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A new topology is proposed for strongly causal space-times. Unlike the standard manifold topology

(which merely characterizes continuity properties), the new topology determines the causal, differential, and
conformal structures of space~time. The topology is more appealing, physical, and manageable than the
topology previously proposed by Zeeman for Minkowski space. It thus seems that many calculations

involving the above structures may be made purely topological.

1. INTRODUCTION

In 1964 Zeeman published a paper' showing that the
causal structure of Minkowski space M, already implied
its linear structure. Causality was defined by means
of a partial ordering on M, and it was shown that the
group of automorphisms of M preserving the ordering
is generated by the inhomogeneous Lorentz group and
dilatations. (This is the khomothecy group H of M, com-
prising all affine automorphisms which preserve the
Lorentz metric up to a constant factor,) He then pro-
posed?® that the conventional (positive definite) metric
topology /4 of M should be replaced by a new topology
7 (the fine topology) which is related to the causal
structure. 7 has the following properties?®;

(1) 7 is defined to be the finest topology on M which
induces the one-dimensional Euclidean topology on every
straight timelike line, and the three-dimensional
Euclidean topology on every spacelike hyperplane. Thus
7 is finer (and, in fact, strictly finer) than /.

(2) 7 incorporates the (homothetic) Lorentz structure
at the primitive level of topology (rather than, as is
conventional, affev imposing linear structure); the
homeomorphism group of 7 is H.

(3) If the path of a particle is interpreted as a 7-
continuous map y of the unit interval I into M such y
preserves order, the image of v is piecewise linear,
consisting of a finite number of straight timelike line
segments, like the path of a free particle undergoing
a finite number of collisions.

(4) 7 is Hausdorff, connected and locally connected,
but not normal, locally compact or first countable.

This new topology obviously has several advantages
over the standard one, which merely characterizes the
continuity of M. Its very definition (1) is more intuitive-
ly appealing than that of ///, since it requires a set to be
open when (a) every inertial observer “times” it to be
open,” and (b) every section of time simultaneity inter-
sects it in an open set, The definition of // involves 4—
spheres in space—time, which have no particular physi-
cal meaning. The idea of (2) incorporating causal,
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linear and even homothetic structure already in a topol-
ogy /i is certainly physically appealing, and the idea (3)
that the requirement of coniinuity of a curve should al-
ready restrict it to be phy}sically meaningful is fascinat-
ing. However, there are disadvantages:

(1*) A 3~-dimensional section of simultaneity has no
meaning in terms of physically possible experiments.
Also, the use of s/raight timelike lines in defining 7
suggests that 7 from the beginning has been equipped
with information involving inevtial observers, so that
the emergence of linear structure in (2) is less surpris-
ing. (Though in fact this is not the reason for its
energence. )

(2*) While the isomelry and conformal groups of M
are certainly significant physical, it is not necessarily
clear that this is so for the howmothecy group of M.

(3*) The set of 7-continuous paths does not incorpo-
rate accelerating particles moving under forces in
curved lines.?

(4*) 7 is technically complicated.? In particular, the
fact that no point has a countable neighborhood basis
makes 7 hard to calculate with.

Zeeman suggests® that criticism (3*) could be over-
come by generalizing his theory to general relativity,
where the image of y should become piecewise geodesic
(thus accounting for gravitational forces). This gener-
alization has recently been carried out by Gobel® who,
for strongly causal space—time manifolds, replaced
(1) by replacing “time axis” and “spacelike hyperplane”
by “timelike geodesic” and “spacelike hypersurface.”
He then proves that Zeeman’s conjecture about the
generalization of (3) is correct, and, with the help of a
theorem of Hawking® relating causal to differential
structure, that the homeomorphism group is again the
homothety group.

However, even in general relativity, particles need
not move along geodesics since, for example, they may
be charged and an electromagnetic field may be present
(and this applies in special relativity also).® Thus the
generalization to general relativity of the topology 3
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(we also call the generalizations #) only partially
answers (3*), and leaves the other criticisms (1*), (2%)
and (4*) as before.

In this paper, we propose a new topology /° for
strongly causal space—times M which share the attrac-
tive features of the topologies 7, but which also answer
some of the above criticisms and have additional attrac-
tive physical features. The topology P, the palh topolo-
gy, has the following properties:

(1’) P is defined to be the finest topology on M which
induces the Euclidean topology on arbitrary (not neces-
sarily smooth) timelike curves.

(27) The topology P incorporates the causal, differen-
tial, and smooth conformal structure; the homeomor-
phism group of /2 is the conformal group.

(3’) The set of P-continuous paths incorporates al!
timelike paths. In fact, the set consists of all “Feynman
paths” (described below).

(4') P is still technically complicated, but less so than
7. Indeed, / is Hausdorff, connected and locally con-
nected, but not normal or locally compact. However,
every point has a countable neighborhood basis, and this
makes / much easier to deal with than 7.

The definition (1’) has an immediate physical inter-
pretation which is more appealing than (1): a set is open
whenever every observer (accelerated or not) “times”
it to be open. No nonphysical experiments are required.
Also, (1) does not require any smoothness properties
to define /, so that the emergence of smooth and con-
formal structure is more surprising. Again, (2')
answers criticism (2*), and (3’) shows that all possible
observers, accelerated or not, are described by /-
continuous curves. The fact that /° has a countable
neighborhood basis at each point makes it much easier
to deal with than 7. Thus the computation of the set of
all f-continuous paths becomes relatively easy (Zeeman
only finds the order preserving paths for 7).° These
paths are (possibly accelerated) “Feynman paths” which
zigzag with respect to time orientation, like the
Feynman track of an (accelerated) electron. This same
“basis” property makes it relatively easy to find the
general properties of /. In fact, /is path connected
and locally path connected, but not regular or paracom-
pact, in addition to having the properties mentioned
above. The relative ease of calculations with / suggest
that it could be usefully applied to “practical” problems
in general relativity. If one could show (using the basis
property) that a space—time must admit a (local or
global) f-~homeomorphism, this would mean that the
space—time admits a (local or global) conformal
diffeomorphism.

Thus we suggest that, while Zeeman’s topology” and
its general relativistic analogs® represent a radical and
fascinating departure from the conventional schemes,
our topology / has all of the required features, but is
more intuitively appealing, manageable, and physical.
Section 2 is devoted to standard results and definitions.
In Sec. 3, timelike paths (not necessarily smooth) and
Feynman paths are defined, and the topology is de-
scribed. In Sec. 4 it is shown that / is not comparable
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to 7, and the important basis property is proved. This
is used to show that the set of continuous paths is the
set of Feynman paths, and to prove various general
properties of P. In Sec. 5 it is shown that © carries

the chronological structure of M, and in Sec. 6, that /
carries the causal, differential, and conformal struc-
ture of M. The final theorem is that the homeomorphism
group of )/ is the group of conformal diffeomorphisms

of M.

The burden of the argument is as follows. First we
show that /-homeomorphisms take timelike curves to
timelike curves. Then we show that this implies that
JF-homeomorphisms preserve causal relations. This is
used to show that they are diffeomorphisms preserving
the null cones, that is, conformal diffeomorphisms.

2. STANDARD DEFINITIONS AND RESULTS®

Space—time is taken throughout to be a connected,
Hausdorff, paracompact, C” real four-dimensional
manifold M without boundary, with a C* Lorentz metric
(only a few orders of differentiability will actually be
needed) and associated pseudo-Riemannian connection.
M is taken to be time orientable throughout (that is, M
admits a nonvanishing timelike vector field). For sub-
sets A and B of M, the chronological futuve I'(A, B)
of A relalive {0 B is the set of all points in B which can
be reached from A by a future directed smooth (i.e.,
C>) timelike curve in B of finite extent. The causal
Sfuluve J(A,B) of A velalive (o B is the union of AN B
with the set of all points in B which can be reached from
A by a future directed smooth causal curve (i.e.,
nonspacelike curve) in B. The fulure horismos E'(A,B)
of A relalive lo B is defined as J*'(4, B) —-I*(A, B). These
definitions have duals, often regarded as self evident,
in which “future”is replaced by “past” and “+” by “-.”
If A is the singleton set {p} for a point p M, we write
I'(p, B) rather than I"({p}, B), for example, and I'(p)
for I"(p, M). The relations p < I*(g), pcJ*(g), and
p € E*(g) will sometimes be written ¢ <p, ¢<p, and
q — p, respectively. These last relations are respec-
tively called, chronological, causal, and horismos
relations. The definitions and results® below will be
needed in this paper. They are only stated in the
generality needed:

2.11f [/ is an open set, g < I'(p, |/) implies p
€I(g,!/), and conversely. Similar results hold for J
and E. I'(p,)/) and I'(p,|/) are open sets. In particular,
these statements hold for I'(p) and I"(p).

2.2 If |[/is an open set, either
q€J(p, V), rel'(q, V)
gel'(p, V), redq,l/)

2.3 Let T,(M) denote the tangent space of p € M, and
exp: T,(M)—~ M, the exponential mapping. Then there
is an open neighborhood N of the origin of TP(M) such
that {/=exp(N) is an open convex normal neighborhood
of p e M. That is, every pair of points in // can be
joined by a unique geodesic curve in {/, and geodesics
in {/ through p are the images of straight lines through
the origin in NC T,(M). Further, p possesses a neigh-
borhood basis of open convex normal neighborhoods.

imply reI'(p, /).
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Furthermore, the normal neighborhoods may be taken
to be normal neighborhoods of every point in them. Let
€ >0 be sufficiently small so that the Euclidean open
ball B of radius ¢, centered at the origin, is contained
in N. We define B,(p,€) =exp(B), and whenever such a
set is referred to, it is assumed that € >0 is sufficiently
small. '°

2.4 Denote the normal coordinates of g € {/ by x'(g),
where i=0, 1, 2, 3, and x° is the time coordinate,

x', %%, x° the space coordinates. Then x*(p)=0 and

Jp, ) =1q € U |(x(@)? = (x*(g))? - (x¥(q))*
()220, L= 0}.

J(p, /) satisfies the same condition except that x°(g)
<0, and I*(p, (/) are defined analogously, except that
all inequalities are strict. Define, for any open set |/,
the cones (possibly) with and without origin by

Clp, V) =1(p, I (p, ),
K(p,/)=Clp, /)uipr},

and, for an open convex normal neighborhood {/ of p,
define

Lp,&=BSp,0 NK(p,l]).

Note that L, (p,e) ~ {p} is nonempty [the point with coor -
dinates (5¢,0,0,0) belongs to B,(p,e)NnI*(p,{)] as is
B,(p,e) - L(p,e) [take coordinates (0,0,0,%¢)].

2.5 A space—time M is chronological, if there is no
closed smooth future (or past) directed timelike curves
in M. Equivalently, M is chronological, if and only if,
I(p)NnI(p)=¢ for all p € M. Analogously, M is causal,
if there are no future (or past) directed causal curves.

2.6 Denote the manifold topology of M by /. Consider
the collection of all sets of the form I*(p) N I'{g) for
p,q< M. These sets are open and (together with,
possibly, the empty set ¢) clearly form a basis for a
topology on M. The topology is called the Alexandroff
topology A of M, and in general, is coarser than /.

2.7 A causalily neighborhood D of a point p € M is an
/M -neighborhood of p such that, whenever y: F— M is a
smooth causal path, y (D) is connected. (Here F is a
connected interval of the real line R.)} M is strongly
causal al p, if and only if, p has a neighborhood basis
{D,(p)| = e A} such that, for each xc 4, D.(p)isa
causality /) -neighborhood. M is s/vongly causal, if it is
strongly causal at each point. Another useful charac-
terization of this property is given by the following
consequence:

M is strongly causal <=>M is 4-Hausdorff <=4 =/

2.8 If {/ is an open convex normal neighborhood of
pe M, E*(p,l/) consists of future directed null geodesics
in {/ from p, and E*(p,{/)U E*(p,{/) is the image of the
null cone NN N, < T, (M) in the neighborhood N of the
tangent space T,(M) under exp.

2.9 The metric g at p € M is determined up to a con-
stant by the tangent null cone N, C T,(M).

2.10 The isomelry, homothecy and conformal groups
of M are those groups of C* diffeomorphisms of M which
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preserve, respectively, the metric tensor, the metric
tensor up to a counstant factor, and the metric tensor
up to a {possibly variable) factor.

3. THE TOPOLOGY /p

3.1 Let F be a connected interval of the real line R.
(The singleton closed set [x, x] is excluded. For our
purposes we may take F to be bounded, for there is an
order preserving C° diffeomorphism tan™'; R
— (=w/2,7/2). Thus F is a finite, closed, open, or half
open half closed interval.) A map y: F— M is called a
palh, and its image a curve (the same symbol y often
being used for either, it being clear from the contexi
which is meant). A path y is continuous if y is continu-
ous with respect to /// and the topology on F induced from
the standard one on R. A point ¢ € M is said to be an
initial end point of a continuous path y: F—- M, if for
every neighborhood N of ¢ there is a {, € F, such that
{e F and t </, implies y({) € N. If a continuous path y
has an initial end point ¢ & ¥(F), one may find a new
continuous path y': FU{{,} -~ M such that v’} =y and
v'({,) =¢ where [, is the greatest lower bound of F. We
shall therefore assume without loss of generality that
continuous paths contain both their initial and final
endpoints if they have them.

3.2 A path y: F— M is called® fuluve divected and
timelike al I, F, if and only if y is continuous and there
is a connected neighborhood U of {, in F, and an open
convex normal neighborhood {/ of p =y({,) such that

fe Uand { <l{y=>y)e I'(p,i);
{eUand ! >ly==y(8) e '(p, ).

A path is called future divected and limelike, if it is
future directed and timelike at each f,€ F. Similar dual
definitions hold for “past directed.” A path is /imelike
al l,, if it is either future or past directed and timelike
at {,, and limelike, if it is either everywhere future
directed, or everywhere past directed and timelike. A
curve is timelike, if it is the image of a timelike path.

Proposilion 3.3: Let y: F— M be a continuous path
which is timelike at each /,€ intF. Then y is a timelike
path.

Proof: Suppose vy is future directed at {,€ intF. Let
U and [/ be as above. Suppose there were a /, € U with
{, >, such that y was past directed at /,. The coordinate
%° of (t) will be a continuous function of {. Thus there
will be some /, such that x°{y({,}} is the maximum value
of X°(y([ty,£,])). Since y is future directed at {,, {, must
be greater than /,. Similarly, {, would have to be less
than /,. Consider the point g =(£,). On I'(g, (/) the
coordinate x° would be greater than its value at q. This
would mean that ¥([¢,,/,]) could not be timelike at /,.
This shows that y must be future directed for all /€ U
with /= {,. A similar argument shows that y must be
future directed for all / € U with /< {,. Thus, the set of
points at which y is future directed is open in intF.
Similarly, the set on which y is past directed is open.
Because F is connected, y must be either everywhere
future directed or everywhere past directed in intF.
Assume, without loss of generality, thaty is future
directed. Suppose that ¢ =y(/,) is an initial endpoint.
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Let U be a connected neighborhood of ¢, in F and let {/
be a convex normal neighborhood of g. Let {,c U with
t,>t,. Then y{(¢,,t,) < I(r,{(}), where r=y(i,). There-
fore, by continuity q € I'(», {/) =J(»,{/). Thus, »

€ J*(g, (/). However, by a similar argument one can
find a £, € ({,,,) such that ¥(¢,;) € J*(q, () NI (r, ).
Therefore, by 2.2, »< I'(g,{/). Hence y is also future
directed timelike at its endpoints. s It follows from

2.2 and 3.2 that a timelike path is locally 1—1, that

is, each f, € F has a neighborhood V such that |, is
1—1. Notice that timelike paths need not be smooth.
The point of this definition is that /' will be defined
independently of smoothness properties, but neverthe-
less smooth structure will emerge from / (Theorem 5).
Curiously enough, a path may be timelike and smooth
without being timelike. Let y: R— M be the path defined
in Minkowski space (usual coordinates) by ()

=(¢, sin{, 0,0). Then y is timelike and smooth, but not
smooth timelike, since it is null at the points {=nw for
integral n. However, I'(A, B) and I'(A, B), as defined by
smooth timelike curves, agree with I'(A4, B) and I'(4, B)
as defined by timelike curves.

3.4 We now define a class of paths which are similar
to timelike paths, in that their curves are constrained
to lie within local light cones, but which may zigzag
with respect to time orientation. A path y: F—~ M is a
Feynman path, if y is continuous and, for each {,€ F,
there is an open connected neighborhood U of {,, and an
open convex normal neighborhood {/ of p =(f,) such that

HU) TK(p, U).

A locally 1—1 Feynman path will be called a Feynman
track. Suppose y is a Feynman track, 1—1 in a neigh-
borhood V of {,. Let W be an open connected neighbor-
hood of {, in UN V. Then, using the fact that W is con-
nected, and that ¢/, is 1—1 and continuous, it is easily
shown that y is either timelike at ¢, or (W) I'(p, {/)
U{p}, or y(W)CI(p,(/YU{p}. Obviously timelike paths
are Feynman tracks, but there are many nontimelike
Feynman tracks.

3.5 Suppose vy, is a timelike curve with future end-
point ¢, and v, is a timelike curve with past endpoint ¢.
Evidently the union y, Uy, is also a timelike curve,
which may be parametrized as a future or past directed
timelike path. Any such path will be called a product
path y,v,, and qualified with “future directed” or
“past directed, ” according to the choice of the direction
of the parameter. If y, is as before, but with y, now
with future endpoint ¢, we may similarly define product
paths, denoted ﬂ =1y, which are timelike everywhere
at y™'(g). However, mz is always a Feynman path.

3.6 Define a new topology (the path topology) P of M
by specifying the collection P of open sets of the topolo-
gy as follows: P is the finest topology satisfying the
requirement that the induced topology on every timelike
curve coincides with the topology induced from /.

Thus, if a set ECM is P-open, for every timelike curve
v there is an Oc /) with

ENny=0nNy.

Conversely, if E satisfies this condition, it is /-open,
and P is the largest collection of such sets. Obviously
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Oc/l implies Oc 2, so P is finer than /. We shall see
below that it is strictly finer, and that /is not com-
parable to the general relatively analog of 7.

4. GENERAL PROPERTIES OF

Here we show that /is strictly finer than /, but not
comparable to 7, and find an explicit neighborhood basis
for P. Then we show that the /-continuous paths are
Feynman paths, and various general properties of /?
are proved.

Proposition 4.1: Let y: F— M be a path. If y is -
continuous, y is // -continuous. If y is timelike, y is
P-continuous.

Proof: The first assertion follows since P is finer
than /. For the second, note first that E ¢ /7 implies
EnNy=0n+y for some Oc/. Hence y"YE)=y {ENy)
=y (0Ny)="0). But y is timelike and so, in particu-
lar, continuous. Therefore y }(E)=5"*(0) is open. .

Proposilion 4.2: Sets of the form K(p), K(p,{/), and
L. (p,€) are P-open.

Proof: Let y be any timelike curve. Suppose first that
p €y. Then by definition, y CI'(p) UI'(p) U{p}=K(p),
so y UK(p)=vUM. Suppose next that p ¢ y. Then y
NK(p)=y N I(p)UT(p)). In either case, yN K(p)
=y N O for some Oc/l. The proof that K(p, (/) is P-
open is similar (replace M by {/), and the proof for
L (p,¢) follows because B,(p,¢), being /) -open, is
a fortiori P-open. L]

This proposition shows that / is strictly finer than
M, since, for example, p € K(p, (/) has no /} -neighbor-
hood contained in K(p, (/). We will show further that /2
is not comparable to Zeeman-type topologies 7. Define
S to be the set [B,(p,€) = [E*(p, () UE(p,())]], where
€ >0 is smaller than ; [and also sufficiently small for
B,(p,€) to make sense]. Lety ©// be the curve defined,
in normal coordinates, by the timelike path y=[—¢,¢]
—{{, with equation v(¢{)=({, £?, 0, 0). Consider the set
R=(S —y)U{p}. Then any timelike geodesic will have
an open intersection with R, as will any spacelike
hypersurface. Therefore R is 7-open. However, R is
not P-open since RNy ={p}, which is closed. On the
other hand, K(p, (/) is /-open but not 7-open, since the
intersection of any spacelike hypersurface containing
b with K(p, (/) is {p}.

Theorem 1: Sets of the form L, (p,€) form a basis for
the topology P.

Pyroof: We must show that, for any /-open set E and
any p € E, there is a /-open neighborhood of p of the
form L (p,€) contained entirely in E. Suppose this to
be false. Then there is an open convex normal neighbor-
hood {/ of p such that, for every ball B,(p,¢c) C{/ and
corresponding L, (p,¢), there is a g L (p,€) with ¢ ¢E.
Fix such a set L (p,¢,) and assume, without loss
of generality, that it contains a ¢,, not in E, with ¢,

e I'( p, (/). [If there is no such q,, all points of the re-
quired type lie in I'(p, (/), and the proof is as before
with I*, I" and “future,” and “past” interchanged. | Since
p belongs to the open set /(¢q,,{/), we can finda 6 >0
with B,(p,d)CI(p,//). Let €, be any positive number
satisfying €, < min(e, z¢,). There is a p,€ L (p,¢,) with
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g, € E. Assume without loss of generality that g,

e I'(p, {N). [If all g, of the required type lie in I'(p, (1),
discard ¢, and start with ¢,, interchanging I*. I" and
“future,” “past.” | Construct €,< z6; and g5 L/ p, €;)
analogously, and inductively construct €,,, < 3¢, < 27,
and ¢g,.,, € Lé/(p,em). This way, possibly after discard-
ing a finite number of points, we obtain a sequence
S=1{q,} of distinct points SC I'(,(/) and S¢ E, with the
property that consecutive points ¢, and ¢,, can be joined
by a (unique) timelike geodesic curve. Form a past
directed timelike product path ¢ =(g,9,)X{q.q,) -+ as in
3.5. Because ¢,,, <27, {g,} converges to p in the
topology /1, and thus ¢ has past endpoint p. From 3.1
there is, therefore, a unique timelike curve y =¢ U{p}.
Since E is P-open, ENy= 0Ny for some Oc /. Since
STE, STENy=0n1y, therefore SCM - (0N y)=(M = 0)
U(M~v). But SCy, so S4 M —y; therefore, S={g,}
CM-0. But M -0 is /) ~closed and {¢,} is /i -conver-
gent to p, therefore pc M -0, sop c—% 0. Hence, p eja OonNy
=EN+vy. But p belongs to both E and y, so we have a
contradiction, and the theorem is proved. s

This basis property, which has no analogue in the
fine topologies 7, makes the path topology /-much more
manageable. Below, it will be used to prove all the
basic general properties of /. But first, we shall find
the set of all P-continuous paths.

Theovem 2: A path y: F— M is /-continuous if and
only if it is a Feynman path.

Proof: Suppose first that y is a Feynman path. We
must show that, for each (€ F, the inverse image of
each P-neighborhood of v(/,) is a neighborhood of /,. Let
{/ be the open convex normal neighborhood of p =y((,)
used in the definition 3.2. Let {L (p,¢)} be a /-neigh-
borhood basis of p for all sufficiently small ¢ >0, Then
YLD, N =y K(p, (N Bp,e) =y (K(p, UN
Gy (B Lp,€)). But yH(K(p, (/) contains an open con-
nected neighborhood U of /,, and y ' (B,(p,€)) is an open
neighborhood of {, (because y is /| -continuous). Thus y
is f-continuous.

Suppose next that y is /P-continuous, and let {/ be an
open convex normal neighborhood of p =y{/,). Then
K(p, () is a P-neighborhood of p, so v (K(p, /) is a
neighborhood W of {,. Let U be an open connected
neighborhood of ¢, in W. Then ¥(U) T K(p,{/), and v,
being also /#/-continuous, is a Feynman path.

Obviously / is first countable, since a countable
neighborhood base at p € M is given by {L (p,1/n);
n=N, N+1...} for some integer N. Because M admits
a countable covering {//,} by normal neighborhoods, /
is also separable {take points with rational coordinates
in {/,). Note that sets of the form K(p,{/), I'(p,{),
I'(p,l/yand L (p,€) are P-path connected, since any
pair of points in any of these sets can be joined by pro-
duct curves vy, or ﬁz of the type discussed in 3.5.
Thus / is locally path connected, because every /-
neighborhood E of P ¢ M contains a neighborhood of the
form L//{(p,€). Also it is not hard to show that / is path
connected. Indeed, since M is/} -connected and M is
a manifold, M is // -path connected. If p, g M are any
pair of points, they may be joined by an /| -continuous
path y: I— M from the closed unit interval I into M. Ttis
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then easy to approximate y(I) by a Feynman path, show-
ing that M is P-path connected. Before proving further
general properties, we need:

Proposilion 4.3: L (p,)?=L,(p,€) - (@B,p,€)
N oK(p,)). (Here the lefthand side denotes the /-
closure, and all other topological symbols refer to /}.)

Pvoof: Certainly L (p, P c L.(p,€) since /is finer
than /1 . Now points ¢ < 3B, (p,€) N AK(p, (), have /-
open neighborhoods of the form L (g, 3¢) which do not
meet L (p,¢€), so L(p,e)PCL(p,e)~(2B(p,¢€)
NaK(p,{)). U e M is in this latter set, every /-
neighborhood of » contains a P-neighborhood of the form
L,(r, 8) which is easily seen to meet L (p,c). n

Theorem 3: J°is first countable and, separable. /7 is
Hausdorff, path connected and locally path connected
(and so a fortiori connected and locally connected).
However, /7is not regular, normal, locally compact
or paracompact.

Proof: The first sentence has been dealt with above.
P is Hausdorff because / is finer than /. The connecti-
vity properties have been dealt with above. To show
that / is not regular, consider the /-neighborhood
LU({), €) and show that p has no /-closed neighborhood
S contained in LL/(/), €), using the basis property and
4,3. To show that / is not normal, consider the dis-
joint P-closed subsets Lu(p,e)p and [aBU(p,E)

N AK(p,!{)], and show, using the basis property, that
these sets cannot have disjoint /~open neighborhoods.
To show that / is not locally compact, use the fact that
closed subspaces of compact sets are compact, the
basis property and 4.3, and note that Lu(p,c}p is not

/M -closed, so certainly not // ~-compact, hence not /-
compact, since /is finer than /. /° cannot be para-
compact because paracompact spaces are normal. ! »

5. / AND CHRONOLOGICAL STRUCTURE

We wish to prove P-homeomorphisms k, take time-
like curves to timelike curves. Obviously I takes /-
continuous curves to /-continuous curves, but, of
course, /f-continuous curves (Feynman paths) need not
be timelike. We single out a subclass of f-continuous
curves, by adding restrictions made only in terms of
P. This subclass will coincide with timelike curves.
This will enable us to prove that for strongly causal
spacetimes FP-homeomorphisms preserve or reverse
causal relations.

Definition 5.1: A path y: F— M is said to be regular,
if and only if:

(A) y is P-continuous and locally 1—1.

(B) For every {,< F, there is a connected neighbor-
hood U of ¢, and a P-neighborhood 11, of p =y({,), such
that:

(L y()ycn,

(2) Whenever t,c intF (the interior of F) and a,be U
satisfy a </, <b, every P-continuous curve in II, joining
y{a) to y(b) contains p = y({,).

Proposition 5.1: A P-homeomorphism takes regular
paths to regular paths.

Hawking, King, and McCarthy 178

Downloaded 14 Dec 2005 to 131.215.225.9. Redistribution subject to AIP license or copyright, see http://jmp.aip.org/jmp/copyright.jsp



Proof: The definition of regularity involves only set
theoretical and P-topological notions. Since % is a -
homeomorphism, it preserves all required properties.

[ ]

Theovem 4: y: F—~ M is timelike, if and only if, v is
regular.

Proof: Suppose first that y is timelike and, for
definiteness, future directed. By 4.1 y is /-continuous,
so satisfies (4) of the regularity condition. For f, < intF
let Uand // be as in 3.2. Set I,=K(p, (/) where p
=v(t,). From 4.2, I, is a P-neighborhood of p =y(¢,).
Since y is future directed and timelike, y(U)CH,.
Suppose next that a,b e U satisfy a <{; <b. Since y is
future directed y(a) € I'(p, (/) and ¥(b) € I'(p, [/). Let ¢
=[r,s]|—~ 1, be a P-continuous path with y(a) =¢(») and
y{b)=¢(s). Since ¢ is /-continuous, ¢ is, by 4.1, con-
tinuous, so £([r,s]) is connected. If p & ¢([r,s]), t([r,s])
CI'(p,HNI(p,L), then g([r,s]) is contained in a dis-
joint union of open sets, and meets both. This contra-
dicts the connectivity of £([,s]), so in fact, p € ¢([r,s])
and y is regular. An analogous proof holds if y is past
directed and timelike, so the first half of the proposi-
tion is proved.

Suppose next that y is regular, and that I, is a /-
neighborhood of p =y({{,) satisfying the required condi-
tions. Because y is P-continuous, y is continuous.
From Theorem 1, p has a /-neighborhood of the form
L,(p,¢) contained in II,. Choose an open convex normal
neighborhood {/ of p with (/C B, (p,€). Then the -
neighborhood K(p, (/) of p is contained in L, (p,€). Since
y is P-continuous, y K(p, (/)) is a neighborhood
of t,. Let U Cy Y (K(p,(/)) be a connected neighborhood
of 4, such that y: U— M is 1—=1. Then y(U) CK(p, (/).
Assume now that /< intF, and choose a,b < U with
a <ty <b. Since y is 1—1 on U, both y(e) and y(b) lie in
I'(p,(HuI(p,l)). Assume for definiteness that y{a)

e I'(p,{/). Then y(b) cannot belong to I'(p, (/) also, since
otherwise, in view of the /-path connectivity of I'(p, {/),
there would be a P-continuous path in I°(p, (/) which
joins y(a) to ¥(b) but which does not contain p since
pdI'(p,l)). Therefore, yla)e I'(p, (/) and y(b) € (p, ).
Let U; and Uy denote the disjoint connected intervals
{te Ult <i,} and {t € UlL >1,}, respectively. Since y is
1—1, UYTK(p,{f), and v(U;) and »(U) both belong to
the disjoint union I(p, (/) U I'(p, (/) of open sets. But y
is P-continuous, hence continuous, therefore y(U;) and
y{Uy) are connected. However, we have just shown that
y(U;) meets I'(p, {/) and v(U;) meets I'(p,{/), so in fact
wU) S I(p, (/) and AU < I'(p, /), therefore y is future
directed and timelike at /, € intF {(or past directed

and timelike at ¢, < intF). Applying the same reasoning
to each /, € intF, we conclude that y is 1—~1 and timelike
at each /,c€intF and therefore, by proposition 3.3, y is
a timelike path u

Hewre and henceforth, M is always assumed
chronological .

Proposition 5.3: A P-homeomorphism # takes cones
C(p) bijectively onto cones; h(C(p)) = C(h(p)).

Proof: There is a timelike path v joining ¢ to p if and
only if ¢ € C(p). By proposition 5.1 and Theorem 4, the
image path hgy is timelike, and it joins k(g) to h(p).
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Therefore h{g) € C(h(p)), and since k is bijective, it
maps C(p) bijectively onto C(k(p)).

Proposition 5.4: For a fixed € M, a f-homeomor-
phism % maps I'(») [respectively I"(7)] bijectively onto
either I'(h(#) [respectively I'(h{r))] or I"(k(7))
[respectively I*(a(r))].

Proof: Suppose first that there is a p € I'(») with k(p)
e I'(h(¥)) and let g € I(»). Join p to » and ¥ to ¢ by past
directed timelike paths 1, respectively; and form a past
directed product path y =7¢. The image curves k7,
h, and hyy are timelike, and since k(p) e I'(h(7)}, kg
is past directed. Therefore h,y is past directed and
timelike. Hence, k(g) € I'(h(7)) for every g I'(r). A
similar construction starting with a given g € I'(») shows
that a(s) € I'(h(#»)) for all s € I'(¥). This completes the
“either” part of the proof. If there is no p € I'(») with
Rr(p) € I'(h(7)), a similar construction gives the remain-
der of the proof. -

Proposition 5.4: The previous proposition holds with
“a fixed » € M” replaced by “every re M.”

Proof: Suppose that, for a given r€ M, ) preserved
time orientation, h(I'(#)) =I'(h(»)) and h(I"(#»)) =T (h(¥)).
Let A CM be the set of points at which % preserves time
orientation. Then certainly p € A whenever C(p)N C(¥)

# (. We assert that A is //} -open. Indeed, choose a
point s € I'(¥). Then v € I'(s) and since I'(s) is open,
there is an open neighborhood U of » with UCI(s). Then
for any g € U, I'(q) N I'(») contains s, so a fortiovi

s e Clg)N C(7). Therefore gc UCA, and A is /f ~open.
The set M - A of points at which 7 is time orientation
reversing is also open. But M is connected and ¥c A,
so M =A. If there is no » € M satisfying the above con-
dition, every point satisfies the opposite condition. a

Proposition 5.5: A P-homeomorphism is an 4-
homeomorphism.

Proof: This follows immediately from 5.4 and the
definition of the Alexandroff topology.

6. © AND CAUSAL, DIFFERENTIAL AND
CONFORMAL STRUCTURE

The fact that /-homeomorphisms preserve or reverse
chronological relations enable us to prove that, for
strongly causal space—times, they locally preserve or
reverse causal relations, In particular, they preserve
null geodesics. It is then shown that /-homeomorphisms
are diffeomorphisms and, since they preserve null
cones, conformal diffeomorphisms.

Proposition 6.1: Suppose now and henceforth M is
strongly causal. Then a /-homeomorphism % is /) -
homeomorphism, and % maps null geodesic curves to
null geodesic curves,

Proof: Since M is strongly causal, it is a fortiori
chronological, hence % is a #-homeomorphism. Strong
causality also implies 4=/, so & is an //) -homeomor-
phism. Let D be a causality neighborhood of ¥ € M and
{/C D an open convex normal neighborhood of . Then
causality relations resfricted to D, agree with causality
relations velative to D. Now, in //C D the horismos
relations can be expressed in terms of chronology
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relations since, for p,q €{/, g— p is and only if

(¢ €p and 2z <g=>z <p]. Since & is a /} -homeomor-
phism, #({/) and k(D) are /| -open. Let {{’, D’ be respec-
tively, an open convex normal neighborhood and a
chronology neighborhood of h(7) with (/' €D’ Ch({/). In
V= vk Y ({/’), h will preserve chronology (and hence
horismos) relations or reverse them. Suppose y is the
unique null geodesic curve joining s,7€ (/N k™ ({/'). Then
{ €y if and only if ¥ — [ —s. Therefore (/) satisfies
(7)) — h(t) — h(s) or h{s)—~ h({) — h(¥), that is A(¢) lies on
a null geodesic joining k(7) to h(s). Hence, h(y) is a

null geodesic curve in k{{/) N (/.

Theorem 5: A //j -homeomorphism A: M — M, which
takes null geodesic curves to null geodesic curves is a
C” diffeomorphism.

Proof: (This is a theorem of Hawking® which is given
here in an improved from since it has never been
published.) Let {/ be a convex normal neighborhood and
y.i F;— /(i =1—4) be four C” null geodesic paths such
that:

(1) For each /, € F,, there is a unique null geodesic
curve A in // joining the point y,(¢,) to the null geodesic
curve y,.

{(2) For each /, ¢ F, there is a unique point ¢ € A, such
that g and y,(/,} lie on a null geodesic curve in //.

(3) For each point ¢ € A there is a unique /, ¢ F,, such
that g and y,(z,) lie on a null geodesic curve in //.

(4) The map i: F, XF,— F, defined by v/, ;) =1,
where /,, {; and /, are as in (1)—(3) above is C*, and is
such that 9y/2¢, and 2/3/, are nonzero.

For a sufficiently small neighborhood {/, the metric
differs by an arbitrarily small amount from that of
Minkowski space. Comparison with Minkowski space
shows that y; can be chosen to satisfy the above condi-
tions. Condition (4) cannot be satisfied in less than
three dimensions.

By the assumption of the theorem %(y,) will be four
null geodesic curves contained in &#({//). Thus one can
find four C* paths %;: F;—~h({/) which define the same
null geodesic curves as h(y ), but which may be para-
metr1zed differently. Let h F,— F, be defined by &,
=97 hy;. The maps B, will be continuous and monotonic
(because h preserves or reverses ordering). Therefore,
by Lesbegue’s theorem, they w111 be differentiable
almost everywhere. Let : F, ><F3 F be defined simi-
larly to ¢. Then

T4y 1)) = D (1), Rslls)). (D)

Differentiating (I) with respect to /; one has

87\@ o N
bl _—— = = ; N II
hattd, 15) TR hiils) {an

Because 1}3 is differentiable almost everywhere, it
follows from property (4) that 7} exists and is continu-
ous. Similarly, by choosing different combinations of
null geodesic paths one can show that each ﬁi is C'.
Now, differentiating (II) with respect to /, gives

o 3y b 3% . -
I: i ’ I'
hit )a; at, i 57 aal, — araf, ks
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Therefore, h, is C%. By repeating the above process, it
may be shown that each /i, is C*. In other words, ’
maps a C” parameter on a null geodesic curve to a C~
parameter.

Let y;. F;—~ {{ be four C* null geodesic curves, and
W < {{ be a neighborhood such that the map T': W—{an
open set of R* defined by T{q)=vy;(/*(q,(/)) is a C*
diffeomorphism. (Comparison with Minkwoski’s space
shows that this is possible for W sufficiently small.)
Pairs of the form (W,T) form a C* atlas for M which is
preserved by k. Thus & is a C” diffeomorphism. .

Covollary: A P-homeomorphism is a C”
diffeomorphism.

Theovem 6: A P-homeomorphism h is a smooth con-
formal diffeomorphism.

Proof: Since h is a diffeomorphism which, locally,
preserves null cones, and the metric g at p e M is de-
termined up to a constant by the tangent null cone, 7
preserves the metric up to a constant factor which

. N L}
must, Since 7 is smooth, be smooth.

Theovem T: The group Homeo (M, ) of P-homeomor-
phisms of M coincides with the group G of conformal
diffeomorphisms of M.

Pyoof: By Theorem 6, Homeo (M, 2) G, and it re-
mains to prove the opposite inclusion. Suppose E ¢ /2,
so that whenever y is timelike, EN y -0y for some
Oe/. Then if g€ G g(E)N gly) =g07 gy. But gy is
timelike because % is conformal, and £0 is /) -open.
Therefore, ¢yE < P, and g is P-open. Similarly, g is
P-continuous so g € Homeo (M, /).

It is instructive to give an example of a manifold for
which G is strictly larger than the homothecy group.
This is not the case for Minkowski space because,
though the infinitesimal conformal group is larger than
the infinitesimal homothesy group, the infinitesimal
conformal group cannot be exponentiated to give a global
action on Minkowski space. However, consider the
manifold N obtained by removing the following closed
set S from Minkowski space M.

S=1{ge M[[x(q)]* - [*N) ] - [P = [<*(@) "> 0.
The conformal group of this manifold is generated by
the homogeneous Lorentz group (including space, time,
and space—time reversal), dilatations, and the inver-
sion I given, in coordinates, by

x"{q)
(K@) = OGP - T = P - [¥(q) B

(u=0, 1,2, 3).

In fact, infinitesimal conformal diffeomorphisms
which are not infinitesimal isometries are rather rare.
DeFrise-Carter® has shown that the infinitesimal confor-
mal diffeomorphisms of Lorentz manifolds are with two
exceptions, essentially isometries. The exceptions
are Minkowski space and the “plane wave” space—
times. In the former, there are five linearly indepen-
dent infinitesimal conformal transformations which are
not isometries {the dilatations and “accelerations”),
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and in the latter, only one (the dilations). Only the
homothecy group acts globally on Minkowski space, but
N admits global conformal transformations which are
neither isometries nor homothesies.
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"Added in proof: We are grateful to Dr. M. Dobson for
pointing out that the inverted commas on ‘“times” are essen-
tial. The observor does not measure the length of a time in-
terval——many experiments are required to determine whether
a set is open.

84dded in proof: Ridiger Gobel informed us that he has a
modification of the general relativity analog of 7 which al-
lows the effects of a fixed electromagnetic field to be incor-
porated. We feel it is preferable to use P, thus allowing all
timelike curves to be continuous (not just geodesics or par~
ticles with a fixed charge in a fixed field).

%Added in proof: Actually the Zeeman topology, and Gobel’s
generalization admit spacelike curves as continuous curves.

04Added in proof: We may also assume {/ to be an open convex
normal neighborhood of each of its points.

YAdded in proaof: It may also be of interest to note that /9 is
not metrizable, since it is separable but not regular, and
neither can /7 arise from a uniformity, since it is not regu-
lar, therefore certainly not completely regular.
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