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The Penrose Inequality � Differential Geometry and Black Holes

One of the richest and most useful areas of mathematics is the interplay between the calcu�
lus of variations� geometry� and mathematical physics� This interplay is keenly illustrated
in Einstein�s theory of general relativity� or �curved space��

Today� it is well established that strong gravitational �elds don�t just move things around�
but warp the very shape of space itself� This manifests itself in many phenomena now
being observed in the heavens	 the bending of light� or �gravitational lensing�
 the slowing
of time as one climbs out of a gravitational well
 discrepancies in the global positioning
system
 precession of orbits
 the gradual spindown of orbiting pulsars�

One of the most striking phenomena� for which the evidence is rapidly mounting� is a black
hole	 a region� perhaps around a collapsed star or galaxy core� where the force of gravity
is so strong that light itself cannot escape�

To make physical predictions for comparison against evidence from the skies� we must
understand more fully the geometric consequences of Einstein�s theory� The Riemannian
Penrose Inequality� recently proven by Huisken and Ilmanen �of the MPI�� is a mathemat�
ical theorem that limits the possible shapes of black holes� Roughly speaking� it says that
the surface area of a black hole is limited by its total mass� thus clearly establishing a
relationship long conjectured by physicists� In order to explain it� let us �rst take a look
at the historical background�

Background

Underlying the physics lies di�erential geometry	 the mathematical theory of curved space�
What shapes of space are possible
 Let us take a look at the evolution of this subject from
mathematical speculation to concrete description of our world�

In ����� Riemann proposed a bold program	 to replace the simple� linear axioms of Eu�
clidean geometry by a scheme in which the local nature of space � the local concept of
distance � is allowed to vary freely from point to point�

A simple example is given by a curved surface in space � for example� the surface of a
vase� �See Figure ��� A tiny bug that crawls on the vase will experience a ��dimensional
geometry that seems on a small scale very much like a �at� Euclidean plane�

More detailed measurements� however� reveal tiny discrepanies� For example� the sum of
the angles of a small triangle will di�er slightly from ����� At this point� the bug will
know that Euclid�s �at geometry is not quite right� The deviation of the surface near a
given point x from a Euclidean plane is measured by a quantity K� called the �Gaussian�
curvature of the surface� If K is positive� the angle sum is greater than ����� a so�called
�angle excess�� Similarly� if K is negative� the angle sum is less than ����

Globally� Riemann�s concept gives rise to the concept of a manifold	 an abstract n�dimen�
sional �curved space� that is complete in itself� requiring no larger space to contain it�
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A manifold need not represent our physical� ��dimensional world� Indeed� manifolds are
widely employed today to represent all the possible states of any system� such as a spinning
top� robot arm� chemical process� or market model� whose variables �angle� momentum�
concentration� price� are constrained by some nonlinear relationship�

The entities of di�erential geometry took on a direct� physical reality in ���� with the
appearance of Einstein�s theory of general relativity� He showed that the gravitational
e�ects of mass�energy express themselves by a�ecting the geometric structure of space
itself� Locally� matter causes curvature� which in turn determines the shape of space�
Gravitational attraction is represented by positive curvature� which tends to make free�
falling particles seem to accelerate toward one another� In other words� we ourselves live
in a curved space as envisioned by the mathematicians�

Like the bug� we must infer the properties of the overall space from limited� local mea�
surements� Indeed� one of the central� guiding questions in the study of manifolds is the
following�

The Problem of Integration	 How does local geometry �that is� curvature�
a�ect global geometry �for example� general shape� overall size� or topology�


For example� a small sphere has very large� positive curvature� whereas a large sphere has
small curvature� In general� a surface with positive curvature will tend to curve around�
reconverge� and ultimately close up� forming a �nite� bounded surface� �See Figure ���
This tendency can be given a quantitative form� in which the diameter� d� of the surface
is bounded by

d � ��
p
c

where c is the minimum value of the curvature� Thus	 a surface with high curvature
will be very small� Such a relationship� known as a geometric inequality� gives us powerful
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information about the general shape of the surface� Discovering such geometric inequalities
is a major task of di�erential geometry�
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Here is another example of a geometric inequality� A soap bubble surrounding a blob
of air will wobble around for awhile� but eventually settle down to the familiar spherical
shape� Now� any surface enclosing a volume V must have have a certain minimum area A�
according to the inequality

A � �
p
���V ��

known as the Isoperimetric Inequality� A round sphere achieves exact equality� Thus� the
sphere is a �perfect�� highly symmetrical shape that minimizes surface area among all
possible surfaces that enclose the given volume V �
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Something analogous happens during the gravitational collapse of a massive star or star
cluster� After wobbling about for awhile� the space around the crushing matter will� under
suitable conditions� settle down to a �perfect� solution of Einstein�s equations� found in
���� by the astronomer Schwarzschild	 a static� highly symmetrical space�time modelling
the gravitational �eld around a nonrotating� isolated body�
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Unlike the original star� however� the massive center of the Schwarzschild solution is hidden
away where it cannot be seen� because the gravity has become so strong that even light
cannot escape� The boundary of this �region of no escape�� or black hole� is a surface
called the event horizon� �See Figure ��� Somewhat later it was noticed that beyond the
event horizon is a location where space�time itself becomes sharply curved and ultimately
singular� Here� the usual laws of geometry and physics break down� and infalling matter
more or less ceases to exist�
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In the �����s the study of general relativity took on a new life with the improvement
of astrophysical observations and the systematic application of methods of di�erential
geometry� Using the positive curvature of space�time� Hawking and Penrose demonstrated
that in Einstein�s theory� singularities are not rare� but typical� The presence of a so�called
apparent horizon � a kind of area�minimizing surface present at the starting time � serves
as a harbinger to predict the later development of a singularity�

According to the somewhat controversial Cosmic Censorship Hypothesis� a black hole then
forms �around� the singularity� shielding it from view� and preventing it from a�ecting an
external observer � not just for the Schwarzschild solution� but generally� Many physicists
consider such a principle essential in order to explain the stability of space�time near a
singularity�

The Penrose Inequality

From the beginning� relativity has been beset by the di�culty of choosing coordinates�
Measurements depend on the yardstick � the local reference frame of the observer � and
only by considering systematically all possible yardsticks can the full picture be obtained�
This is the true meaning of the term �relativity��

A principal example of this di�culty is the problem of mass� The local mass density of
space�time is represented by the positive curvature at each point� The total mass� m� of
an isolated gravitating system� on the other hand� is de�ned by the gravitational e�ect of
the system at large distances � for example� as measured from a space station far from
the highly curved region of space� In this context� the Problem of Integration becomes the
following�

The Problem of Mass	 How does the local mass density determine the total
mass m
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In classical Newtonian mechanics� this problem has an easy solution	 you just add up� or
integrate� the local mass density � to obtain the total mass according to the formula

m �

Z
space

��

In Einstein�s theory� the problem is far more di�cult� because there is no preferred coor�
dinate system in which to add up the little pieces of mass�

A deceptively simple test case was resolved in ���� by the Positive Mass Theorem of
Schoen and Yau	 if the local curvature is positive� then m is positive� �So the isolated
system exerts attraction rather than repulsion�� Though the statement is straightforward�
the mathematical techniques developed are very deep� and have led to many developments
in conformal geometry and in the topology of positive scalar curvature� Since then� several
other proofs have appeared� based on rather di�erent physical and mathematical ideas�
The diversity of proofs mysteriously echoes the multiplicity of coordinate systems�

In ���� Penrose had put forward a more precise version of the Positive Mass Theorem�
namely

m � c�

G

r
A

���
�

where A is the surface area of a minimal surface� or apparent horizon� present in space�
G is Newton�s gravitational constant� and c is the speed of light� Roughly speaking� this
says	 the area of a black hole is limited by its total mass� �For example� the area of a black
hole with the mass of an apple would be at most �� ����� square centimeters��

This inequality gives a universal geometric relationship analogous to the Isoperimetric
Inequality� The optimal shape is given by the highly symmetric Schwarzschild manifold�
which realizes the smallest mass consistent with the given area A�

Penrose did not give a mathematical proof of this inequality� however� Instead� he gave an
argument based on physical reasoning starting from the Cosmic Censorship Hypothesis�
He envisaged the inequality as a mathematical test of Cosmic Censorship	 if an example
were found that violates the inequality� it would most likely indicate failure of Cosmic
Censorship� and the existence of a so�called �naked singularity� � which would be quite a
shock�

Just in the past year� singni�cant progress has been made on this inequality by Gibbons�
Bray� and Herzlich� Recently� Huisken and Ilmanen have been able to prove the Penrose
Inequality for a ��dimensional Riemannian manifold of positive scalar curvature� which
arises in the special case of a time�reversible space�time� This rules out one avenue to
naked singularities�

The proof draws together techniques from di�erential geometry� the calculus of variations�
and mathematical relativity� The principal tool is an evolution equation related to minimal
surfaces� discovered by the physicist Geroch in ����� According to this scheme� a surface
Nt starts at the apparent horizon� and evolves progressively outward with speed equal to
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the inverse of its average curvature� During this evolution� a masslike quantity associated
to the surface is monotone increasing� The initial value of this quantity is the surface
area A� and the �nal value� as the surface becomes a large� round sphere enclosing the
system� may be compared to the mass m� Certain analytic di�culties arise� because the
surface Nt itself may become singular and jump around in the manifold� By resolving
these di�culties� we establish the Penrose Inequality�

Determining the geometric consequences of Einstein�s equations � in e�ect� solving the
geometric Integration Problem � is an essential step in making physical predictions that
may be compared against observational evidence in searching the heavens for black holes
and other e�ects of curved space� Geometric inequalities and curvature �ows have an
important role to play in the mathematical underpinnings of this project� Such techniques�
among many others� illustrate how methods of modern mathematics can serve to verify
and illuminate heuristic principles coming from physics�
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