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We show a relationship between the entropy production in stochastic thermodynamics and the
stochastic interaction in the information integrated theory. To clarify this relationship, we newly
introduce an information geometric interpretation of the entropy production for a total system and
the partial entropy productions for subsystems. We show that the violation of the additivity of the
entropy productions is related to the stochastic interaction. This framework is a thermodynamic
foundation of the integrated information theory. We also show that our information geometric
formalism leads to a novel expression of the entropy production related to an optimization problem
minimizing the Kullback-Leibler divergence. We analytically illustrate this interpretation by using
the spin model.

PACS numbers:

Information geometry [1, 2] is differential geometric
theory for elucidating various results in information the-
ory, probability theory and statistics. Applications of in-
formation geometry have been found in a variety of fields
including machine learning [3], neuroscience [4], statis-
tical physics [5, 6] and thermodynamics [7–10, 39–50].
The projection theorem [11, 12] plays a crucial role in
applications of information geometry. For example, the
projection theorem unifies the conventional definitions of
information measures such as the mutual information,
the transfer entropy and several measures in the inte-
grated information theory [2, 13, 14].

The integrated information theory seeks for measures
of inseparability of networks [13–23]. Several measures
have been proposed by considering different ways of di-
viding networks [13, 14, 22]. A possible promising mea-
sure of information integration is the stochastic interac-
tion [17, 19], that quantifies inseparability of stochastic
dynamics in two interacting systems.

In the field of stochastic thermodynamics [24, 25], a
similar problem of inseparability takes place. For ex-
ample, in the context of Maxwell’s demon, information
thermodynamic measures of the correlation between two
interacting dynamics have been discussed [26–37]. For
two interacting dynamics, we introduce a measure of in-
formation thermodynamics, namely the partial entropy
production for the subsystem [30–32]. If two interacting
dynamics are well separated, the sum of the partial en-
tropy productions for each subsystem are equivalent to
the total entropy production. This fact is known as the
additivity of the entropy productions. If two interact-
ing dynamics are not well separated, this additivity is
generally violated.

In this letter, we introduce a novel framework of
stochastic thermodynamics based on information geom-

etry. We introduce several submanifolds related to back-
ward dynamics, and the total entropy production and
the partial entropy production can be considered to be
given by the projections of the entire system onto these
submanifolds. From the inclusion property of these sub-
manifolds, we obtain a geometric interpretation of the
additivity of the entropy productions. This interpreta-
tion clarifies a relationship between the violation of the
additivity and the stochastic interaction. Additionally,
our framework leads to a novel expression of the entropy
production by considering an optimization problem to
minimize the Kullback-Leibler divergence. We analyti-
cally illustrate our results by using the spin models.
The projection theorem.–We first introduce the projec-

tion theorem in information geometry, which is a differen-
tial geometrical theory for the manifold of the probability
distribution [11, 12]. In information geometry, a Rieman-
nian metric is given by the Fisher information matrix
and a dual pair of affine connections are defined [1]. Let
pS(s) be the joint probability, where S = {S1, ..., SN} is
the set of random variables and s = {s1, ..., sN} is the
set of events, respectively. In information geometry, the
set of the joint probabilities is considered as a manifold.
A subset of probabilities gives a submanifold M, and a
probability pS(s) corresponds to a point.
We now consider an optimization problem to minimize

the Kullback-Leibler divergence between two probabili-
ties pS(s) and qS(s),

Dopt(pS ||M) := minqS∈MD(pS ||qS), (1)

D(pS ||qS) :=
∑

s

pS(s) ln
pS(s)

qS(s)
, (2)

when qS(s) is in a submanifoldM. If the submanifoldM
is flat, we have the unique solution q∗

S
∈ M that satisfies

http://arxiv.org/abs/1810.09545v5
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Pythagorean theorem:

(Flatness of      )

FIG. 1: Schematic of the projection theorem. The subset of
probabilities gives a submanifold M, and the probability p

corresponds to a point. If M is flat, we have a unique solu-
tion q∗S of the optimization problem to minimize the Kullback-
Leibler divergence between the probability p and the proba-
bility qS ∈ M. The flatness of the manifold is given by the
Pythagorean theorem, and the solution q∗S is the projection
onto the flat submanifold M.

Dopt(pS ||M) = D(pS ||q
∗
S
). This unique solution q∗

S
can

be interpreted as the projection from the point pS onto
the flat submanifold M. In Fig. 1, we show an intuitive
schematic of the projection theorem.
This projection can be understood by considering the

Pythagorean theorem

D(pS ||qS) = D(pS ||q
∗
S
) +D(q∗

S
||qS), (3)

for any probability qS on the flat submanifold M [1].
This Pythagorean theorem can be regarded as the defi-
nition of the flatness of a submanifold M. In informa-
tion geometry, the Pythagorean theorem holds when the
geodesic connecting pS and q∗

S
is orthogonal to the dual

geodesic connecting q∗
S

and qS . From the nonnegativ-
ity of the Kullback-Leibler divergence D(q∗

S
||qS) ≥ 0, we

obtain the fact that q∗
S
is the unique solution of an opti-

mization problem

D(pS ||qS) ≥ D(pS ||q
∗
S
) = Dopt(pS ||M). (4)

The total entropy production and projection.– We here
consider a Markov process. Let Z and Z ′ be random
variables of the state of a system Z at time t and t+ dt,
respectively. Let pZ,Z′(z, z′) be the joint probability of
the states s = {z, z′} corresponding to random vari-
ables S = {Z,Z ′}. The transition probability is given
by T (z′, z) := pZ′|Z(z

′|z), where the conditional proba-
bility is defined as pZ′|Z(z

′|z) := pZ′,Z(z
′, z)/pZ(z) =

pS(s)/[
∑

z′ pS(s)]. Because the transition probabil-
ity T (z′, z) is a function of (z′, z), we can define a
new quantity T (z, z′) by replacing z with z′. Remark
that T (z′, z) is not equal to the conditional probability
pZ|Z′(z|z′) := pS(s)/[

∑

z
pS(s)].

In stochastic thermodynamics [25], the total entropy
production σZ

tot is defined as the sum of the entropy

Total entropy production

Backward manifold

FIG. 2: Schematic of the total entropy production and the
projection onto the backward manifold MB. The entropy
production σZ

tot is given by the minimum length from the
backward manifold Dopt(pS ||MB).

changes,

σZ
tot := σZ

sys + σZ
bath. (5)

The entropy change of the system σZ
sys is defined as the

Shannon entropy change from time t to t+ dt.

σZ
sys := H(Z′)−H(Z), (6)

where H(Z) = −
∑

z
pZ(z) ln pZ(z) is the Shannon en-

tropy. The entropy change of the heat bath σZ
bath is de-

fined as

σZ
bath := E

[

ln
T (z′, z)

T (z, z′)

]

= E [− lnT (z, z′)]−H(Z′|Z)

(7)

where the symbol E[· · · ] :=
∑

s
pS(s) · · · denotes the ex-

pected value and H(Z′|Z) := H(Z′,Z) − H(Z) is the
conditional Shannon entropy. The entropy change of the
heat bath can be regarded as the difference between the
conditional cross entropy E [− lnT (z, z′)] and the con-
ditional Shannon entropy. The nonnegativity of the en-
tropy production is known as the second law of thermo-
dynamics. If the entropy production is zero, the system
is reversible and the detailed balance pZ(z)T (z

′, z) =
pZ′(z′)T (z, z′) holds [51]. Hence, σZ

tot quantifies irre-
versibility of dynamics.
We show that the total entropy production can be ob-

tained by the projection of pS onto a submanifold, called
the backward manifold. The backward manifold MB is
defined as the set of probabilities qS satisfying

MB = {qS |qS(s) = qZ′(z′)T (z, z′)}, (8)

where qZ′(z′) =
∑

z
qS(s) and T (z, z′) is defined from

pS(s). The backward manifold consists of probabilities
such that backward dynamics from Z′ to Z is equal to
the transition probability of pS . The backward manifold
is uniquely determined by pS . The total entropy produc-
tion of the Markov process is given by

σZ
tot = Dopt(pS ||MB), (9)
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which is the first main result of this letter. This result
means that the total entropy production can be regarded
as the minimum length of pS to the backward manifold
(see also Fig. 2). To prove Eq. (9), we introduce the
joint probability q∗

S
(s) := pZ′(z′)T (z, z′) ∈ MB, the

entropy production is given by the Kullback-Leibler di-
vergence σZ

tot = D(pS ||q
∗
S
) [52]. Because the following

Pythagorean theorem

D(pS ||qS) = D(pS ||q
∗
S) +D(q∗S ||qS) (10)

is valid for any qS ∈ MB [51], we obtain the first main
result Eq. (9).
The second law of information thermodynamics.– We

next consider the situation that the system Z consists
of two subsystems X and Y, and random variables Z

and Z′ are given by Z = {X,Y } and Z′ = {X′,Y ′},
respectively. The transition probability of the subsys-
tem X for fixed states {y,y′} is given by TX (z′, z) :=
pX′|Y ′,Z(x

′|y′, z).
The partial entropy production for the subsystem X is

defined as

σX
partial := σX

sys + σX
bath −ΘX→Y , (11)

σX
sys = H(X′)−H(X), (12)

σX
bath = E

[

ln
TX (z′, z)

TX (z, z′)

]

, (13)

ΘX→Y = I(X′; {Y ,Y ′})− I(X; {Y ,Y ′}). (14)

where I(Z;Z′) = H(Z)−H(Z|Z′) is the mutual infor-
mation between two random variables Z and Z′. The
additional term ΘX→Y quantifies dynamic information
flow from the subsystem X to the subsystem Y. Thus,
the nonnegativity of the partial entropy production can
be regarded as the second law of information thermody-
namics for the subsystem σX

sys+σX
bath ≥ ΘX→Y , which im-

plies a trade-off relationship between the entropy changes
σX
sys+σX

bath and information flow ΘX→Y . The partial en-
tropy production for the subsystem X quantifies local
irreversibility of dynamics in the system X . The partial
entropy production vanishes if dynamics in the system
X are locally reversible, that is pZ,Y ′(z,y′)TX (z′, z) =
pZ′,Y (z′,y)TX (z, z′).
We here show that the partial entropy production can

also be derived from the projection of pS onto the local

backward manifold. The local backward manifold of the
system X is defined as the set of probabilities such that

MX
LB =

{

qS
∣

∣qS(s) = qY ,Z′(y, z′)TX (z, z′)
}

, (15)

where qY ,Z′(y, z′) =
∑

x
qS(s) and TX (z, z′) is defined

from pS(s). The local backward manifold means the set
of probabilities such that local backward dynamics from
X′ to X is equal to the transition probability in X of
pS . The partial entropy production of the subsystem X
is given by

σX
partial = Dopt(pS ||M

X
LB), (16)

Local backward manifold

Partial entropy production 

Backward manifold

Hierarchy of the entropy productions:

Total entropy production

FIG. 3: Schematic of the partial entropy production and the
hierarchy of the entropy productions. Because the local back-
ward manifold includes the backward manifold, the partial
entropy production is always smaller than the total entropy
production.

which is the second main result of this letter. To
prove Eq. (16), we introduce the probability qX∗

S
(s) =

TX (z, z′)pY ,Z′(y, z′) ∈ MX
LB. Because we can show the

following expression

σX
partial = D(pS ||q

X∗
S

), (17)

and the Pythagorean theorem

D(pS ||q
X
S ) = D(pS ||q

X∗
S ) +D(qX∗

S ||qXS ), (18)

for any qX
S

∈ MX
LB, we obtain the second main result

Eq. (16). If we introduce the quantities for the subsys-
tem Y such as (TY , σY

partial, σ
Y
sys, σ

Y
bath,Θ

Y→X ,MY
LB) by

replacing (X,X′) with (Y ,Y ′), we obtain the same re-
sults Eqs. (11)-(104) for the subsystem Y.
We notify that our geometric interpretation provides

the hierarchy of the entropy productions. Because the
backward manifold is a submanifold of the local back-
ward manifold MB ⊂ MX

LB, we obtain the hierarchy
Dopt(pS ||M

X
LB) ≤ Dopt(pS ||MB), or equivalently

σX
partial ≤ σZ

tot. (19)

This hierarchy of the entropy productions implies that
the second law of information thermodynamics always
gives a tighter bound than the second law of thermody-
namics (see also Fig.3). Moreover, if the subsystem X1

includes the subsystem X2, we obtain the hierarchy of
the entropy productions

σX2

partial ≤ σX1

partial, (20)

from the inclusion property MX1

LB ⊂ MX2

LB. This hierar-
chy clarifies the relationships between the second laws of
information thermodynamics in complex systems.
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The stochastic interaction.– We here introduce the
stochastic interaction [17, 19] as a measure of bidirec-
tional information flow. The stochastic interaction [17,
19] is defined as

ΦSI := D(pZ,Z′ ||pX′|ZpY ′|ZpZ), (21)

This quantity is zero if the stochastic process sat-
isfies the bipartite condition CBI : pZ′|Z(z

′|z) =
pX′|Z(x

′|z)pY ′|Z(y
′|z). The bipartite condition CBI

means that two transitions in X and Y are statisti-
cally independent, because the transition probability
TX (z′, z) = pX′|Z(x

′|z) does not depend on y′ under
the bipartite condition. We also define the stochastic
interaction for backward dynamics as

Φ†
SI := D(pZ,Z′ ||pX|Z′pY |Z′pZ′), (22)

which exactly vanishes under the backward bipartite con-
dition C∗

BI : pZ|Z′(z|z′) = pX|Z′(x|z′)pY |Z′(y|z′).
While the stochastic interactions are measures of bidi-

rectional information flow, the dynamic information flow
ΘX→Y is a measure of directed information flow. ΘX→Y

can be decomposed into the mutual information differ-
ence ∆I and the measures of directed information flow,
i.e., the transfer entropy I(X;Y ′|Y ) [53, 54] and the
backward transfer entropy I(X′;Y |Y ′) [35],

ΘX→Y = ∆I + I(X′;Y |Y ′)− I(X;Y ′|Y ), (23)

∆I := I(X′;Y ′)− I(X;Y ), (24)

where I(Z;Z′|Z′′) := H(Z|Z′′) − H(Z|Z′,Z′′) is the
conditional mutual information between Z and Z′ un-
der the condition Z′′. To compare the dynamic infor-
mation flow with the stochastic interaction, we consider
the bidirectional information flow by considering the sum
of ΘX→Y and ΘY→X . The relationship between the
stochastic interaction and the dynamic information flow
is given by

ΘX→Y +ΘY→X −∆I = ΦSI − Φ†
SI. (25)

Additivity and information integration.– We next dis-
cuss the additivity of the partial entropy productions.
We show that the violation of the additivity is related
to a measure of integrated information, i.e., stochastic
interaction. Under the bipartite condition CBI, we have
the additivity of the entropy productions up to the order
O(dt2) [31],

σZ
tot = σX

partial + σY
partial. (26)

From Eq. (26), the hierarchy Eq. (19) is equivalent to
the second law of information thermodynamics for the
subsystem Y, that is σY

partial ≥ 0. If time evolution of
two systems are strongly correlated, the assumption of
the bipartite condition is not valid, and the additivity

Eq. (26) is violated. The amount of the violation is given
by the stochastic interactions and the additional term

σZ
tot − σX

partial − σY
partial = Φbath +ΦSI − Φ†

SI, (27)

Φbath := σZ
bath − σX

bath − σY
bath. (28)

The additional term Φbath quantifies to what extent the
additivity is violated in the heat bathes. This measure
Φbath can be considered as a novel measure of informa-
tion integration for thermal systems, because the entropy
change does not attract much attention in integrated in-
formation theory.
We show a geometrical condition of this additivity

under the both bipartite conditions CBI and C∗
BI. The

both bipartite conditions implies the relationship be-
tween three manifolds

MB = MX
LB ∩MY

LB. (29)

Because Eq. (26) can be written as

D(pS ||q
∗
S
) = D(pS ||q

X∗
S

) +D(pS ||q
Y∗
S

), (30)

we obtain the following relationship

D(pS ||q
X∗
S

) = D(qY∗
S

||q∗
S
), (31)

D(pS ||q
Y∗
S

) = D(qX∗
S

||q∗
S
), (32)

from the Pythagorean theorem Eq. (104). The equa-
tions (31) and (32) implies that the parallel sides of a
quadrangle have the same length. Therefore, the addi-
tivity Eq. (26) can be understood from the rectangle con-

dition in information geometry (Fig. 4). The measures

of information integration Φbath +ΦSI −Φ†
SI quantifies a

distortion of this rectangle.
Example I: Single spin model.– We illustrate the main

result Eq. (9) by the single spin model [51]. LetZ = {S1}
and Z ′ = {S2} be random variables of the spin at time
t and t + dt, respectively. The each spin has the binary
state si ∈ {0, 1}. The joint probability is generally given
by the exponential family

pθ̂S(s1, s2) = exp





∑

i

siθ̂
i +

∑

i<j

sisj θ̂
ij − φS(θ̂)



 , (33)

where θ̂ = {θ̂1, θ̂2, θ̂12} is the set of parameters,
and φS(θ̂) is the normalization factor that satisfies
∑

s
pθ̂
S
(s) = 1. The number of the elements in θ̂ is

(22 − 1) = 3, so the set of the probabilities pθ̂
S

can be
represented by 3-dimensional submanifold. The back-
ward manifold MB is given by the constraint of the pa-
rameters

MB = {pθS|θ
1 = θ̂2, θ12 = ˆθ12}. (34)

Because a free parameter is θ2, the backward manifold
for the single spin model is 1-dimensional.
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Additivity:

FIG. 4: Schematic of the additivity and the rectangle. Under
the both bipartite conditions CBI and C∗

BI, the backward man-
ifold is equal to the intersection of the local backward mani-
folds. The additivity of the entropy production indicates that
the parallel sides of a quadrangle (pS , q

X∗
S , q∗S , q

Y∗

S
) have the

same length.

Our result Eq. (9) can be rewritten as the optimization
problem of θ2,

σZ
tot =minθ2 D(pθ̂S ||p

θ

S)
∣

∣

∣

θ1=θ̂2,θ12= ˆθ12

(35)

=E[s1](θ̂
1 − θ̂2)− φS(θ̂

1, θ̂2, θ̂12)

+ minθ2

[

E[s2](θ̂
2 − θ2) + φS(θ̂

2, θ2, θ̂12)
]

. (36)

This problem can be numerically solved by using a con-
ventional optimization tool.
Example II: Two spins model.– We next illustrate our

results by the two spins model [51]. Let Z = {S1, S2}
and Z ′ = {S3, S4} be random variables of two spins at
time t and t + dt, respectively. The spin has the binary
state si ∈ {0, 1}. We assume the situation that the both
bipartite conditions CBI and C∗

BI holds. Under the bipar-
tite conditions, the joint probability of the spin state is
generally given by the exponential family

pθ̂S(s) = exp

[

∑

i

siθ̂
i + s1s3θ̂

13 + s1s4θ̂
14

+s2s3θ̂
23 + s2s4θ̂

24 − φS(θ̂)
]

. (37)

The backward manifold is given by the constraint of
the parameters

MB = {pθS |θ
X = θ̂X , θY = θ̂Y}, (38)

θX = (θ1, θ13, θ14), θ̂X = (θ̂3, θ̂13, θ̂23), (39)

θY = (θ2, θ24, θ23), θ̂Y = (θ̂4, θ̂24, θ̂14), (40)

where a coordinate θ represents a probability on
the backward manifold. Because free parameters are

{θ3, θ4}, the backward manifold for the two spin mod-
els is 2-dimensional. The condition of the local backward
manifolds are also given by the linear constraint of θ,

MX
LB = {pθS |θ

X = θ̂X }, MY
LB = {pθS|θ

Y = θ̂Y}. (41)

Because free parameters are {θ3, θ4, θY} ({θ3, θ4, θX}),
the local backward manifold MX

LB (MX
LB) is 5-

dimensional. The intersection of these two local back-
ward manifolds is the backward manifold MB = MX

LB ∩
MY

LB. As discussed in Example I, the total entropy pro-
duction and the partial entropy productions are obtained
from the optimization problems

σZ
tot =minθ3,θ4 D(pθ̂

S
||pθ

S
)
∣

∣

∣

θX=θ̂X ,θY=θ̂Y
, (42)

σX
partial =minθ3,θ4,θY D(pθ̂

S
||pθ

S
)
∣

∣

∣

θX=θ̂X
, (43)

σY
partial =minθ3,θ4,θX D(pθ̂

S
||pθ

S
)
∣

∣

∣

θY=θ̂Y
. (44)

Without the bipartite condition CBI and C∗
BI, the joint

probability is generally given by

pθ̂
S
(s) = exp





∑

i

siθ̂
i +

∑

i<j

sisj θ̂
ij +

∑

i<j<k

sisjskθ̂
ijk

+
∑

i<j<k<l

sisjskslθ̂
ijkl − φS(θ̂)



 . (45)

If the vector (θ̂12, θ̂34, θ̂123, θ̂134, θ̂124, θ̂234, θ̂1234) is non-
zero, the bipartite conditions are violated and mea-
sures of information integration ΦSI, Φ

†
SI and Φbath have

nonzero values.
Conclusion and discussion.–By applying the

information-geometric framework, we show the re-
lationship between the entropy production and the
stochastic interaction. Our result can be a foundation of
the integrated information theory based on the physical
law. We may discuss a thermodynamic cost of the
information integration based on this framework.
Because the second law of information thermody-

namics is essential for biochemical information process-
ing [33, 55–60], this work would give a geometric insight
into biochemical information processing. This work pro-
vides a physical validity of the integrated information
theory [13, 14, 18, 20] for the biochemical information
processing.
From a view point of thermodynamics, our results are

complementary to other geometric expressions of the sec-
ond law, such as the principle of Carathèodory [61] and
the maximum entropy thermodynamics [62, 63]. Our
framework would be applicable to other generalizations
of the entropy production, for example, thermodynamics
under feedback control by selecting the backward mani-
folds for the feedback control [51].
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SUPPLEMENTARY INFORMATION

I. Review of the second law of thermodynamics in stochastic thermodynamics

We here review the second law of thermodynamics in stochastic thermodynamics. We start with the master equation

d

dt
p(z′; t) =

∑

z

[W (z → z′; t)p(z; t) −W (z′ → z; t)p(z′; t)] , (46)

where p(z; t) is the probability of the state z at time t, and W (z → z′; t) is the transition rate from the state z to
the state z′ at time t. In the notation of this paper, the probability of z is given by pZ(z) = p(z; t). From the master
equation (46), we obtain the probability at time t+ dt,

p(z′; t+ dt) =
∑

z

[W (z → z′; t)p(z; t)dt + (1−W (z′ → z; t)dt)p(z′; t)] . (47)

In the notation of the main text, pZ(z) and pZ′(z′) are given by pZ(z) = p(z; t) and pZ′(z′) = p(z′; t+dt), respectively.
We also obtain the relationship between pZ and pZ′ as

pZ′(z′) = p(z′; t) +O(dt) = pZ(z
′) +O(dt). (48)

http://arxiv.org/abs/1603.07758
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The transition probability T (z′, z) is given by

T (z′, z) =

{

W (z → z′; t)dt (z 6= z′),

(1−
∑

z 6=z′ W (z′ → z; t)dt) (z = z′).
(49)

Here, we consider the detailed balance. The condition of the detailed balance is given by

W (z → z′; t)p(z; t) = W (z′ → z; t)p(z′; t) (50)

for any z and z′. This condition is valid if the system is in equilibrium. By using the transition probability Eq. (49),
we obtain another expression of the detailed balance condition Eq. (50) as

T (z′, z)pZ(z) = T (z, z′)pZ′(z′), (51)

where we used W (z′ → z; t)p(z′; t)dt = T (z, z′)pZ(z
′) = T (z, z′)pZ′(z′) + O(dt2). Therefore, the detailed balance

condition Eq. (50) implies the reversibility of dynamics in the transition from t to t + dt. From the identity by the
Bayes’ rule

pZ|Z′(z|z′) = T (z′, z)
pZ(z)

pZ′ (z′)
, (52)

the detailed balance condition Eq. (50) can be rewritten as

T (z, z′) = pZ|Z′(z|z′). (53)

Next, we discuss the second law of thermodynamics. For the master equation, the total entropy production ratio
σZ
tot/dt is defined as

σZ
tot

dt
=

∑

z,z′

W (z → z′; t)p(z; t) ln
W (z → z′; t)p(z; t)

W (z′ → z; t)p(z′; t)
. (54)

If the detailed balance condition is valid, the entropy production vanishes σZ
tot = 0. By using the transition probability

T (z′|z), we obtain another expression of the total entropy production

σZ
tot =

∑

z,z′|z 6=z′

W (z → z′; t)dtp(z; t) ln
W (z → z′; t)dtp(z; t)

W (z′ → z; t)dtp(z′; t)
(55)

=
∑

z,z′|z 6=z′

T (z′, z)pZ(z) ln
T (z′, z)pZ(z)

T (z, z′)pZ′(z′)
+O(dt2) (56)

=
∑

z,z′

T (z′, z)pZ(z) ln
T (z′, z)pZ(z)

T (z, z′)pZ′(z′)
. (57)

To introduce two probabilities pS(s) = T (z′, z)pZ(z) and q∗
S
(s) = T (z, z′)pZ′(z′) with S = {Z,Z′} and s = {z, z′},

this expression of the total entropy production Eq. (57) can be regarded as the Kullback-Leibler divergence between
two probabilities

σZ
tot =

∑

s

pS(s) ln
pS(s)

q∗
S
(s)

(58)

= D(pS ||q
∗
S
). (59)

II. The detailed calculation of Example I: Single spin model

We here show a detailed calculation of the single spin model. The spin state at time t is z = s1 ∈ {0, 1} and the
spin state at time t+ dt is z′ = s2 ∈ {0, 1}, respectively. We here start with the master equation

d

dt
p(s′; t) =

∑

s

[W (s → s′; t)p(s; t)−W (s′ → s; t)p(s′; t)] , (60)
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where p(s; t) is the probability of the state s at time t and W (s → s′; t) is the transition rate from s to s′ at time t.
The transition probability T (s2, s1) is given by

T (s2, s1) =



















(1−W (0 → 1; t)dt) (s1 = 0, s2 = 0),

W (0 → 1; t)dt (s1 = 0, s2 = 1),

W (1 → 0; t)dt (s1 = 1, s2 = 0),

(1−W (1 → 0; t)dt) (s1 = 1, s2 = 1).

(61)

The joint probability pS(s) is given by

pS(s) = T (s2, s1)p(s1; t) =



















(1−W (0 → 1; t)dt)p(0; t) (s1 = 0, s2 = 0),

W (0 → 1; t)dtp(0; t) (s1 = 0, s2 = 1),

W (1 → 0; t)dt(1− p(0; t)) (s1 = 1, s2 = 0),

(1−W (1 → 0; t)dt)(1 − p(0; t)) (s1 = 1, s2 = 1).

(62)

Here we introduce the joint probability pθ̂
S
(s) as the exponential family

pθ̂
S
(s) = exp(θ̂1s1 + θ̂2s2 + θ̂12s1s2 − φS(θ̂

1, θ̂2, θ̂12)),

φS(θ̂
1, θ̂2, θ̂12) = ln

[

1 + exp(θ̂1) + exp(θ̂2) + exp(θ̂1 + θ̂2 + θ̂12)
]

, (63)

which implies

pθ̂S(s) =



















exp(−φS(θ̂
1, θ̂2, θ̂12)) (s1 = 0, s2 = 0),

exp(θ̂2 − φS(θ̂
1, θ̂2, θ̂12)) (s1 = 0, s2 = 1),

exp(θ̂1 − φS(θ̂
1, θ̂2, θ̂12)) (s1 = 1, s2 = 0),

exp(θ̂1 + θ̂2 + θ̂12 − φS(θ̂
1, θ̂2, θ̂12)) (s1 = 1, s2 = 1).

(64)

The transition probability T (s2, s1) = pθ̂
S
(s)/[

∑

s2
pθ̂
S
(s)] is given by

T (s2, s1) = exp(θ̂2s2 + θ̂12s1s2 − φS2|S1
(s1|θ̂

2, θ̂12)),

φS2|S1
(s1|θ̂

2, θ̂12) = ln
[

1 + exp(θ̂2 + θ̂12s1)
]

. (65)

Because of one-to-one correspondence, we identify pS(s) with pθ̂
S
(s). From Eqs. (62) and (64), we obtain the rela-

tionship between (θ̂1, θ̂2, θ̂12) and (W (0 → 1; t),W (1 → 0; t), p(0; t)) as

φS(θ̂
1, θ̂2, θ̂12) = ln

1

pS(0, 0)

= − ln[(1 −W (0 → 1; t)dt)p(0; t)], (66)

θ̂1 = φS(θ̂
1, θ̂2, θ̂12) + ln[W (1 → 0; t)dt(1− p(0; t))]

= ln
pS(1, 0)

pS(0, 0)

= ln
W (1 → 0; t)dt(1− p(0; t))

(1−W (0 → 1; t)dt)p(0; t)
, (67)

θ̂2 = φS(θ̂
1, θ̂2, θ̂12) + ln[W (0 → 1; t)dtp(0; t)]

= ln
pS(0, 1)

pS(0, 0)

= ln
W (0 → 1; t)dt

1−W (0 → 1; t)dt
, (68)

θ̂12 = φS(θ̂
1, θ̂2, θ̂12)− θ̂1 − θ̂2 + ln[(1−W (1 → 0; t)dt)(1 − p(0; t))]

= ln
pS(0, 0)pS(1, 1)

pS(0, 1)pS(1, 0)

= ln
[1−W (0 → 1; t)dt][1−W (1 → 0; t)dt]

[W (0 → 1; t)dt][W (1 → 0; t)dt]
. (69)
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We here consider the backward manifold defined as

MB = {qS|qS(s) = qS2
(s2)T (s1, s2)}. (70)

If we use the expression of the exponential family for qS(s) = pθ
S
(s), the reversible manifold is given by

MB = {pθ
S
(s)|θ1 = θ̂2, θ12 = θ̂12}, (71)

because the condition qS(s) = qS2
(s2)T (s1|s2) can be written as

exp(θ1s1 + θ12s1s2 − φS1|S2
(s2|θ

1, θ12)) = exp(θ̂2s1 + θ̂12s2s1 − φS2|S1
(s2|θ̂

2, θ̂12)), (72)

φS1|S2
(s1|θ

1, θ12) = ln
[

1 + exp(θ1 + θ12s1)
]

. (73)

We here obtain the following Pythagorean theorem for any qS ∈ MB,

D(pS ||qS) = D(pS ||q
∗
S) +D(q∗S ||qS),

q∗S(s) = exp(θ̂2s1 + θ2∗s2 + θ̂12s1s2 − φS(θ̂
2, θ2∗, θ̂12)), (74)

with the constraint
∑

s1

q∗S(s) =
∑

s1

pS(s). (75)

In our main result, the total entropy production is given by the following optimization problem

σZ
tot = Dopt(pS ||MB) = D(pS ||q

∗
S). (76)

By using the expression by (θ1, θ2, θ12), this optimization problem can be written as

σZ
tot = minqS∈MB

D(pS ||qS) (77)

= minθ2 [E[s1](θ̂
1 − θ̂2) + E[s2](θ̂

2 − θ2)− φS(θ̂
1, θ̂2, θ̂12) + φS(θ̂

2, θ2, θ̂12)] (78)

= E[s1](θ̂
1 − θ̂2) + E[s2](θ̂

2 − θ2∗)− φS(θ̂
1, θ̂2∗, θ̂12) + φS(θ̂

2, θ2∗, θ̂12), (79)

where E denotes the expected value E[· · · ] =
∑

s
pS(s) · · · . The constraint Eq. (75) is calculated as

exp
[

(θ̂2 − θ2∗)s2 − φS(θ̂
1, θ̂2, θ̂12) + φS(θ̂

2, θ2∗, θ̂12)
]

= exp
[

φS1|S2
(s2|θ̂

2, θ̂12)− φS1|S2
(s2|θ̂

1, θ̂12)
]

. (80)

Under the constraint Eq. (80), the optimization problem Eq. (79) is calculated as

σZ
tot = E

[

s1(θ̂
1 − θ̂2) + s2(θ̂

2 − θ2∗)− φS(θ̂
1, θ̂2, θ̂12) + φS(θ̂

2, θ2∗, θ̂12)
]

= E

[

s1(θ̂
1 − θ̂2) + φS1|S2

(s2|θ̂
2, θ̂12)− φS1|S2

(s2|θ̂
1, θ̂12)

]

. (81)

We can check the equivalence between Eq. (81) and the original definition of the total entropy production as follows,

σZ
tot =

∑

s

T (s2, s1)pS1
(s1) ln

T (s2, s1)pS1
(s1)

T (s1, s2)pS2
(s2)

= E

[

ln
T (s2, s1)pS1

(s1)

T (s1|s2)pS2
(s2)

]

= E

[

ln
pS1|S2

(s1|s2)

exp(θ̂2s1 + θ̂12s1s2 − φS2|S1
(s2|θ̂2, θ̂12))

]

= E

[

ln
exp(θ̂1s1 + θ̂12s1s2 − φS1|S2

(s2|θ̂
2, θ̂12))

exp(θ̂2s1 + θ̂12s1s2 − φS2|S1
(s2|θ̂2, θ̂12))

]

= E

[

s1(θ̂
1 − θ̂2) + φS1|S2

(s2|θ̂
2, θ̂12)− φS1|S2

(s2|θ̂
1, θ̂12)

]

, (82)

where we used φS2|S1
(s2|θ̂

2, θ̂12) = φS1|S2
(s2|θ̂

2, θ̂12).



11

III. The detailed calculation of Example II: Two spins model

We start with the joint distribution

pθ̂
S
(s) = exp





∑

i

siθ̂
i +

∑

i<j

sisj θ̂
ij +

∑

i<j<k

sisjskθ̂
ijk +

∑

i<j<k<l

sisjskslθ̂
ijkl − φS(θ̂)



 , (83)

where s = (s1, s2, s3, s4) = (x, y, x′, y′) is the spin notation with si ∈ {0, 1}, and φS(θ̂) is the normalization constant

that satisfies
∑

s
pθ̂
S
(s) = 1.

We consider the both bipartite conditions CBI and C∗
BI. We here compare pθ̂

X′|Z(x
′|z) =

∑

s4
pθ̂
S
(s)/[

∑

s3,s4
pθ̂
S
(s)]

with pθ̂
X′|Z,Y ′(x′|z,y′) = pθ̂

S
(s)/[

∑

s3
pθ̂
S
(s)]. The conditional probability pθ̂

X′|Z(x
′|z) is calculated as

ln pθ̂
X′|Z(x

′|z) =s3θ̂
3 + s1s3θ̂

13 + s2s3θ̂
23 + s1s2s3θ̂

123 − φX′|Z(s1, s2|θ̂),

φX′|Z(s1, s2|θ̂) := ln
[

exp
(

θ̂3 + s1θ̂
13 + s2θ̂

23 + s1s2θ̂
123

)

+ 1
]

. (84)

The conditional probability pθ̂
X′|Z,Y ′(x′|z,y′) is calculated as

ln pθ̂
X′|Z,Y ′(x′|z,y′) =s3θ̂

3 + s1s3θ̂
13 + s2s3θ̂

23 + s3s4θ̂
34 + s1s2s3θ̂

123

+ s1s3s4θ̂
134 + s2s3s4θ̂

234 + s1s2s3s4θ̂
1234 − φX′|Z,Y ′(s1, s2, s4|θ̂),

φX′|Z,Y ′(s1, s2, s4|θ̂) := ln
[

exp
(

θ̂3 + s1θ̂
13 + s2θ̂

23 + s4θ̂
34 + s1s2θ̂

123 + s1s4θ̂
134 + s2s4θ̂

234 + s1s2s4θ̂
1234

)

+ 1
]

.

(85)

From Eqs. (84) and (85), we obtain the condition of CBI : p
θ̂

X′|Z,Y ′ = pθ̂
X′|Z as

CBI : θ̂
34 = θ̂134 = θ̂234 = θ̂1234 = 0. (86)

In the same way, we also obtain the condition of C∗
BI as

C∗
BI : θ̂

12 = θ̂123 = θ̂124 = θ̂1234 = 0. (87)

To clarify the relationship between CBI and C∗
BI, we can consider the permutation (α(1), α(2), α(3), α(4)) = (3, 4, 1, 2).

The condition of C∗
BI is given by the condition of CBI with the permutation α,

C∗
BI : θ̂

α(3)α(4) = θ̂α(3)α(4)α(1) = θ̂α(3)α(4)α(2) = θ̂α(3)α(4)α(1)α(2) = 0. (88)

Next, we discuss the backward manifold MB. The transition probability T (z′, z) = pθ̂
Z′|Z(z

′|z) =

pθ̂
S
(s)/[

∑

s3,s4
pθ̂
S
(s)] is calculated as

lnT (z′, z) =s3θ̂
3 + s4θ̂

4 +
∑

i<4

sis4θ̂
i4 +

∑

i<3

sis3θ̂
i3

+
∑

i<j<k

sisjskθ̂
ijk +

∑

i<j<k<l

sisjskslθ̂
ijkl − φZ′|Z(s1, s2|θ̂),

φZ′|Z(s1, s2|θ̂)

:= ln
[

exp(θ̂3 + θ̂4 + s1θ̂
14 + s2θ̂

24 + θ̂34 + s1θ̂
13 + s2θ̂

23 + s1s2θ̂
123 + s1s2θ̂

124 + s1θ̂
134 + s2θ̂

234 + s1s2θ̂
1234)

+ exp(θ̂3 + s1θ̂
13 + s2θ̂

23 + s1s2θ̂
123) + exp(θ̂4 + s1θ̂

14 + s2θ̂
24 + s1s2θ̂

124) + 1
]

. (89)

The conditional probability pθ̂
Z|Z′(z|z′) = pθ̂

S
(s)/[

∑

s1,s2
pθ̂
S
(s)] is also calculated as

ln pθ̂
Z|Z′(z|z′) =s1θ̂

1 + s2θ̂
2 +

∑

1<i

s1siθ̂
1i +

∑

2<i

s2siθ̂
2i

+
∑

i<j<k

sisjskθ̂
ijk +

∑

i<j<k<l

sisjskslθ̂
ijkl − φZ|Z′(s3, s4|θ̂),
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φZ|Z′(s3, s4|θ̂)

:= ln
[

exp(θ̂1 + θ̂2 + s3θ̂
23 + s4θ̂

24 + θ̂12 + s3θ̂
13 + s4θ̂

14 + s3s4θ̂
134 + s3s4θ̂

234 + s3θ̂
123 + s4θ̂

124 + s3s4θ̂
1234)

+ exp(θ̂1 + s3θ̂
13 + s4θ̂

14 + s3s4θ̂
134) + exp(θ̂2 + s3θ̂

23 + s4θ̂
24 + s3s4θ̂

234 + s3θ̂
123) + 1

]

. (90)

The backward manifold is defined as

MB = {pθS(s)|p
θ

S(s) = pθZ′(z′)T (z, z′)}, (91)

where pθ
Z′(z′) =

∑

z
pθ
S
(s). The equations (89) and (90) yield

MB =
{

pθ̂S

∣

∣

∣
θ1 = θ̂3, θ2 = θ̂4, θ23 = θ̂14, θ24 = θ̂24, θ12 = θ̂34, θ13 = θ̂13, θ14 = θ̂23,

θ134 = θ̂123, θ234 = θ̂124, θ123 = θ̂134, θ124 = θ̂234, θ1234 = θ̂1234
}

. (92)

Under the both bipartite conditions CBI and C∗
BI, the joint probability is given by

pBIθ̂

S
= pθ̂

S

∣

∣

∣

θ̂34=θ̂134=θ̂234=θ̂12=θ̂123=θ̂124=θ̂1234=0
. (93)

For this distribution pBIθ̂
S , the condition of the backward manifold is given by

MB =
{

pBIθ

S

∣

∣

∣
θ1 = θ̂3, θ2 = θ̂4, θ23 = θ̂14, θ24 = θ̂24, θ13 = θ̂13, θ14 = θ̂23

}

. (94)

’
Next, we discuss the local backward manifold MX

LB. Then the transition probability TX (z′, z) = pθ
X′|Z,Y ′(x′|z) is

given by Eq. (85). The conditional probability pθ̂
X|Z′,Y

(x|z′,y) = pθ̂
S
(s)/[

∑

s1
pθ̂
S
(s)] is calculated as

ln pθ̂
X|Z′,Y (x|z′,y) =s1θ̂

1 + s1s2θ̂
12 + s1s3θ̂

13 + s1s4θ̂
14 + s1s2s3θ̂

123

+ s1s2s4θ̂
124 + s1s3s4θ̂

134 + s1s2s3s4θ̂
1234 − φX|Z′,Y (s2, s3, s4|θ̂),

φX|Z′,Y (s2, s3, s4|θ̂) := ln
[

exp
(

θ̂1 + s2θ̂
12 + s3θ̂

13 + s4θ̂
14 + s2s3θ̂

123 + s2s4θ̂
124 + s3s4θ̂

134 + s2s3s4θ̂
1234

)

+ 1
]

.

(95)

The local backward manifold is defined as

MX
LB = {pθ

S
|pθ

S
(s) = pθ

Z′,Y (z′,y)TX (z, z′)}, (96)

where pθ
Z′,Y (z′,y) =

∑

s1
pθ
S
(s). The equations (85) and (95) yield

MX
LB =

{

pθS

∣

∣

∣
θ1 = θ̂3, θ12 = θ̂34, θ13 = θ̂13, θ14 = θ̂23, θ123 = θ̂134, θ124 = θ̂234,

θ134 = θ̂123, θ234 = θ̂124, θ1234 = θ̂1234
}

. (97)

In the same way, we obtain the condition of MY
LB

MY
LB =

{

pθ
S

∣

∣

∣
θ2 = θ̂4, θ12 = θ̂34, θ23 = θ̂14, θ24 = θ̂24, θ123 = θ̂134, θ124 = θ̂234,

θ134 = θ̂123, θ234 = θ̂124, θ1234 = θ̂1234
}

. (98)

To clarify the relationship between MX
LR and MY

LR, we can consider the permutation (α′(1), α′(2), α′(3), α′(4)) =
(2, 1, 4, 3). The condition of MY

LR is given by the condition of MX
LR with the permutation α′,

MY
LB =

{

pθS

∣

∣

∣
θα

′(1) = θ̂α
′(3), θα

′(1)α′(2) = θ̂α
′(3)α′(4), θα

′(1)α′(3) = θ̂α
′(1)α′(3), θα

′(1)α′(4) = θ̂α
′(2)α′(3),

θα
′(1)α′(2)α′(3) = θ̂α

′(1)α′(3)α′(4), θα
′(1)α′(2)α′(4) = θ̂α

′(2)α′(3)α′(4), θα
′(1)α′(3)α′(4) = θ̂α

′(1)α′(2)α′(3),

θα
′(2)α′(3)α′(4) = θ̂α

′(1)α′(2)α′(4), θα
′(1)α′(2)α′(3)α′(4) = θ̂α

′(1)α′(2)α′(3)α′(4)
}

. (99)
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For this distribution pBIθ̂
S under the both bipartite conditions, the local backward manifolds are given by

MX
LB =

{

pBIθ

S

∣

∣

∣
θ1 = θ̂3, θ13 = θ̂13, θ14 = θ̂23

}

, (100)

MY
LB =

{

pBIθ

S

∣

∣

∣
θ2 = θ̂4, θ24 = θ̂24, θ23 = θ̂14

}

. (101)

IV. The case of feedback control

We consider the situation that the time evolution of the system X depends on the fixed memory M. This situation
is well known as the problem of the Maxwell’s demon under feedback control. We show that the partial entropy
production for this case can also be discussed in our unified framework.
Let X and X′ be random variables of the system X at time t and t+dt, respectively. Let M be a random variable of

the memory M. We denotes the set of random variables as S = {X,X′,M}, and the set of states as s = {x,x′,m},
respectively. The joint probability of S is given by pS(s). We consider the situation that the transition probability
of X depend on the state of memory,

pX′|X,M (x′|x,m) =: TXM(x′,m,x), (102)

where pX′|X,M (x′|x,m) = pS(s)/[
∑

x′ pS(s)]. We here introduce the feedback backward manifold such that

MFB = {qS |qS(s) = TXM(x,m,x′)qX′M (x′,m)}, (103)

where qX′M (x′,m) =
∑

x
qS(s). The feedback reversible manifold is equivalent to the reversible manifold MB =

MFB, if we consider the time evolution from Z = {X,M} to Z′ = {X′,M}. If the joint probability qS is on this
manifold MFB, dynamics of X are reversible in time under feedback control. If we introduce the joint probability
qXM∗
S

(s) = TXM(x,m,x′)pX′,M (x′,m), the following Pythagorean theorem is valid for any qS ∈ MFR,

D(pS ||qS) = D(pS ||q
XM∗
S

) +D(qXM∗
S

||qS). (104)

Thus, the feedback backward manifold is flat, and the solution of the optimization problem Dopt(pS ||MFB) is given
by

Dopt(pS ||MFB) := minqS∈MFB
D(pS ||qS) (105)

= D(pS ||q
XM∗
S

). (106)

We here derive the result that the partial entropy production under feedback control σX
feedback is given by the

optimization problem

σX
feedback = Dopt(pS ||MFB). (107)

The partial entropy production under feedback control σX
feedback is defined as

σX
feedback := σX

sys + σX
bath −∆I, (108)

σX
sys := H(X′)−H(X), (109)

σX
bath := E

[

ln
TXM(x′,m,x)

TXM(x,m,x′)

]

, (110)

∆I := I(X′;M)− I(X;M), (111)

where σX
sys is the entropy change of the system X , σX

bath is the entropy change of the heat bath attached to the system
X and ∆I is the mutual information change between the system X and the memory M. To show the following
relationship

σX
feedback = D(pS ||q

XM∗
S ), (112)

we obtain the result Eq. (107). The second law of information thermodynamics under feedback control is given by
the nonnegativity of σX

feedback,

σX
sys + σX

bath ≥ ∆I. (113)

This inequality implies the trade-off relationship between the entropy changes in the system X and the information
between the system X and the memory M.


