

View

Online


Export
Citation

CrossMark

RESEARCH ARTICLE | NOVEMBER 01 1992

Vector‐Bundle Classes form Powerful Tool for Scientific
Visualization:
Vector bundle theory provides an abstraction general
enough to capture the common features of many scientific
data formats
David M. Butler; Steve Bryson

Computers in Physics and IEEE Computational Science & Engineering 6, 576–584 (1992)
https://doi.org/10.1063/1.4823118

Articles You May Be Interested In

Max- X ¯ S t n control chart for monitoring mean and variability process

AIP Conference Proceedings (January 2023)

Energy conservation and Poynting's theorem in the homopolar generator

American Journal of Physics (January 2015)

Listings of the Latest Releases

Computers in Physics and IEEE Computational Science & Engineering (May 1990)

D
ow

nloaded from
 http://pubs.aip.org/aip/cip/article-pdf/6/6/576/11500535/576_1_online.pdf

https://pubs.aip.org/aip/cip/article/6/6/576/509860/Vector-Bundle-Classes-form-Powerful-Tool-for
https://pubs.aip.org/aip/cip/article/6/6/576/509860/Vector-Bundle-Classes-form-Powerful-Tool-for?pdfCoverIconEvent=cite
https://pubs.aip.org/aip/cip/article/6/6/576/509860/Vector-Bundle-Classes-form-Powerful-Tool-for?pdfCoverIconEvent=crossmark
javascript:;
javascript:;
javascript:;
https://doi.org/10.1063/1.4823118
https://pubs.aip.org/aip/acp/article/2540/1/080020/2873417/Max-X-Stn-control-chart-for-monitoring-mean-and
https://pubs.aip.org/aapt/ajp/article/83/1/72/1042114/Energy-conservation-and-Poynting-s-theorem-in-the
https://pubs.aip.org/aip/cip/article/4/3/332/136943/Listings-of-the-Latest-Releases

Vector-Bundle Classes
Form Powerful Tool for
Scientific Visualization
David M. Butler and Steve Bryson

Vector bundle theory provides an abstraction general enough to
capture the common features of many scientific data formats

bject-oriented programming promises to im­
prove programmer productivity by making
software easier to reuse. Inheritance is often
seen as the key to reuse, but it is essential to
realize that inheritance leads to reuse only
when the proper abstractions are known in

advance. Inheritance is deductive. It proceeds from the
general to the specific; the more general parent class must
already exist for the child to inherit it. Unfortunately,
software developers are usually inductive. They discover
the general by programming several special cases. In this
inductive approach, the object-oriented paradigm can
actually lead to more work, not less, as existing code must
be rewritten to "reuse" the abstractions as they are
discovered.

In spite of the common experience we have just
described, it is precisely because of the deductive nature of
inheritance that object-oriented programming is well
suited to the scientific domain. For at least four centuries,
scientists have been developing and expressing knowledge
in terms of mathematical abstractions. The proper
abstractions for scientific data are known. We just have to
use them. The first step in developing useful class libraries
is thus to look at the mathematical formalism that science
uses, rather than trying to generalize existing data
formats. Abstract classes that capture the mathematical
formalism form the parent classes from which format­
specific representations can be derived.

Vector-bundle theory is a mathematical formalism
that is general enough to provide a common ancestor for

David M Butler is a physicist and systems analyst with Limit Point
Systems, Inc., 39807 Paseo Padre Pkwy., Fremont, CA 94538; e-mail:
butler@sandia.llnl.gov. Steve Bryson is a computer scientist with the
Applied Research Branch. Numerical Aerodynamic Simulation Systems
Division, at NASA Ames Research Center, MS T045-J, Moffett Field, CA
94035; e-mail: bryson@nas.nasa.gov.

576 COMPUTERS IN PHYSICS, VOL. 6, NO.6, NOV/DEC 1992

very many application-specific data formats. The vector­
bundle data model uses the formalism to define several
abstract data types, and then treats the various data
formats and mesh types commonly found in scientific data
processing as representations of these abstract data types.
Visualization algorithms described and implemented in
terms of the abstract data types can be used with any of the
various specific representations.

The main ideas of the vector-bundle data model were
introduced in a previous paper. I In this article, we focus
on the mathematical structure of vector bundles and
describe the object-oriented implementation of the model.
Specifically, in the following section we describe the
mathematical structure. Next, we describe an abstract
class hierarchy that models vector bundles, and give an ex­
ample of how the classes can be represented. Finally, we
show how they can be used to construct visualization
algorithms. [For more on object-oriented programming,
see the three feature articles in the SeplOct 1992 issue of
Computers in Physics.-Ed.]

Vector-Bundle Formalism
A vector bundle is a structure that formalizes the idea of
having data at every point of some space, called the base
space. The intuition is that the dataset at a point is an ele­
ment of a vector space, while the base space containing the
points may have a complicated structure. Vector bundles
are already widely used in physics, in such topics as gauge
theories in particle physics and in general relativity. Our
objective in this article is to describe how this mathemat­
ical formalism is also useful in visualization. To do this, we
first need to define some of the language of vector bundles.

Abstractly, a vector bundle is a collection (E, B, V,
'IT), where E is called the total space, B is the base space, V
is the vector space at each point of the base space, and 'IT is

D
ow

nloaded from
 http://pubs.aip.org/aip/cip/article-pdf/6/6/576/11500535/576_1_online.pdf

a projection that maps a point in E to a point in the base
space B. Instead of (E, B, V, 1T), one usually just writes E
for short. The vector bundle E has additional structure,
which we will describe below, but first a particular
example will help clarify these terms.

Consider the velocity field of a fluid flowing through
some volume. The base space B is the volume containing
the fluid. The set of all possible velocities of the fluid at a
point is a vector space called the tangent space. In this
case, V is the tangent space of a point in the volume B. E is
the union of the tangent spaces over all the points in the
volume. This union intuitively "bundles" the vector
spaces together, hence the name vector bundle. The
particular vector field that describes the actual velocity of
the fluid is a function that assigns a vector v(x) E V to each
point x E B in the volume. In vector-bundle language, the
vector field v (x) for all x E B is known as a section of the
vector bundle E. The projection 1T is the function that
assigns to each vector v(x) the location x at which that
vector is located. The dimension of the vector bundle is de­
fined as the dimension of the vector space V.

In this example, V is the tangent space of B, and so
has the same dimension as B. But in general, V can be any
set with the structure of a vector space, and its dimension
is independent of B. Acceptable vector spaces include the
real n-dimensional vectors and tensors, as well as their
complex and quatemionic generalizations. The definition
of a vector bundle and its various operations applies for
any vector space V. This is one of the reasons why an ab­
straction based on vector bundles is useful for many
applications in scientific visualization.

The structure of manifolds. In scientific visualization,
the base spaces of typical vector bundles are either
physical objects or the space surrounding such objects.
These spaces can have complicated structure; practical
problems demand base spaces with holes or disjoint pieces.
The appropriate mathematical structure for describing
these base spaces is called a manifold.

Informally, a manifold is a space that is constructed
by mathematically gluing together patches of Euclidean
space. The procedure is analogous to using papier-mache
to construct a mask, with holes for the eyes and mouth.
One cuts many rectangular strips of paper, then overlaps
and glues them together into the desired shape, leaving
holes as needed. The mathematical process is similar,
using n-dimensional Euclidean space instead of two­
dimensional paper, and coordinate transformations in­
stead of glue. Spaces with holes, disjoint pieces, and
certain other complicated structures can be constructed in
this way.

More formally, an n-dimensional manifold consists
of two objects: a topological space M, and a collection of
coordinate charts (Ui , ¢i), where Ui is a neighborhood of
M, and ¢i is a one-to-one map from Ui to a neighborhood
of n-dimensional Euclidean space. By one-to-one, we
mean that ¢i maps each point on the neighborhood Ui to a
point in the Euclidean neighborhood so that two different
points in Ui never map to the same point in the Euclidean
space. Where the Ui's overlap, coordinate transforma­
tions are defined that take the coordinates in one chart and
transform them to the coordinates in the other chart. Say
that U I and U2 are two intersecting coordinate neighbor­
hoods. If ¢I and ¢2 are the coordinate maps, then on the

"Veuji'Olll the £111Ier;('(I11 1m-dilute ofPh!J.';;c.';

The Energy
Sourcebook
A Guide to Technology,
Resourres, and Policy

Edited by Ruth H. Howes, Ball State University and
Anthony Fainberg, Qffice ofTechrwlogy As$essment
Washington, D.C.
Prepared by the Energy Study Group of the American
Physical Society's Forum on Physics and Society
May 1991.
illustrations, bibliographies, glossary, index.
Hardcover.ISBN ().88318-705-1.546 pages.
$75.00 list priw$60.00 member price. *
Paperback. ISBN ().88318-706-X.
$35.00 list priw$28.00 member price. *

Written for the general audience, The Energy Source­
book presents a uniquely unbiased, comprehensive,
and technically accurate summary of the current en­
ergy options available to the United States. This clearly
written ready-reference provides vital information for
understanding the scientific, economic, and environ­
mental aspects of the dilemma currently facing our
country.
The Energy Sourcebook is intended to heighten pub­
lic awareness and interest in our current energy policy
and research initiatives before the United States reaches
an energy crisis forced on it by political, economic, or
environmental upheaval elsewhere in the world. The
contributors focus on changes in technology, resources,
and policy that have taken place since the oil embargo
of 1973. They meticulously discuss each major energy
source, comparing advantages and shortcomings. The
Energy Sourcebook is essential reading for anyone
concerned with our deepening energy problems or
needing an updated and broad overview of current
energy research and policy in the United States.

Available at Select Bookstores!
Or Call ToU-Free 1-800-488-BOOK

(In Vennont 802-878-0315).

"""'!!!""""'!"II!!!!!!!' American Institute of Physics A I P Marketing and Sales Division
_____ 335 East 45th Street. New York, NY 10017-3483

• Member rates are for members of AlP's Member Societies and are only available
directly from AlP. To order books at member rates, please use the Toll-Free
number.

Pflces are subject to change Without notice

COMPUTERS IN PHYSICS, VOL. 6, NO.6, NOV/DEC 1992 577

D
ow

nloaded from
 http://pubs.aip.org/aip/cip/article-pdf/6/6/576/11500535/576_1_online.pdf

overlap the compositIOn of <P2 with the inverse of <PI'
written <P20<PI - I , will take a coordinate in U/s chart and
give the coordinates of the same point on the manifold in
U2's chart. The coordinate transformation defined by
<P2°<PI· I is referred to as a transition function from chart 1
to chart 2. Similarly, <Pl 0<P2·1 is a transition function from
chart 2 to chart 1. Note that two coordinates related by a
transition function both refer to a single point in the
manifold. In this sense, they have been glued together.

This description of manifolds as local charts that are

numerically advantageous to use a particular coordinate
system, even though it is singular at certain points. For in­
stance, spherical coordinates for three-dimensional Eu­
clidean space are not one-to-one along the z-axis. This
singularity is an artifact of the coordinates; Euclidean
space is not in any way peculiar along the z-axis. Near
such singularities, numerical roundoff errors can intro­
duce difficulties into computations. Using the manifold
concept, one can provide two different systems of
spherical coordinates, with the same origin but the z axes

'I 'I' R2

~ ,

cJ»1 •

~ x

., .+.-' 1
transition
functions

1+.·+,-'
II'

R2

.... ,
x

Fig. 1: Two coordinate charts are required to cover the sphere with one-to-one continuous coordinates.

pieced together is valuable for several reasons. The most
fundamental reason is that many topological spaces
cannot be given coordinates that cover the whole space.

A typical example is the two-dimensional surface of a
sphere like the Earth. Any assignment of pairs of
coordinates, such as longitude and latitude, will necessar­
ily have a place where the coordinates are not well defined.
For instance, longitude is not well defined at the Earth's
north and south poles. In order to give good coordinates to
every point of the sphere, it is necessary to define at least
two coordinate charts (UI , <PI) and (U2, <P2)' There are
many ways of defining these charts, but we need only the
general picture, as shown in Fig. 1. Take UI to be the up­
per 2/3 of the sphere, and take U2 to be the lower 2/3. The
coordinate functions map each of these neighborhoods to
some portion of R 2. These coordinate neighborhoods
overlap in the middle third of the sphere. Any point on the
sphere can be given two coordinates by use of these charts.

There are several pragmatic reasons for introducing
the concept of manifold into numerical calculations, even
though the topology of common problems can usually be
handled by other means. As an example, it may be

578 COMPUTERS IN PHYSICS, VOL. 6, NO.6, NOV/DEC 1992

at right angles to one another. Then the choice of which
coordinate system to use can be determined by the angle of
the desired point with the z-axis. While the example
discussed here is rather simple, a similar problem arises in
numerical relativity problems, where purely coordinate
singularities can cause calculations to fail completely.

As another example of manifolds in numerical
computation, multiple overlapping computational grids
are often used in fluid-dynamics calculations. For in­
stance, in Fig. 2 the space around the airplane is covered
by multiple grids. Each point of the space filled by the grid
has computational coordinates, typically defined by
floating-point conversions of the indices of the array that
stores the grid. These computational coordinates are
precisely analogous to coordinate charts of a manifold.
Where the numerical grids overlap, one often needs to
change from one set of computational coordinates to
another. This is precisely what is done by the transition
functions of a manifold.

The computation of the streamlines of a flow, as
shown in Fig. 3, is a common example of how the
transition functions may enter a calculation. The fluid-

D
ow

nloaded from
 http://pubs.aip.org/aip/cip/article-pdf/6/6/576/11500535/576_1_online.pdf

Fig. 2: Multiple overlapping grids cover space around an airplane for a fluid-dynamics computation.

velocity vector is defined at each point of each grid.
Computing a streamline of the flow is the same as
integrating this vector field given an initial point in the
flow. This process is sketched in Fig. 4. These streamlines
will typically cross grid boundaries. Historically, the
integration has taken place in physical, not computa­
tional, coordinates. Real-time visualization of these
streamlines, such as that in the virtual wind tunnel at

NASA Ames, requires that the integration take place in
computational coordinates. Then, as a streamline crosses
from one grid to another, the computational coordinates
in the previous grid must be converted into the computa­
tional coordinates of the new grid. This could be done by
converting the old computational coordinates into phys­
ical coordinates and then into the new computational
coordinates, but this tactic impedes real-time perf or-

Fig. 3: Visualization reveals streamline in the flow around an airplane.

COMPUTERS IN PHYSICS, VOL. 6, NO.6, NOV/DEC 1992 579

D
ow

nloaded from
 http://pubs.aip.org/aip/cip/article-pdf/6/6/576/11500535/576_1_online.pdf

mance. The concept of the transition function of a
manifold can be implemented as a look-up table, which
takes the old computational coordinates and provides the
new ones.

Before leaving the subject of manifolds, we will
return to the formal definition. There is a natural
hierarchy of structure in the definition of a manifold.
Manifolds are topological spaces with coordinates. Topo­
logical spaces are point sets with neighborhoods or
connectivity between the points defined. Finally, one is
left with point sets, which are just sets of named, but oth­
erwise featureless, objects. This mathematical hierarchy
provides a detailed design guide for the object-oriented
class hierarchy we will develop below.

The structure o/vector bundles. In the same way that
manifolds are constructed by gluing together patches of
Euclidean space, vector bundles are constructed by gluing
together vector-valued functions defined on patches of
Euclidean space. If manifold construction is analogous to
papier-mache, then bundle construction is analogous to
"carpet" -mache, with the fibers in the carpet thought of as
(one-dimensional) vector spaces. "Carpet" -mache re­
quires a fancier kind of glue, one that glues carpet backing
to carpet backing and fiber to fiber. Without this special
glue, we do not get a curved piece of carpet as a result of

the gluing; we just get a matted mess. Similarly, vector
bundles require more complicated transition functions
that transform the coordinates of the base space and
separately transform the components of the vector space
at each point.

We now describe the remaining structure of a vector
bundle, which we postponed previously. A vector bundle
has a collection of coordinate charts (Ui , <Pi)' where Ui is
a neighborhood of B, the base space, and <Pi is a map from
the collection of vector spaces attached to the points of Ui'
written 1T- 1 (Ui), to the Cartesian product Ui X V, where
Vis the vector space of the bundle. The map <Pi further sat­
isfies the condition that it map the vector space attached at
point x to xX V; it does not somehow scramble up the at­
tachment of vector spaces to points.

The collection of charts covers the base space, and,
where the neighborhoods Ui overlap, we have bundle
transition functions defined. The neighborhoods Ui are
not necessarily the same neighborhoods used to define the
manifold structure of the base space, and the bundle
transition functions are different from the manifold
transition functions. The transition functions are once
again defined as compositions of the charts and chart
inverses, and the charts must be defined so that every
transition function has the form (x, v) --+ (x, g(v)),

Physical Coordinates

Computational Coordinates

Fig. 4: Streamline computation typically requires integration of a vector field across grid boundaries.

580 COMPUTERS IN PHYSICS, VOL. 6, NO.6, NOV/DEC 1992

D
ow

nloaded from
 http://pubs.aip.org/aip/cip/article-pdf/6/6/576/11500535/576_1_online.pdf

where x E B, v E Vand g is a general linear transformation.
In terms of our carpet-gluing analogy, we glue backing to
backing and fiber to fiber, but in the process we can
stretch, rotate, or twist the fibers. This added twist in the
vector spaces is the essential topological feature of vector
bundles.

Although not necessary, it is usually convenient to
use the coordinate-chart neighborhoods of the manifold to
define the charts for the bundle. In particular, it will be
convenient for the class library we develop in the next sec­
tion, so we assume this for the remainder of the article. We
can then compose the manifold charts with the bundle
charts, and think of the transition functions as mapping
the coordinates of the base point and the components of
the vector in one chart to the coordinates and components
in another chart, twist included.

A section of a vector bundle is formally a smooth
map from the base space B to the total space E. It picks a
value in the vector space attached to each point of the base
space. In terms of the charts, a section determines specific
component values in each chart.

Sections support vector algebra. We can add two
sections of the same bundle by adding the vectors at each
point. Similarly, if we have a smooth real-valued function
defined on the base space, we can then multiply a section
by the function by multiplying the vector value of the
section by the scalar value of the function at each point.
Multiplication of a section by a scalar function is very sim­
ilar to multiplication of a simple vector by a simple scalar,
and vector algebra thus essentially propagates from the
vector space to the bundle.

In addition to vector algebra, sections support a
number of other operations that are useful in computation
and visualization. They support calculus; fields can be
differentiated and integrated. They support a variety of
composition and decomposition operations; fields can be
sliced or glued together. Vector bundles are closed under
these operations. Both the operands and the results are
sections of vector bundles. Unfortunately, the description
of these operations requires more mathematical structure
than we have room to describe in this article.

The section of a vector bundle is the top level in the
natural hierarchy of structure in the vector-bundle data
model. We will now translate this mathematical hierarchy
into an object-oriented class hierarchy.

Vector-Bundle Class Hierarchy
The mathematical hierarchy described in the preceding
section can be considered a prescription for a library of ab­
stract classes. In this article, we cannot give a detailed spe­
cification for all the classes. Instead, we will describe
simplified specifications for the central classes in enough
detail to support the later discussion of specific representa­
tions and visualization functions. We will start with the
most general class-point set-and proceed to the more
specific. Our specifications will be written using the Eiffel
programming language.2

Point set. As described above, a point set is a set of
points, and points are named, but otherwise featureless,
objects. We will assume that this set is countable so that
we can index the set-in other words, name the points
with integers. This assumption holds for a wide range of

applications, and it simplifies the presentation. More
general assumptions require more complex specifications
and exceed the space available in this article.

An indexed set is very convenient for programming.
It allows us to use the name of the point as an index into
arrays, lists, or other data structures. This scheme is quite
general: points are identified with indices or references,
while functions of points, for instance coordinates, are
identified with the value at the location indicated by the
index or reference. This scheme makes class PT _ SET
quite simple:

deferred class P'CSET
-- abstract indexed set of points

feature
pect: INTEGER;
-- point count, the number of points in the set
pUtr: PT_ITR is deferred end;
-- returns an iterator for the set.

end; -- class PT_SET

Class PT _SET is abstract, "deferred" in Eiffel,
because we have not committed to any mechanism for
storing or otherwise representing the members of the set.
Nor have we specified a complete set of operations for
PT _SET-just those we need later. In particular, we have
not specified any mechanism for inserting or deleting
members, or for forming subsets.

The class PT _ITR is an abstract iterator for the
PT _SET. Iterators are a generalization of the FOR loop
available in most procedural languages. Once initialized,
an iterator will return an element of a collection each time
it is called, until all items of the collection have been
returned. Iterators hide the representation of a collection,
its internal structure and indexing methods, while
allowing a client to access each part. Most object-oriented
languages do not provide a specific language mechanism
for iterators; they are constructed as ordinary classes. To
iterate over our collection of points we have:

deferred class PT _ITR
-- abstract iterator over point sets

feature
domain: PT _SET;
-- the point set to iterate over
point: INTEGER;
-- the current point
next is deferred end;
-- sets point to the next member of the domain
-- also sets done if iteration complete
done: BOOLEAN;
-- true if iteration complete
reset is deferred end;
-- resets iteration to first member of domain

end; -- class PT _ITR

The operations next and reset are deferred because we
cannot implement them without knowing the representa­
tion of PT _SET.

Together, PT _SET and PT _ITR provide a simple
abstraction: point sets we can iterate over.

Topological space. A topological space is a point set
with a notion of neighborhoods, or connectivity. Our
topological space class TSPACE inherits PT _SET and
adds some neighborhood features. We proceed in the same

COMPUTERS IN PHYSICS, VOL. 6, NO.6, NOV/DEC 1992 581

D
ow

nloaded from
 http://pubs.aip.org/aip/cip/article-pdf/6/6/576/11500535/576_1_online.pdf

spirit as PT _SET; we specify an abstract class TSPACE
that provides the essential operations, without committing
to any representation. A suitable specification IS:

deferred class TSPACE
-- abstract topological space

inherit
PT_SET

feature
nbrhd_ct: INTEGER;
-- neighborhood count, the number of neighborhoods
-- specified
nbrhd_itr: NBRHD_ITR is deferred end;
-- returns a iterator for the neighborhoods in the topology.

end; -- class TSPACE

The class NBRHD _ ITR is an abstract iterator for
the neighborhoods ofTSPACE. It has a specification very
similar to PT _ITR, except that feature domain is of type
TSPACE, and feature point is replaced by a feature nbrhd
which returns an array of integers, each a point in the
neighborhood.

TSPACE and NBRHD_ITR extend the abstraction
defined by PT _SET and PT _ITR to provide neighbor­
hoods we can iterate over.

Manifold. A manifold is a topological space with
coordinate patches and coordinate transformations. Class
MANIFOLD inherits TSPACE and adds coordinate
features:

deferred class MANIFOLD
-- abstract d dimensional manifold

inherit
TSPACE

feature
d: INTEGER;
-- the dimension of the manifold
charcct: INTEGER;
-- chart count, the number of charts specified
chart(c: INTEGER): MCHART is deferred end;
-- returns the cth chart
xfcn(cl, c2: INTEGER): MXFCN is deferred end;
-- returns transition function from chart c 1 to chart c2

end; -- class MANIFOLD

Again, operations chart and xfcn are deferred
because we have not committed ourselves as to how the
charts and transition functions of the manifold are
represented. We have, however, specified how the infor­
mation in individual charts and transition functions is
accessed, namely through the classes MCHART and
MXFCN, respectively:

deferred class MCHART
-- manifold coordinate patch

feature
coord(p:INTEGER): ARRA Y[REAL] is deferred end;
-- coordinates of point p
coordinv(r: ARRA Y[REAL]): INTEGER is deferred end;
-- returns point with coordinates r
in_range(r: ARRA Y[REAL]): BOOLEAN is deferred end;
-- true if coordinates r in range of chart,
-- sets adjoining if false
adjoining: INTEGER;
-- index of adjoining chart containing r if in_range false
-- returns 0 if no adjoining chart

end; -- class MCHART

582 COMPUTERS IN PHYSICS, VOL. 6, NO.6, NOV/DEC 1992

deferred class MXFCN
-- manifold transition function (coordinate transformation)

feature
domain, range: MCHART;
-- domain and range of coordinate transformation
value(r: ARRA Y[REAL]): ARRA Y[REAL] is deferred;
-- returns coordinate in range corresponding to coordinate r
-- in domain

end; -- class MXFCN;

The MCHART feature adjoining provides an index
for an adjoining chart, similar to the annotations usually
provided in the margins of each map in a geographic atlas.
The various features of MCHART and MXFCN are
deferred because we have made no decision about how the
coordinates are represented internally--only how they are
accessed.

Classes MANIFOLD, MCHART and MXFCN
extend the abstractions defined by TSPACE and
NBRHD _ ITR to provide coordinate patches and trans­
formations between patches.

Vector bundle. A vector bundle has a total space, a
base space, a projection function, coordinate patches, and
transition functions. We will identify the class VBDL with
the total space and, by analogy with common mathemat­
ical practice, we will consider the projection function and
other structures to be features of this class. The class
VBDL differs from the mathematical structure in one
important respect: we do not represent the points of the to­
tal space. Representing all points of the total space would
not serve any useful purpose-we are only interested in
representing the points in a cross section of the total space.
Class VBDL thus becomes a repository for information
we want to share among several instances of class VSEC
(see below), and a factory for allocating the charts used
by VSEC to store and access the points in a cross section.

deferred class VBDL
-- abstract vector bundle

feature
db, df, dt, d: INTEGER;
-- the base, fiber, total and bundle dimension
base: MANIFOLD
-- the base space
chart_ct: INTEGER;
-- chart count, the number of charts specified
chart(c: INTEGER): VCHART is deferred end;
-- allocates and returns a copy of the cth chart
xfcn(cl, c2: INTEGER): VXFCN is deferred end;
-- returns transition function from chart c 1 to chart c2

end; -- class VBDL

Classes VCHART and VXFCN have specifications
similar to MCHART and MXFCN, respectively, but have
different implementations, according to the mathematical
structure discussed above. The assumption made pre­
viously, that the chart neighborhoods were the same for
the base space and the bundle, makes it convenient to have
VCHART return only the vector-space components, and
similarly for VXFCN. The base-space coordinates can be
obtained from the manifold charts. Both VCHART and
VXFCN are deferred because no representation has been
chosen.

Section of a vector bundle. Class VSEC is the data
type of central interest. A section of a vector bundle is to-

D
ow

nloaded from
 http://pubs.aip.org/aip/cip/article-pdf/6/6/576/11500535/576_1_online.pdf

pologically equivalent to the base space, which means that
as a topological space, and hence as a point set, any section
is identical to the base space. In particular, this means that
the point and neighborhood iterators for the base space
can be used for any section. As a result, class VSEC is very
similar to class MANIFOLD, except that the charts
return components for the vector space, that is, the
dependent variables of the field.

deferred class VSEC
-- abstract section of a vector bundle

feature
domain: MANIFOLD;
-- the base space, obtained from the bundle
range: VBDL;
-- the bundle to which the section belongs
chart(c: INTEGER): VCHART is deferred end;
-- returns the cth chart
scaleby(a: SFCN): VSEC;
-- multiplies the section by the scalar function a;
add(other: VSEC): VSEC
-- adds the current section to other and returns the result.

end; -- class VSEC

When it is created, VSEC must define the values of
the dependent variables, but this is a representation­
dependent issue, so an operation chart is deferred. The
class SFCN models scalar functions defined on the same
base space, but we will not need to specify it further.

As specified, class VSEC allows us to access the data
in a section of a vector bundle, and to scale a section or
add two sections. Many other operations could be
specified, most notably the operations of calculus, but
space limitations preclude a more complete specification
in this article.

Representation
The classes described above are abstract. A number of
design decisions must be made to produce representations
of these classes. The various data structures commonly
used in scientific programming correspond to different
choices for these decisions.

There are three primary representation issues: (i) the
dimension of the base and fiber spaces; (ii) the representa­
tion of connectivity information in class TSPACE; and
(iii) the representation for class CHART and the chart
operations in classes VBDL and VSEC. As an example,
we will describe how these issues are resolved in typical fi­
nite-difference applications.

In the finite-difference method, the base space is
usually represented by one or more regular grids called
blocks. We will discuss the single-block case first, then
indicate the extension to multiple blocks.

The grid is regular in the sense tha,t each interior node
has the same number of nearest neighbors, namely 2d,
where d is the dimension of the base space. This grid can
be stored in an array with d indices.

It is well known that multiple-index arrays can also
be indexed with a single index that just gives the offset
from the base of the array. Each point in the grid is thus
uniquely associated with an offset and the PT _ ITR class
can be implemented using this fact; it just increments
through all the offsets in the array.

New Methods
of Celestial
Mechanics

Henri Poincare (1854--1912)

CoMPlKI1l YOUR PHYSICS AND MAlHEMATIcs LIBRARY
WnH THIS CLASSIC WORK

.''!'be grand event of the year" announced the Royal Astronomical Society of
London in 1899 upon publication of the last mlume of l1Jincare's classic worlt
Pushing beyond celestial mechani~ w Methodes nouvelles de kl Mihmiqlle

ce1este established basic concepts of modem chaos and dynamical systems the­

ory and placed l1Jincare among the most insightful pioneers of science.

EXPERIENCE POINCARE'S CREATIVITY WITH THE

FIRsr ACCURATE ENGUSH 'fRANSLATION

ATP makes l1Jincare's text more acressible by extensil'ely revising, updating, and

resetting the translation commissioned by NASA in the 19t10s. With careful at­

tention to both the formulas and the wording, this new edition captures the true

spirit of the \\Urk, which has been lost in previous distillations and excerpts.

1b provide modem readers with a fuU appreciation of this revolutionary work,

AlP's new edition features more than 100 pages of introduction by Daniel L.

Goroff of Harvard University. TIlls in-depth prologue guides you through fuin­

care's early life and woIi<, provides engaging expositions on major topics in

Les Methodes nouvelles, and reflects on Fbincare's endudng legacy.

REDISCOVER TIlE FOUNDATIONS OF CHAOS
AND MODERN DYNAMICAL SYSIEMS THEoRY

fuincare developed new tools-including canonical transformations, asymp­

totic series exp1U1sions, periodic solutiOns, and integral invadants-Ihat

are central to a wide range of mathematical disciplines today. Through les

Metbodes nouvelles Fbincare emerges not only as the founder of chaos and

dynanJical systems theory, but also as an initiator of ergodic theory, topologi­

cal dynamics. symplectic geometry, and the many applications these fields
have throughout the sciences

NEW MmlODS OF CELESI1AL MECHANICS

With a new introduction by Daniel L. Goroff, Harvard University

\Qlume 13. History of Modem Physics and Astronomy

November 1992, 1600 pages (3 volumes), illustrated

ISBN 1-56396-117-2, cloth, $19)00

Special Introductory Price: $150.00

(Offer good through January 1, 1993)

To order call1-800-488-BOOK
or mail check, MOo or PO (include $2.75 for shippping) to:

AIVIERICAN American Institute of Physics do AIDC

INST11UTE 64 Depot Road
2!PHYSICS Colchester, vr 05446

COMPUTERS IN PHYSICS, VOL. 6, NO.6, NOV/DEC 1992 583

D
ow

nloaded from
 http://pubs.aip.org/aip/cip/article-pdf/6/6/576/11500535/576_1_online.pdf

The d indices, or floating-point conversions of them,
usually define the "computational" coordinates for the
base space. The computational coordinate system is a
coordinate chart for the base space, and the MCHART
class calculates the coordinate indices from the point
offset.

The "physical" coordinates map the points of the
grid into the real, physical space of the application. The
physical coordinates are not necessarily coordinate charts
as defined for manifolds above. For instance, the
computational space may be two-dimensional and the
physical space may be three-dimensional. For this reason,
we prefer to think of the physical coordinates as a vector
field on the manifold, and represent this field using class
VSEC.

The d index array representation has the further
desirable feature that neighboring points can be found by
calculation: if a point has indices I, J, K ... , then its
neighbors are at I ± 1, J ± 1, K ± 1..., etc. Stated in our
manifold language, the neighborhoods can be calculated
from the charts. The NBRHD _ ITR class can thus be
implemented in terms of the charts.

Finally, the VCHART class stores the section values
in multiple index arrays, indexed by the point offset or the
manifold coordinates.

Multiblock finite difference is essentially the same as
single block, except there are multiple grids, each with its
own computational coordinates and hence multiple
coordinate charts. As described previously, coordinate
transformations between the computational coordinates
are maintained, and class MXFCN can use them. Class
VXFCN is implemented using class MXFCN and the
numerical Jacobian of the coordinate transformations. In
some cases, explicit interblock connectivity information
may be stored as well, and NBRHD _ ITR can use this in­
formation.

Visualization
We return to the streamline example discussed earlier, and
show how a representation-independent visualization
algorithm can be constructed using the interface defined
by the abstract classes. The computation of the streamline
by integration of the vector field can be accomplished by
the following algorithm:

streamline(vfld, pfld:YSEC, pO, max_ct: INTEGER) is
-- computes streamline of vfld starting at pO
-- and maps it into the physical coordinates
-- given by pfld defined on same base;
-- stops after max_ct points have been drawn
local

do

rl, r2, vI, v2, xl, x2: ARRA Y[REALJ;
pI, p2, c, cadj, ct: INTEGER;
base: MANIFOLD;

base := vfld.domain;
pI := pO;
from

ct:= 1;
c:= 1;
-- assume pO in first chart for simplicity
rl := base.chart(c).coord(pI);
-- get coordinates of point
vI := vfld.chart(c).coord(pI);
-- get value of field
r2 := r1 + integrate(vl);

584 COMPUTERS IN PHYSICS, VOL. 6, NO.6, NOV IDEC 1992

-- find coordinates of the next
-- point on the streamline
-- using one of the calculus operations
-- we haven't specified

until
c = Oorct > max3t

loop
if base.chart(c).in_range(r2) then

-- r2 was in range of current chart
p2 := base.chart(c).coordinv(r2);
-- find point with coordinates r2
xl := pfld.chart(c).coord(pl);
x2 := pfld.chart(c).coord(p2);
draw _line(x I, x2);
-- draw streamline in physical space
ct:= ct + 1;
pI := p2;
-- move to leading point
rl := base.chart(c).coord(pI);
vI := vfld.chart(c).coord(pI);
r2 := r1 + integrate(vl);
-- find the next point on the streamline

else
-- r2 lies outside range of current chart
-- move to the adjoining chart and try again
cadj := base.chart(c).adjoining;
vI := vfld. xfcn(c, cadj).value(rl, vI);
rl := base. xfcn(c, cadj).value(rl);
r2 := rl + integrate(vl);
c :=cadj;

end;
end;

end;

The algorithm starts at the given initial point, and
integrates along the streamline until it runs off the current
chart. It then invokes a transition function to the
adjoining chart, and continues. The process is repeated
until there is no adjoining chart, or the requested number
of points have been drawn. This algorithm is entirely
independent of the representation chosen for the various
classes, and it is optimal in the sense that it makes full use
of the geometric structure of the data.

capturing Abstractions
We have described the mathematical structure of vector
bundles, and shown how they can be used to define a col­
lection of abstract classes useful in scientific visualization.
The particular class specifications we have given- are at
best a sketch of the full specifications required for
practical implementation, but they do demonstrate that
the object-oriented paradigm provides a number of
mechanisms for capturing scientific abstractions directly
in code. It is our opinion that the object-oriented approach
will substantially increase the level of abstraction in future
scientific codes.

Acknowledgment
This work was supported in part by the United States
Department of Energy under contract no. DE-AC04-
76DPOO789. •

References

1. D. M. BUller and M. H. Pendley, Compo Phys. 3 (5) , 45 (1989).
2. B. Meyer, Eiffel: 771e Lallguage (Prenlice-Hall, Y. 1991).

D
ow

nloaded from
 http://pubs.aip.org/aip/cip/article-pdf/6/6/576/11500535/576_1_online.pdf

