®® 2(©) of coinvariant elements coincides with the sub-
algebra /A of G-invariant elements of A:
ACO*O(G) — AG.
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(b) Conversely, an®(G)-comodule algebra is a G-algebra.

The proof is left to the reader, who is invited to take insgima from the proof
of Proposition 6.6.

6.4. The quantum plane and itsSLy(2)-coaction. The special linear grou Lo(C)
acts on the two-dimensional vector spateby matrix multiplication. As a spe-
cial case of Example®.3, the coordinate algeBpX, Y] of C? becomes a S[2)-
comodule algebra. Recall from Séct]5.1 that

SL(2) = C[a,b,c,d]/(ad — bc— 1)

is the coordinate algebra &Ly(C). It is easy to check that the corresponding
coactions : C[X, Y] — C[X, Y] ® S L»(C) is given by

b
(6.5) SXY) = (X Y)® (2 d) :
which is short for
s(X)=X®a+Y®c and §(Y)=X®b+Y®d.

In Sect[5.]l we quantized $2) using a complex parameter # 0. We now
proceed to quantize the previous coaction. To this end wlaceg[X, Y] by the
quantum plan€gy[X, Y] = C{X,Y)/(Y X— gXY) introduced in Sedi. 3.2.2.

Theorem 6.14.The mag given by Formulg6.5)equips the quantum plari@[ X, Y]
with the structure of &L4(2)-comodule algebra. Moreover, the subalgebra of
coinvariants ofCq[X, Y] is C1.

The second assertion is the non-commutative analogue ¢é¢héhat the only
point of the plane which is invariant under the action ob&L) is the origin.

Proof. (a) We first have to establish th&ts a morphism of algebras. It fices to
check that(Y)s(X) = q5(X)s(Y). Using [6.5), we have

5(Y)s(X) X@®b+Y®d)(X®a+Y®Cc)
= X°®ba+YX®da+ XY®bc+ Y2®dc

Similarly,
§(X)5(Y) = (X®a+Y®c)(X®b+Y®d)
= X’®ab+ YX®cb+ XY®ad+ Y2®cd.
Now using the defining relations of §(2) and the relatiory X = gXY, we obtain
5(Y)8(X) — qs(X)s(Y) X?® (ba— qab) + YX® (da— qcb)
+XY® (bc— gad) + Y2 ® (dc — qgcd)
= XY®q(da— qcb+ g *bc— ad)
= —XY®q(ad—da— (gt —qg)bc) = 0.

The maps being a morphism of algebras, it is enough to check its ca#tdaty
and its counitarity on the generatoXsY, which is easy to do.

(b) Letw € Cq[X Y] be a coinvariant element, i.&i(w) = w ® 1. Recall
the morphism of Hopf algebras: SLg(2) — Cq[X, X1, Y] of Lemmd5.#. The
composed map

§ = (i[d®n) 06 : Cq[X, Y] — Cq[X Y] ® Cq[X, X1, Y]
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turns the quantum plar@,[X, Y] into aCq[X, X~1, Y]-comodule algebra. We have
§(w) = (([dR1)(w®1) = w®n(l) = w® 1. Thusw is coinvariant for the
CqlX, X~1,Y]-coaction. Now it follows from{6J5) and the formula ferthat
d(X)=X®n(@) +Y®nr(c) = X®X

and

FY)=X®rb) +YRna(d) =XQY+Ye XL
Comparing with Formuld(515) for the coproducof the Hopf algebraq[X, X1, Y],
we see thad’ is the restriction ofA to the subalgebr&q[X, Y]. It follows from this

remark and from Example®.4 thatis a scalar multiple of the unit aq[X, X1, Y],
which is also the unit of4[X, Y]. o o

Exercise 6.15.Let g be a non-zero complex number. For any intager 0 define
the g-integer|r] by

[M=1+q+ - +qt= ?;__11
and theg-factorial [r]! by
T @@ -1 (@ -1
=T - e .

We agree thaf0]! = 1. For 0< r < nwe define they-binomial cogicient

n [n]!
H IRGHGET
(a) For O< r < nshow the followingg-analogue of thé&ascal identity
n n—1 rn—1
== o)
(b) LetX, Y be variables subject to the relati¥X = gXY. Prove thay-binomial
formula

(X +Y)" = é m XY,

Exercise 6.16.Recall the basigX'Y!}; jay of the quantum plan€g[X, Y]. Com-
putes(X'Y?) for the coaction(615).

6.5. Quantum homogeneous spaced.et G be an algebraic group ar@ be an
algebraic subgroup. To this data we associatétmogeneous spaceG, whose
elements are the left cosed§&’ of G’ in G with respect tay € G; in other words,
two elementg;, g, € G represent the same element@®fG’ if and only if there
existsg' € G’ such thag, = g:9'.
To the inclusioni : G’ — G corresponds the morphism of Hopf algebras-

i* : O(G) — O(G'), which sends a function € O(G) to its restriction toG’. The
mapr is surjective. The composition

6= (d®nr)oA:0(G) — O(G)®O(G
turnsO(G) into anO(G’)-comodule algebra. Let us consider the subalgebra
0(G)®° %) = 0(G)
of coinvariant elements.
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Lemma 6.17. An element & O(G) belongs to the subalgeb(G)*°-2(") if and
only ifu(gg) = u(g) forallge Gandd e G'.

Proof. Identifying O(G) ® O(G’) with O(G x G’) and using Formula(4.16) for the
coproduct 0of0(G), we see that the above coactideends an elemente O(G) to
the functions(u) € O(G x G’) given by

6(u)(g,9') = u(gd)

for allg e Gandd € G'. Such an element is coinvariant if and only if§(u)
u® 1, which is equivalent t6(u)(g,g') = u(g)1 forallge Gandd € G'. O

o

It follows from the lemma and the above descriptionG)}G’ that the subal-
gebra0(G)°°-9(") of coinvariant elements can be identified with the coordinat
algebraO(G/G’) of the homogeneous spaGgG’.

The non-commutative analogue of a homogeneous space islkbwifhg. Let
7. H — H be a surjective morphism of Hopf algebras. The map

§=(d®m)oA:H->H®H

turns H into an H-comodule algebra. Let us consider the subalgetfizrt of
coinvariant elements; by analogy with the previous cladsiase we calH®H a
guantum homogeneous space

This general construction provides many examples of quaritamogeneous
spaces; se¢[9, 14,124,125] 40| 41,[50, 53]. We have alreadyietaced such a sit-
uation with the surjective morphism of Hopf algebrasSLq(2) — Cq[X, X1, Y]
in Sect[5.2, wher€y[ X, X~1,Y] has been hinted at as a quantization of the co-
ordinate algebra of the subgro®of upper triangular matrices i8 Ly(C). It is
well known that the homogeneous sp& & (C)/B is in bijection with thepro-
jective lineCPL. Therefore the subalgebra )% CaXX Y] can be seen as a
quantization ofcP.

7. Hoprr GALOIS EXTENSIONS

It was noticed in the 1990’s (se€ [9,119,  53]) that the righh-commutative
version of a principal fiber bundle is the concept of a Hopfd&akxtension, a
notion which had been introduced in the 1960’s by algelsarsbrder to extend
the classical Galois theory of field extensions to a more ig¢fitamework.

Let us now define Hopf Galois extensions. The use of the wolldig” in this
expression will be justified by Example ¥.4 below.

7.1. Definition and examples.

Definition 7.1. Let H be a Hopf algebra and B an (associative unital) algel#a.
H-Galois extensionf B is an H-comodule algebra A with coactién A — AQH
such that the following three conditions hold:

(i) A contains B as a subalgebra;
(i) B=AH="(aecA|dé(a =a®1l};
(iii) the linear map

(7.1) B:A®A—->A®H; apd — (a® 1))

induces a linear isomorphism®@g A —> AQ H.
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Let us comment on Condition (iii). Firstly, the vector sp#c@g A is by defini-
tion the quotient oA ® A by the subspact spanned by all tensors of the form

ab®a —a®bd. (a,d € A beB)

Condition (iii) implies that the mapg factors through the quotient spagexg A.
Let us check this: it is enough to verify thatvanishes on the generators of the
subspacéJ. Indeed,

Blab®@d —a®bd) = (ab®1)s@)— (a®1)s(bd)
- (@®1(b®1)) - (@®1)b)s@) =0

in view of the fact thab is coinvariant, hence satisfiéé) = b® 1.

The mapg in Condition (iii) is the non-commutative analogue of thepma:
G x P — P x P defined byl[Z11), and the isomorphiskwg A —> A® H is the
non-commutative analogue of the bijectipn G x P — P xx P. For this reason
a Hopf Galois extension can be seen a®a-commutative principal fiber bundle

Remark 7.2. Let Abe anH-Galois extension oB. Observe that, if dimA is finite,
then so are dimMA®A and dim AQgA. In view of the isomorphisM\®gA =~ AQH,
we deduce that the Hopf algehirhis finite-dimensional and that dirdl < dim A.
If in addition B = C is the ground field, theA®gA = AQ Aand dimH = dim A.

Remark 7.3. Sometimes in the definition of ai-Galois extensior of B one also
requiresA to befaithfully flatas a leftB-module. This means that taking the tensor
product®gM with a sequence of righB-modules produces an exact sequence if
and only if the original sequence is exact. Finite-rank &reprojective modules are
examples of faithfully flat modules. The Hopf Galois extensi we will consider

in Sect[8 satisfy this extra condition.

According to[12, Sect. 7], Definitidn 4.1 was introduced iteega generalization
of Galois theory to arbitrary commutative rings, the finitewgp of automorphisms
in the classical theory being replaced by a Hopf algebra.

Let us now present the prototypical example of a Hopf Galgisresion, which
justifies the terminology used.

Example 7.4.If K is a finite Galois extensiorof a number fieldk with Galois
groupG, then by Proposition©.13 (a) the fieldlis anO(G)-comodulek-algebra
with coactions given for alla e K by

(@) = )] ga®dy.
geG

We know that the subalgebra of coinvariant element& aé the subalgebra of
G-invariant elements, therefore coinciding with the fikld'he map

ﬂ:K@kK—>K®kO(G)

defined by[(7.11) is an isomorphism (see e.g.] [46, Sect. §.1T2lerefore K is an
O(G)-Galois extension of.

Here are more examples of Hopf Galois extensions.

Example 7.5.If P — X is aprincipal G-bundle thenO(P) is anO(G)-Galois
extension oD (X).
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Example 7.6. Let A = C[x,x 1] be the algebra of Laurent polynomials in one
variable and len > 1 be an integer. We can giv a Z/n-grading by setting
degx) = i (modn). This is a strong grading in the sense defined above. The
algebraA becomes &[Z/n|-Galois extension of the subalgebBa= C[x", x~"].

This is the algebraic version of the princiggin-bundler, : S* — S! of Exam-
ple2.4.

Example 7.7. (Strongly graded algebrad)et G be a group. We know (see Propo-
sition[6.6) that anyG-graded algebrd is a C[G]-comodule algebra. Recall that
the subalgebra of coinvariants is teeompotentA.. Such a comodule algebra is
aC[G]-Galois extension of if and only if A is astrongly G-graded algebrai.e.
aG-graded algebra such thagA, = Agn for all g, h € G (seel[46, Th.8.1.7]).

The matrix algebraViy(C) with the Z/N-grading given in Example 8.8 (b) and
the algebra of quaternions with ti{g/2)?-grading of Example®l9 are strongly
graded algebras.

Remark 7.8. In classical diterential geometry once one has a principabundle,
one can construct a vector bundle associated with it andawitadditional repre-
sentation of5, equip this vector bundle with a connection, and deriveorezrichar-
acteristic classes. Nowadays these classical constngcliave non-commutative
counterparts; for details, see[9, 14] 24,[25,49, 62].

7.2. The classification problem. We say that twdH-Galois extension#, A’ of B
areisomorphicif there is an isomorphism dfi-comodule algebrad — A'.

In Sect[2.# (see Corollary 2.7) we showed how to classifygial G-bundles:
there exists a bijection

[X, BG] — Isag(X)

which is functorial inX. Recall that Isg(X) is the set of homeomorphism classes
of principalG-bundles with base spageand[X, BG] is the set of homotopy classes
of continuous maps fromA to BG.

We wish likewise to classify alH-Galois extensions d up to isomorphism for
a given Hopf algebrad and a given algebr8. In other words, we would like to
compute the set Ga(B) of isomorphism classes &f-Galois extensions ds.

So far not many general results on @) are available. Here is one.

Theorem 7.9. The seGaly (B) is non-empty.
This is a consequence of the following result.

Proposition 7.10. The tensor product algebra A B®H is an H-Galois extension
of B= B® 1 with coactions = idg®A: A=B®H - A®H =B®H ®H,
whereA is the coproduct of H.

This Hopf Galois extension is called tivial Hopf Galois extensionlts iso-
morphism class is thus a special point of G@), just as the trivial principal
G-bundle is a special element of the setd&§) of homeomorphism classes of
principal G-bundles with given base spage

Proof. The mapé turns A into anH-comodule algebra. Proceeding as in Exam-
ple[6.4, we prove that the subalgebra of coinvariant elesmmincides wittBR1 =
B.
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Finally we have to establish that the mép A®g A — A® H of (Z.1) is an
isomorphism. Now

ARsA=(B®H)®s(B®H)=BR®H®H

andA® H = B® H® H. It suffices to check thatthe mgh : H®H - H®H
defined for allx,y € H by

BL(x®Y) = (X® 1) A(Y) = > xy1) ®Y2)
v)
is a linear isomorphism (here again we use the Heyneman-ébsvesggma notation
of Sect[4.5). Define a mag in the other direction by

B2(x®Y) = (x® 1)(S®id)(A(y) = )] XS(¥1)) ® Y-
V)

On one hand, by (4.20) arild (4]19) we have

(BroB2)(x®Y) = > XSyw)¥e ®Yae = 2, X)) ®Ye)
v v)

= X® Z (Y)Y = X®Y,
v)

which proves3; o 82 = idygn. On the other,

(B2oB)(X®Y) = D xyuS¥e) ®Ye = 2, %) ®Ye
W) )

= X® ). &)Y = XQY.
v)

This completes the proof of the bijectivity §f, hence ofs. O O

7.3. The setGaly(C) may be non-trivial. We observed in Se¢t. 2.1 that any fiber
bundle over a point is trivial. The corresponding resultiGalois extensions of
the ground fieldC may not hold. To show this let us present examples of Hopf
algebrasH for which card Ga(C) > 1.

It is convenient to introduce the following definition.

Definition 7.11. Let H be a Hopf algebra. An #Galois objectis an H-Galois
extension of.

7.3.1. The case of a group algebrd.et us consideH = C[G] for some groufs.
We now describe Ggl(C) for this Hopf algebra.

By Examplé 7.7 we know that any[G|-Galois extensiorA of C is a strongly
G-graded algebr#® = @gee Ag such thatAe = C. Since it is strongly graded,
it follows that each componemy is one-dimensional. Let us pick a non-zero
elementuy in eachAq. Then the product structure of the algelfras determined
by the productsigun, for each pair(g, h) of elements ofz. We have

for some scalan(g, h) depending org andh. Such a scalar is non-zero since by
definition the multiplication mapgyy x A, — Agp is surjective. Thus, the family of
scalarsi(g, h) definesamap : G x G — C*, whereC* = C\{0}.
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The mapt satisfies an additional relation calledcyclicity, originating from the
fact that the product oh is associative. Indeed, we hagun)ux = Ug(unuk) for
all g, h,k € G. Using [Z.2), we obtain the following equality
(7.3) (. h) A(gh k) = A(h.k) (g, hk)
forallg,h,ke G. Amapa : G x G — C* satisfying the identity[(7]3) is called a
2-cocyclefor the groupG.

It can be checked (see any textbook on group cohomologynéamce [8]) that
the pointwise multiplication of maps fro® x G to C* induce an abelian group
structure on the se&t?(G, C*) of 2-cocycles folG.

Let us choose another non-zero elementn eachAy. Then we haveyy =
1(9) ug for some non-zero scalafg). Combining this with[(7.2), we obtawyv, =
A'(9, h) vgn, where

1(Q)u(h)

7.4 A(g,h) = (g, h
(7.4) (@h) == gn &N
for all g,h € G. We say that two 2-cocycleg A’ are cohomologousf they are
related by an equation of the form (I7.4). It is easy to checl thr any map
u o G — C* the assignmentg,h) — u(g)u(h)/u(gh) is a 2-cocycle, which
we call acoboundary Moreover, the seB?(G, C*) of coboundaries is a subgroup
of Z%(G,C*).

We define thesecond cohomology grouy G as the quotient

H?(G,C*) = Z%(G,C)/B*(G,C).

It follows from the previous arguments that we have a bigatti
(7.5) Gakg)(C) = H?(G,C*).

Example 7.12. 1t is well known (se€B, V.6]) that for a cyclic group (infinite or
not) we haveH?(G,C*) = 0; for such a group Gajg (C) is then trivial by[(Z.b),
i.e. anyC[G]-Galois object is trivial.

Example 7.13.LetG = (Z/N)" for some integer > 2. Then
HZ(G,CX) ~ (Z/N)r(rfl)/Z’

which implies that Galg)(C) > 1 for such a group. This is of course a rather
surprising result, which again shows that non-commutajaemetry has features
which classical geometry does not have.

Example 7.14. Even more surprising, iG = Z" is the free abelian group of
rankr > 2, then

HZ(G,CX) ~ (CX)I’(F—I)/Z‘
Hence, forr > 2 there ardnfinitely manyisomorphism classes @f[Z"]-Galois
objects.

Remark 7.15. In contrast with Example7.12, the cohomology greif{Z/2, R*)
of the cyclic group of order 2, now with céicients inR* = R\{0}, is not trivial:
H?(G,R*) = R*/(R*)? = Z/2.

Proceeding as above, we deduce that, up to isomorphisne, dnertwo real/2-
Galois extensions ak. The trivial one isR[Z/2] = R[x]/(x* — 1) = R x R,
which has zero divisors. The second one is the field R[x]/(x% + 1) of complex
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numbers. Both are two-dimensional superalgebras, witletka part spanned by
the unit 1 and the odd part by the imagexof

Remark 7.16. Group algebras are cocommutative Hopf algebras and Bytf¥e5)
group Gal(C) is abelian in this case. More generally, for atycommutative
Hopf algebraH, the set Gal(C) has the structure of an abelian group; its product
is induced by the cotensor prodﬂlcdf comodule algebras (see for examplel[10,
10.5.3)).

7.3.2. Taft algebras.Let N be an integek= 2 andq a root of unity of ordeN. The
Taft algebraof dimensionN? is the algebraHy. generated by two generataysx
subject to the relations

=1 xN=0 xg=qgx
It is a Hopf algebra with
AQ =9g®0, AX)=1®X+x®0, &g =1 &x) =0.

This Hopf algebra is neither commutative, nor cocommutatiwhenN = 2, the
four-dimensional Hopf algebrid, is known under the name &weedler algebra
For anys e C consider the algebra

As=C(G,X)/(GN -1, XN — 5 XG-qGX).
It is a right Hy2-Galois object with coaction given by
AG)=G®0, AX)=1®x+X®a0.

By [44, Prop. 2.17 and Prop. 2.22] (see also [16]) Epy-Galois object is isomor-
phic to As for some scalas, and any two such Galois objectg and A; are iso-
morphic if and only ifs = t. Therefore,

GaIHN2 (C) ~C,

which is an abelian group although the Hopf algeHfa is not cocommutative.
See alsd[5, 6, 47, 48] for the determination of (&) for other finite-dimen-
sional Hopf algebra#l generalizing the Sweedler algebra.

7.3.3. The quantum enveloping algebra; il Masuokal[45] determined Ga(C)
whenH = Uqg is Drinfeld—Jimbo’s quantum enveloping algebra mentioired
Sect[5.8, RemafkH.9. A partial result had been given inT38,4.5] under the
form of a surjection

Galy(C) » H2(Z",C*) =~ (C*)' (=172,
wherer is the size of the corresponding Cartan matrix (see also [4])

7.4. Push-forward of central Hopf Galois extensions.In Sect[2.# we saw that,
given a continuous map : X' — X, there is a functorial map
¢* 1 1sog(X) — Isog(X')
induced byP — ¢*(P).
In our algebraic setting we may wonder whether, given a HigetaaH and a
morphism of algebra$ : B — B', there exists a functorial map

fe: GaIH(B) — GaIH(B/)

>The concept of the cotensor product of comodules was firstdoted in[[20]. See alsb [46.58].
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which would be the algebraic analogue of the pull-back ofdiesn The most
natural way to construct suchpaish-forwardmap f, is the following. LetA be an
H-Galois extension oB. SinceB is a subalgebra o4, we can consideA as a left
B-module. Given a morphism of algebrds B — B’, we can then define the left
B’-modulef,(A) as

f.(A) = B ®p A
Here we have used the fact tHaltis a rightB-module via the morphism of alge-
brasf. Itis clear that ifg : B® — B” is another morphism of algebras, then we
have a natural isomorphistg o f).(A) =~ g.(f.(A)) of B”-modules.

There is however a serious problem with this constructiorgeneralf, (A) =
B'®gAis not an algebra! To circumvent thidiculty, we will restrict tocentral H-
Galois extensionsxamely to those for whicB is contained in the center &, this
implies of course thaB is a commutative algebra (central Hopf Galois extensions
were first discussed in[52]). The algeh#s, defined in Seck.8.2.2 below is an
(important) example of a centrbl-Galois extension.

We denote by Zgal(B) the set of isomorphism classes of centiaGalois ex-
tensions of8. Then a morphism ofommutativealgebrasf : B — B’ induces a
push-forward mag.. : Zgal,(B) — Zgal,(B') given byA — f.(A) and satisfying
the desired functorial propertieésee[32] 38]).

In particular, lety : B — C be a character d. ThenA — y..(A) induces a map
X« . Zgaly(B) — Zgal,(C). Observe that Zgg(C) = Galy(C) whenB = Cis
the ground field, as the latter is always central. In analoily the case of a fiber
bundle (see Exercise 2.1 (a)), we calllA) = C ®g A the fiber of the H-Galois
extensionA aty. Note thaty. (A) = A/mA, wherem is the kernel ofy.

7.5. Universal central Hopf Galois extensions.A non-commutative analogue of
the classifying spacBG mentioned in Sedf. 2.4 would be a centrtiGalois ex-
tensionAy of some commutative algeb®y such that for any commutative al-
gebraB and any centraH-Galois extensiorA of B there exists a morphism of
algebrasf : 84 — B such thatf,(Ay) =~ A. In other words, we would have a
functorial surjection
Alg(8H, B) » Zgal,(B)

induced byf — f.(Ay). Here Alg By, B) is the set of morphisms of algebras
from By to B.

Does such a centrafi-Galois extensionAy exist for an arbitrary Hopf alge-
braH? Itis an open question. We do not even know whether in getteeg exists
a centraH-Galois extensioiBy < Ay with a natural surjection

Alg(8nx,C) » Zgal,y(C) = Galy(C)
from the set of characters @ to the set of isomorphism classes l8fGalois

objects. If such a surjection existed and was even bijectiven theH-Galois
objects would be classified up to isomorphism by the chamcteBy .

Example 7.17. Let us give an example for whidH-Galois objects can be classi-
fied by the characters of a commutative algeBraake the Taft algebri . intro-
duced in Sect. 7.3/2. L& be the polynomial algebr@[s|] andA = As considered
as aC[s|]-module, wheréAs is the Galois object defined ioc. cit. Each complex
numbers gives rise to a unique charactes of C[s]; it is tautologically defined by

BFor this to hold we need the extra faithful flatness conditi@ntioned in Sedi. 7.1, Rem&rkl7.3.
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x(s) = s. The maps — ys induces a bijectiol© — Alg(C[s],C) = Alg(8,C).
Now the assignments — (xs)«(A) induces a bijection

Alg(8,C) —> Gaky ,(C).

When in 2005 | lectured on Hopf Galois extensions aMkiéo Coloquio Latino-
americano de Algebrin Colonia del Sacramento, Uruguay, | raised the question
of the existence of a universal central Hopf Galois extansli Aljadeff imme-
diately suggested the use of an appropriate theory of poljaiddentities, based
on his joint work[2] with Haile and Natapov on group-graddgedras. In[[3] we
implemented Aljad#’s idea, using a theory of polynomial identities for comazlul
algebras. Given a Hopf algebkaand anH-comodule algebré, we constructed a
“universalH-comodule algebral{y (A) out of these identities. Localizingfy (A),
we obtained a centrafi-Galois extensionAy of some commutative algebfBy,
the latter being a nice domain. The Hopf Galois exten®anc Ay comes with
a map of the form

Alg(8hH,C) — Gak(C); x — xx(An).

In the next section we will construct this centtdtGalois extension directly,
without passing through polynomial identities. Never#isslthe reader interested
in polynomial identities, the universid-comodule algebrd/{y (A) and the precise
connection with the centrél-Galois extension constructed in Séctl 8.2, may learn
the details from([3, 34].

8. R.AT DEFORMATIONS OF HOPF ALGEBRAS

De pronto me senti poseido por un aura
de inspiracion que me permitié improvisar
respuestas creibles y chiripas milagrosas.
Salvo en las matematicas, que no se me
rindieron ni en lo que Dios quisd21]

Let H be a Hopf algebra. The aim of this final section is to consttinetcom-
mutative algebraBy and the centraH-Galois extensiorAy of By we have just
mentioned. Whem is finite-dimensional, the algeb#, is the coordinate algebra
of a smooth algebraic variety whose dimension is equal toldinThe algebraAy
is a deformation oH as anH-comodule algebra; this deformation is parametrized
by the characters d8y.

We conclude these notes by showing how to apply these catistra to the
quantum enveloping algebkd, si(2) and to its finite-dimensional quotienig.

8.1. A universal construction by Takeuchi. LetC be acoalgebra that is a vector
space equipped with two linear mapjs C — C ® C (called thecoproduc} and
g : C — C (called thecounif) satisfying the coassociativity identify (4.2) and the
counitality identity[4.8). There is a coalgebra undenyiany bialgebra or any
Hopf algebra.

Takeuchi[[59, Chap. IV] proved the following result.

Theorem 8.1. Given a coalgebra C, there exist a commutative Hopf algefxa
and a morphism of coalgebras € — Sc such that for any morphism of coalge-
bras f: C — H’ to a commutative Hopf algebra’there is a unique morphism of
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Hopf algebras
f~2 Sc —H’
satisfying f= f o t. The Hopf algebraSc is unique up to unique isomorphism.

We say thatSc is thefree commutative Hopf algebmaver the coalgebr&. It
can be constructed as follows.

8.1.1. Construction ofSc. Pick a copytc of the underlying vector space 6f that

is to say we assignh a symbilto each element € C so that the max — ty is

linear and defines a linear isomorphismC — tc. Let Sym(tc) be thesymmetric

algebraover the vector spadge. It means concretely the following: {f}ic| is a

basis ofC, then Synttc) is the algebraC|ty |ic| of polynomials in the variablet; .
The commutative algebra Sytg) is a bialgebra with coproduct and counit

given on the generatotg (in terms of the Heyneman—Sweedler notation) by

(8.1) Alt) = ) txy ®tx,, and s(t) = &(x).  (xeC)
(%)

In general, the bialgebra Syta) does not have an antipode: indeedx i C
is a group-like element, then Hy (4]15) we hauvgy) = tx ® tx ande(ty) = 1. If
there existed an antipod® then it would follow from the previous equalities and
from (4.12) thatS(ty)tx = 1, henceS(tx) = 1/ty, which is not a polynomial. But
this computation gives us hope that we may turn the bialg8pma(tc) into a Hopf
algebra by using rational algebraic fractions instead afrpelynomials. This can
indeed be done thanks to the following fact.

Let us denote by Frac Sy(ta) the field of fractions of Syttic): if {X}ic| is a
basis ofC, then Frac Syitic) is the algebra of rational algebraic fractions in the
variablesty, (i € I). There exists a unique linear map : C — Frac Synftc) such
that

-1 -1
Z by bxy = (X1 = Z o o)
(X) (X)

for all x € C (for a proof, see [3, LemmaA.1]). Then the subalgebra of Byan(tc)
generated by all elementg andt;* (x € C) satisfies the requirements of Theo-
rem8.1 to be the free commutative Hopf algeka This subalgebra is a Hopf
algebra with coproduct and counit given by {8.1) and thetamdil formulas

A =) tg ®tg and st =s(x).  (xeC)
()

The antipode is given on the generatgrandt; ! by
S(ty) = t,1 and S(tgl) =ty

To check the universal property in Theorem 8.1, define thephism f:8c > H
by f(ty) = f(x) and f(t;1) = S'(f(x)), whereS' is the antipode of’.

It follows by construction thaSc¢, being a subalgebra of some field of rational
functions, is adomain i.e. an algebra without zero divisors.

In the sequel we will apply Takeuchi’s construction to thelentying coalgebra
of an arbitrary Hopf algebr#l, thus leading to the commutative algelfa.
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8.1.2. Pointed Hopf algebrasA Hopf algebra iointedif any simple subcoalge-
bra is one-dimensional. Group algebras, Taft algebraglepiwg algebras of Lie
algebras, Drinfeld-Jimbo quantum enveloping algehfgs and their quotients are
examples of pointed Hopf algebras.

WhenH is a pointed Hopf algebra, then the free commutative HopdlaigSH
over the coalgebra underlying has a simple description in terms of the group
Gr(H) of group-like elements introduced in Séctl4.3, namely

8.2) Sk = Sym(tu) [tl]
g geGr(H)
Example 8.2.If H = C[G] is a group algebra, then Sytn) is the polynomial
algebra
Sym(th) = Cltg]gec.
SinceH is pointed and GH) = G < C[G], then by[[8.2) the free commutative
Hopf algebraSy is the algebra ot.aurent polynomialson the symboldy (g €
G), or equivalently the algebra of the free abelian gr@{p’ generated by the
symbolsty:
Sh = Cltg, ty Ygea = C[Z@)].

Example 8.3. Let G be a finite group andi be the function algebr@(G) (this
Hopf algebra is not pointed whehis not abelian). Then Syfty) = C[tg|g € G|
and
Sh = C[tg] 1
H = g19eG ®G s
where®g = def(ty,-1)gnec is Dedekind’s group determinaiiseel[3, App. B]).

8.2. The generic Hopf Galois extension associated with a Hopf abpra. In
this section we associate with any Hopf algebta centralH-Galois extension
By < Ay, where the “base spacé#y is a nice commutative algebra whose size
is related to the dimension ¢f. We can seeAy as a deformation off over the
parameter spac8y.

8.2.1. The algebraBy. Let H be a Hopf algebra. In order to construct the “base
space”By we apply Takeuchi’'s theorem to the situation whéris the coalgebra
underlyingH andH’ = Hgpis the largest commutative Hopf algebra quotientiof
it is the quotient oH by the ideal generated by all commutata&gs- yx (x,y € H).
Letr : H — Hgp be the canonical Hopf algebra surjection. Then by Theo-
rem8.1, for the free commutative Hopf algeksa there exists a unique morphism
of Hopf algebras : Sy — Hapsuch thatr = 7ot. The Hopf algebray becomes
anHyp-comodule algebra with coaction

(8.3) 6= (d®7) o A.
On the generators &y the coaction is given by
() = Y txy ® F(Xp) and o(t;h) Z te ® 7 (S(xw)) -

()

Definition 8.4. ThealgebraBy associated with a Hopf algebra H is the subalgebra
of coinvariants ofSy for this coaction:

Bp =S = {ae Sy|s(a) =a®1}.
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We call By thegeneric base algebraf the Hopf algebrad. It has the following
nice properties (see[35, Th. 3.6 and Cor. 3.7] and [36, ).

Theorem 8.5. Let H be a finite-dimensional Hopf algebra.

(a) The algebraBy is a finitely generated smooth Noetherian domain; its Krull
dimensiol is equal todim H.

(b) Sy is a finitely generated projectivBy-module.

(c) If in addition H is pointed, then

B =Clufh, .. uf Upgn,. . Un)s

where n= dim H and¢ = card GfH) and where y, ... ., u, are monomials in the
generators t of Sym(ty).

Example 8.6. If H = C[G] be a group algebra, thed,, = C[I'], wherel' =
G/[G,G] is the maximal abelian quotient &, i.e. the quotient by the normal
subgroup generated by all elements of the fgimgth—1. Letp : Z(® — I be
the homomorphism sending each genergfoo the image ofyinT". Let Yg be the
kernel ofp. Then by[[2, Prop. 9 and Prop. 14],

By = C[Ya].

WhenG is a finite group, thelY; is a free abelian subgroup Bf® of finite index
(equal to the order df). A basis ofYg is given in[36, Lemma4.7] (see also[27,

App. A)).

Example 8.7. For a Hopf algebrdd it may happen thatla, = C[I'] is the algebra
of an abelian groug, for instance when the commutative Hopf algebtg, is
finite-dimensional and pointed (s€e[36, Lemma 2.1]). TheRioposition 6.6 the
algebraSy isT-graded withSy = @, Sn(y), where

Su(y) ={aeSu|dé(a) =a®y},
andBy = Su(0) is the component afy corresponding to the unit elementd’.

Example 8.8. Let G be a finite group anti = O(G). Since this Hopf algebra is
commutative, we havelg, = H. Therefore the morphism of Hopf algebras

Sy — H is split by the morphism of coalgebrasH — Sy, i.e.,7ot = idy. The
coaction[(8.B) turnsy into anO(G)-comodule algebra. Thus by Proposition 6.13,
Sy is aG-algebra. One checks th@tacts onSy = Cltg]gec[1/Oc] by g- th = tgn

(g, h € G) and that the squalﬁf)(z3 of the Dedekind group determinantGsinvariant.
Therefore,

1
B = Cltglog [_] ;
oG | 92
Where(j[tg]gGEG is the subalgebra @&-invariant polynomials.

The algebraBy has also been completely described for the Sweedler algebra
in [3] (see also[33]), for the Taft algebras and other natgeaeralizations of the
Sweedler algebra in[27].

The Krull dimension ofBy, is the dimension of the algebraic variéfysuch thatBy = O(V).
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8.2.2. The algebraAy. To construct what we call thgeneric H-Galois exten-
sion Ay we need the bilinear forrr : H x H — Sy with values inSy defined

by

(8.4) = D) b b baye - (%YEH)

(x)(y)
By [36], Prop. 3.4] the bilinear mag actually takes values in the subalgela
of Sy. We can then equip the vector spaéigg = By ® H with the following
product:

(8.5) (b®Xx)*(c®YyY) = Z bco(X(1), Y1) X2)Y2)

(b,c e By andx,y € H).
The following properties afAy were established in[3, 35] (see also[33]).

Theorem 8.9. Let H be a finite-dimensional Hopf algebra.

(a) The product turns Ay into an associative unital algebra.

(b) The algebraAy is a central H-Galois extension @y = By ® 1 with
coactions = idg, ® A, whereA is the coproduct of H. Moreovefdy is free as a
Bu-module.

(c) Letyo : By — C be the character defined as the restriction®q of the
counit ofSy. Then there is an isomorphism of H-comodule algebras

C ®g, An = An/ker(xo) An = H.
(d) For any characteyy : 84 — C of By, the fiber ofAy at y
C ®g, An = An/ker(y) Ay
is an H-Galois object.

This means thaBy < Ay is a “non-commutative principal fiber bundle” with
“fiber” H. We can also se@ly as a deformation dfl over the parameter spaéky
or, if one prefers, over the set Al§, C) of characters af8. By the last statement
of the theoremy — y..(Ax) induces a map AlgBn, C) — Galy(C).

Exercise 8.10.Check that the produdi(8.5) is associative with mfﬁt® 14.

8.3. Multiparametric deformations of Ugqsl(2) and of uq. We now illustrate
the previous constructions on the cases whéris the quantum enveloping al-
gebralq = Ugsl(2) (defined in Sect.513) and its finite-dimensional quotients
(defined in Sect.514). Bott, andug are pointed Hopf algebras. Theordms8.12
and8.I8 below are new.

8.3.1. The generic base algebra ofyU The Hopf algebralg is infinite-dimen-
sional with basi{E'F/K’}; ja: rez. Its group GfUq ) of group-like elements con-
sists of all powers (positive and negative)kf Therefore, by[(8]2) the free com-
mutative Hopf algebr&y, is described by

1
Su, = Clteirikei jen: rez [t_} :
K™ I mez
The maximal commutative quotient Hopf algelikdy )as is generated by four

generatorE, E, K, K subject to the same relations as the corresponding gen-
erators inUg in Sect[5.B plus the additional relations expressing tbt)ap is
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commutative. We thus have

EK —KE — (PEK,
which impliesE = 0 in (Uq )ap Sinced? # 1 andK is invertible. Similarly,F = 0.
Finally the relation

K-K"=(a—q? (EF-FE) -0
shows thak =K *, henceK” = 1 in (Ugq)ab Therefore

(Ug)an = C[K]/(K” — 1) = C[z/2],

which is the algebra of the grouy2.

As noted in Example 817, the isomorphighdg )an = C[Z/2] implies thatSy, is
a superalgebraSy, = Sy, (0) D Sy, (1), and that the generic base algelfig,
coincides with the 0-degree component:

Bu, = Sy, (0).
On the generatorg;, tr, tx the coproduct o8y, is given by
A(tE) =11 ®tg +te Rk, A(t;:) =tk 1t + R 1y, A(tK) =tk ® k.
_F

Since7(tg) = E = 0, 7(tg)
on Sy, satisfies

= 0, and#(tk) = K, the coactiors of (Ug )ap

Ste) =te®@K, A(te) =tr®1, Atk) =tk ®K.

Thereforetr is an even element, i.e. it belongsSg, (0) = By, while te andtk
are both odd, that is belong &y, (1). It can be proved more generally that:;.

belongs taBy, if and only ifi + ¢ is even, and thatg,% belongs taBy, if and only
mis even.

Exercise 8.11.SetuUgigixe = teipike If | + € is even, andugipixe = tgigike t;l if
i + ¢is odd. Show that

1
Bu, = Clugrikei jew; ez [U_K”‘] |
meZ

8.3.2. The algebra#Aly,,. We have the following result.

Theorem 8.12. The generic |-Galois extensionAy, is the B-algebra gener-
ated by E, F, K, K subject to the relations

thK—l
tp

KeK1=KlxK=
t
K*Ezqu*KJr(l—qz)t—EK*K,
K
K#F=q?FxK+(1-g?)teK,

-1
(tK—l/C:K)qK_l K + (q72 _ 1) (t_E F«K— E K) .

ExF-FxE=1 n n
K K
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The algebrarly, is anUq-comodule algebra with coaction given by the same
formulas as for the coproduct &fy. The algebra depends continuously on the
parameterdg, tr which can take any complex values and on the parameéters
tk, tk—1 which can take anyon-zerocomplex values. Note that all monomials in
the t-variables occurring in the previous relations belongtg (they are all of
degree 0 in the superalgehsa, ).

If we specialize the parametdss tk, tx -1 to 1 and the parametets, tg to 0, we
recover the defining relations &f; and Ay, becomedJq. In other words, Ay,
is a Sparameter deformatioof Uy as a non-commutative principal bundle.

Proof. We use an observation madelin [3, Sect. 6]: in order to findiogla be-
tween elements @ xin Ay, wherex is an arbitrary element of a Hopf algelida
itis enough to find the relations between the following eleta®f the tensor prod-
uct algebraBy ® H:
Xy = Z tx(l) ® X(z).
(%)
It follows from the formula for the coproduct &f, (see Seckl.513) that we have

X1=t11, Xg=tkK, = Xg-1=tc1K?

Xg =11 E +teK, Xp=tk-1F +tc 1
(Here we dropped the tensor product signs since we may aartbiel commutative
algebraBy as an extended algebra of scalars.)
To prove the relations betwedhandK 1, it suffices to computex Xk—: and
Xk-1Xk. We have

thKfl

Xk Xg-1 = tete—1 KK™1 = tete—1 = X1,

1

which is also equal t&Xx-1Xk; this implies the desired formulas fa¢ + K1
andK—1x K.
For the relation betweeld andE in Ay, it is enough to compute the following:

XkXe — P XeXk = tkts KE + tete K2 — P itk EK — g tety K2
= {1tk (KE—qZEK)+(1—q2)tEtK K?
= (1 — q2) tetk KZ.
Now, (Xk)? = t K2. Therefore,
Xk Xe — 0 XeXk = (1— o) teti/tk (Xk)? = (1 — o) te/tk (Xk).

We leave the computation of the relation betwi&eandF in Ay as an exercise
to the reader. For the commutator®findF in Ay, we have

XeXp — XgXg = (t]_ E+te K)(tK—l F+tr 1) — (tK—l F+tr 1)(t1 E +tg K)
= titg—1 (EF — FE) + (2 — 1) tetg1FK

1
= — tat (K = K™ + (g% = D tet1FK
a—q
l tK—l _2
= a— q_l 12} te Xk — Xg-1 | + (q — 1) tetx-1FK.

It remains to comput&K in terms of theX-variables. We have
XXk = thK—l FK + tetk K = thK—l FK + tg Xk,
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so that ¢ et
tetg—1FK = = XXk — —— X.
tk tk
Combining these equalities, we obtain a formulaXgXg — Xg Xg in terms of the
X-variables, hence the desired formulafos F — F = E. O |

8.3.3. A deformation ofiy. Let g be a root of unity of orded > 3. Consider
the finite-dimensional Hopf algebng defined in Sect.5l4. We know that it has
a basis consisting of the? elementsE' FIK!, where 1< i,j,¢ < e— 1. Recall
thate = d/2 if d is even ance = d if d is odd. The group Gry) consists of the
eelements 1K, K2, ... K& L ijtisa cyclic group of ordee.

By (8.2) the free commutative Hopf algeh$a, is given by

1

Suy = Clteiriklogijrce1 [t_] .
K™ losm<e—1
The maximal commutative quotient Hopf algelgna)ap is the quotient ofUq )ap

by the additional relatioi. = 1. SinceK” = 1, we conclude that
C if eis odd

(1g)ab = L

(Ug)ab = C[Z/2] if eis even

Therefore, ifeis odd, thenS,,, is trivially graded, which implieg,, = S,,. If eis
even, thenS,, is a superalgebra and the generic base algel$g, s its even part
(see Exercise 8.14 below for a complete description).

Theorem 8.13. The algebraA,, is the quotient ofAAy, by the two-sided ideal
generated by the relations

e tﬁ tE *€e tF *€
K*_ K _0, E—ESK) =0, F-X) =o

If we sett; = tx = tx-1 = 1 andtg = tr = 0 in the defining relations aofl,,,
(see Theorenis8.112 and 8.13), we recover thosg.of

Proof. We proceed as in the proof of Theorem8.12 by checking théiorkabe-
tween the corresponding-variables inB8,, ® uq. We have
e

t
(Xk)® = £X1 = (g KE—tg =0
1

sinceK® = 1 inuq. Next, in view of E® = F€ = 0 in ugq, we have
*e

t e t
Xe— =Xq) =tE*=0 and (Xp——X;| =t ,Fé=o0.
tK t1 K
This completes the proof. O O

Let us determine the “parameter space” @g,, C) wheneis odd. In this case,
By = Suy- SinceSy, = C|teirikc]ogi jr<e—1[1/tkmlocm<e-1, @ character o8,
is completely determined by its values on the generaigrsk.; each of these
generators can take any complex value, except in the(cage= (0, 0), where the
corresponding value has to be non-zero. It follows that

Alg(B,,,C) = C¥€~Y » (C*)e,
which is an open Zarisky subset of théme space of dimensiost.
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Exercise 8.14.Assumeeis even (equivalentlyd is divisible by 4). Definaugigjx«
as in Exercise8.11. Show that

By = ClUgriklo<i jr<e1 [1/Ukm]osm<e-1-
Hence, Alg8,,,C) =~ Co¥~1) x (C*)¢ holds in this case too.
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Pontryagin dual, 18
principal fiber bundle, 5, 31
map of, 5
non-commutative, 31, 41, 43
pull-back of, 6, 36
trivial, 6, 32
product, 7, 10, 12, 14, 17, 34, 41
pull-back, 5, 6, 36
push-forward, 36

quantization, 10, 19, 20, 22, 23, 28, 30
deformation, 6

quantumsS L(2), 20, 21

guantum enveloping algebra, 22, 35

guantum group, 19, 20, 22

guantum homogeneous space, 30

guantum plane, 9, 21, 28, 29

guantum projective line, 30

quaternion algebra, 27, 32

root of unity, 21, 23, 35, 44

special linear group, 12, 19, 28
strongly graded algebra, 32
superalgebra, 24, 35, 42, 44
Sweedler algebra, 35, 40
symmetric algebra, 38

Taft algebra, 35, 40
tensor product of algebras, 11
tensor product of vector spaces, 11

unit, 7, 11, 12, 14, 15, 17, 24
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