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Vector-Bundle Classes 
Form Powerful Tool for 
Scientific Visualization 
David M. Butler and Steve Bryson 

Vector bundle theory provides an abstraction general enough to 
capture the common features of many scientific data formats 

bject-oriented programming promises to im
prove programmer productivity by making 
software easier to reuse. Inheritance is often 
seen as the key to reuse, but it is essential to 
realize that inheritance leads to reuse only 
when the proper abstractions are known in 

advance. Inheritance is deductive. It proceeds from the 
general to the specific; the more general parent class must 
already exist for the child to inherit it. Unfortunately, 
software developers are usually inductive. They discover 
the general by programming several special cases. In this 
inductive approach, the object-oriented paradigm can 
actually lead to more work, not less, as existing code must 
be rewritten to "reuse" the abstractions as they are 
discovered. 

In spite of the common experience we have just 
described, it is precisely because of the deductive nature of 
inheritance that object-oriented programming is well 
suited to the scientific domain. For at least four centuries, 
scientists have been developing and expressing knowledge 
in terms of mathematical abstractions. The proper 
abstractions for scientific data are known. We just have to 
use them. The first step in developing useful class libraries 
is thus to look at the mathematical formalism that science 
uses, rather than trying to generalize existing data 
formats. Abstract classes that capture the mathematical 
formalism form the parent classes from which format
specific representations can be derived. 

Vector-bundle theory is a mathematical formalism 
that is general enough to provide a common ancestor for 
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very many application-specific data formats. The vector
bundle data model uses the formalism to define several 
abstract data types, and then treats the various data 
formats and mesh types commonly found in scientific data 
processing as representations of these abstract data types. 
Visualization algorithms described and implemented in 
terms of the abstract data types can be used with any of the 
various specific representations. 

The main ideas of the vector-bundle data model were 
introduced in a previous paper. I In this article, we focus 
on the mathematical structure of vector bundles and 
describe the object-oriented implementation of the model. 
Specifically, in the following section we describe the 
mathematical structure. Next, we describe an abstract 
class hierarchy that models vector bundles, and give an ex
ample of how the classes can be represented. Finally, we 
show how they can be used to construct visualization 
algorithms. [For more on object-oriented programming, 
see the three feature articles in the SeplOct 1992 issue of 
Computers in Physics.-Ed.] 

Vector-Bundle Formalism 
A vector bundle is a structure that formalizes the idea of 
having data at every point of some space, called the base 
space. The intuition is that the dataset at a point is an ele
ment of a vector space, while the base space containing the 
points may have a complicated structure. Vector bundles 
are already widely used in physics, in such topics as gauge 
theories in particle physics and in general relativity. Our 
objective in this article is to describe how this mathemat
ical formalism is also useful in visualization. To do this, we 
first need to define some of the language of vector bundles. 

Abstractly, a vector bundle is a collection (E, B, V, 
'IT), where E is called the total space, B is the base space, V 
is the vector space at each point of the base space, and 'IT is 
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a projection that maps a point in E to a point in the base 
space B. Instead of (E, B, V, 1T), one usually just writes E 
for short. The vector bundle E has additional structure, 
which we will describe below, but first a particular 
example will help clarify these terms. 

Consider the velocity field of a fluid flowing through 
some volume. The base space B is the volume containing 
the fluid. The set of all possible velocities of the fluid at a 
point is a vector space called the tangent space. In this 
case, V is the tangent space of a point in the volume B. E is 
the union of the tangent spaces over all the points in the 
volume. This union intuitively "bundles" the vector 
spaces together, hence the name vector bundle. The 
particular vector field that describes the actual velocity of 
the fluid is a function that assigns a vector v(x) E V to each 
point x E B in the volume. In vector-bundle language, the 
vector field v (x) for all x E B is known as a section of the 
vector bundle E. The projection 1T is the function that 
assigns to each vector v(x) the location x at which that 
vector is located. The dimension of the vector bundle is de
fined as the dimension of the vector space V. 

In this example, V is the tangent space of B, and so 
has the same dimension as B. But in general, V can be any 
set with the structure of a vector space, and its dimension 
is independent of B. Acceptable vector spaces include the 
real n-dimensional vectors and tensors, as well as their 
complex and quatemionic generalizations. The definition 
of a vector bundle and its various operations applies for 
any vector space V. This is one of the reasons why an ab
straction based on vector bundles is useful for many 
applications in scientific visualization. 

The structure of manifolds. In scientific visualization, 
the base spaces of typical vector bundles are either 
physical objects or the space surrounding such objects. 
These spaces can have complicated structure; practical 
problems demand base spaces with holes or disjoint pieces. 
The appropriate mathematical structure for describing 
these base spaces is called a manifold. 

Informally, a manifold is a space that is constructed 
by mathematically gluing together patches of Euclidean 
space. The procedure is analogous to using papier-mache 
to construct a mask, with holes for the eyes and mouth. 
One cuts many rectangular strips of paper, then overlaps 
and glues them together into the desired shape, leaving 
holes as needed. The mathematical process is similar, 
using n-dimensional Euclidean space instead of two
dimensional paper, and coordinate transformations in
stead of glue. Spaces with holes, disjoint pieces, and 
certain other complicated structures can be constructed in 
this way. 

More formally, an n-dimensional manifold consists 
of two objects: a topological space M, and a collection of 
coordinate charts (Ui , ¢i), where Ui is a neighborhood of 
M, and ¢i is a one-to-one map from Ui to a neighborhood 
of n-dimensional Euclidean space. By one-to-one, we 
mean that ¢i maps each point on the neighborhood Ui to a 
point in the Euclidean neighborhood so that two different 
points in Ui never map to the same point in the Euclidean 
space. Where the Ui's overlap, coordinate transforma
tions are defined that take the coordinates in one chart and 
transform them to the coordinates in the other chart. Say 
that U I and U2 are two intersecting coordinate neighbor
hoods. If ¢I and ¢2 are the coordinate maps, then on the 
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overlap the compositIOn of <P2 with the inverse of <PI' 
written <P20<PI - I , will take a coordinate in U/s chart and 
give the coordinates of the same point on the manifold in 
U2's chart. The coordinate transformation defined by 
<P2°<PI· I is referred to as a transition function from chart 1 
to chart 2. Similarly, <Pl 0<P2·1 is a transition function from 
chart 2 to chart 1. Note that two coordinates related by a 
transition function both refer to a single point in the 
manifold. In this sense, they have been glued together. 

This description of manifolds as local charts that are 

numerically advantageous to use a particular coordinate 
system, even though it is singular at certain points. For in
stance, spherical coordinates for three-dimensional Eu
clidean space are not one-to-one along the z-axis. This 
singularity is an artifact of the coordinates; Euclidean 
space is not in any way peculiar along the z-axis. Near 
such singularities, numerical roundoff errors can intro
duce difficulties into computations. Using the manifold 
concept, one can provide two different systems of 
spherical coordinates, with the same origin but the z axes 

'I 'I' R2 

~ , 

cJ»1 • 

~ x 

., .+.-' 1 
transition 
functions 

1+.·+,-' 
II' 

R2 

.... , 
x 

Fig. 1: Two coordinate charts are required to cover the sphere with one-to-one continuous coordinates. 

pieced together is valuable for several reasons. The most 
fundamental reason is that many topological spaces 
cannot be given coordinates that cover the whole space. 

A typical example is the two-dimensional surface of a 
sphere like the Earth. Any assignment of pairs of 
coordinates, such as longitude and latitude, will necessar
ily have a place where the coordinates are not well defined. 
For instance, longitude is not well defined at the Earth's 
north and south poles. In order to give good coordinates to 
every point of the sphere, it is necessary to define at least 
two coordinate charts (UI , <PI) and (U2, <P2)' There are 
many ways of defining these charts, but we need only the 
general picture, as shown in Fig. 1. Take UI to be the up
per 2/3 of the sphere, and take U2 to be the lower 2/3. The 
coordinate functions map each of these neighborhoods to 
some portion of R 2. These coordinate neighborhoods 
overlap in the middle third of the sphere. Any point on the 
sphere can be given two coordinates by use of these charts. 

There are several pragmatic reasons for introducing 
the concept of manifold into numerical calculations, even 
though the topology of common problems can usually be 
handled by other means. As an example, it may be 
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at right angles to one another. Then the choice of which 
coordinate system to use can be determined by the angle of 
the desired point with the z-axis. While the example 
discussed here is rather simple, a similar problem arises in 
numerical relativity problems, where purely coordinate 
singularities can cause calculations to fail completely. 

As another example of manifolds in numerical 
computation, multiple overlapping computational grids 
are often used in fluid-dynamics calculations. For in
stance, in Fig. 2 the space around the airplane is covered 
by multiple grids. Each point of the space filled by the grid 
has computational coordinates, typically defined by 
floating-point conversions of the indices of the array that 
stores the grid. These computational coordinates are 
precisely analogous to coordinate charts of a manifold. 
Where the numerical grids overlap, one often needs to 
change from one set of computational coordinates to 
another. This is precisely what is done by the transition 
functions of a manifold. 

The computation of the streamlines of a flow, as 
shown in Fig. 3, is a common example of how the 
transition functions may enter a calculation. The fluid-
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Fig. 2: Multiple overlapping grids cover space around an airplane for a fluid-dynamics computation. 

velocity vector is defined at each point of each grid. 
Computing a streamline of the flow is the same as 
integrating this vector field given an initial point in the 
flow. This process is sketched in Fig. 4. These streamlines 
will typically cross grid boundaries. Historically, the 
integration has taken place in physical, not computa
tional, coordinates. Real-time visualization of these 
streamlines, such as that in the virtual wind tunnel at 

NASA Ames, requires that the integration take place in 
computational coordinates. Then, as a streamline crosses 
from one grid to another, the computational coordinates 
in the previous grid must be converted into the computa
tional coordinates of the new grid. This could be done by 
converting the old computational coordinates into phys
ical coordinates and then into the new computational 
coordinates, but this tactic impedes real-time perf or-

Fig. 3: Visualization reveals streamline in the flow around an airplane. 

COMPUTERS IN PHYSICS, VOL. 6, NO.6, NOV/DEC 1992 579 

D
ow

nloaded from
 http://pubs.aip.org/aip/cip/article-pdf/6/6/576/11500535/576_1_online.pdf



mance. The concept of the transition function of a 
manifold can be implemented as a look-up table, which 
takes the old computational coordinates and provides the 
new ones. 

Before leaving the subject of manifolds, we will 
return to the formal definition. There is a natural 
hierarchy of structure in the definition of a manifold. 
Manifolds are topological spaces with coordinates. Topo
logical spaces are point sets with neighborhoods or 
connectivity between the points defined. Finally, one is 
left with point sets, which are just sets of named, but oth
erwise featureless, objects. This mathematical hierarchy 
provides a detailed design guide for the object-oriented 
class hierarchy we will develop below. 

The structure o/vector bundles. In the same way that 
manifolds are constructed by gluing together patches of 
Euclidean space, vector bundles are constructed by gluing 
together vector-valued functions defined on patches of 
Euclidean space. If manifold construction is analogous to 
papier-mache, then bundle construction is analogous to 
"carpet" -mache, with the fibers in the carpet thought of as 
(one-dimensional) vector spaces. "Carpet" -mache re
quires a fancier kind of glue, one that glues carpet backing 
to carpet backing and fiber to fiber. Without this special 
glue, we do not get a curved piece of carpet as a result of 

the gluing; we just get a matted mess. Similarly, vector 
bundles require more complicated transition functions 
that transform the coordinates of the base space and 
separately transform the components of the vector space 
at each point. 

We now describe the remaining structure of a vector 
bundle, which we postponed previously. A vector bundle 
has a collection of coordinate charts (Ui , <Pi)' where Ui is 
a neighborhood of B, the base space, and <Pi is a map from 
the collection of vector spaces attached to the points of Ui' 
written 1T- 1 (Ui ), to the Cartesian product Ui X V, where 
Vis the vector space of the bundle. The map <Pi further sat
isfies the condition that it map the vector space attached at 
point x to xX V; it does not somehow scramble up the at
tachment of vector spaces to points. 

The collection of charts covers the base space, and, 
where the neighborhoods Ui overlap, we have bundle 
transition functions defined. The neighborhoods Ui are 
not necessarily the same neighborhoods used to define the 
manifold structure of the base space, and the bundle 
transition functions are different from the manifold 
transition functions. The transition functions are once 
again defined as compositions of the charts and chart 
inverses, and the charts must be defined so that every 
transition function has the form (x, v) --+ (x, g(v)), 

Physical Coordinates 

Computational Coordinates 

Fig. 4: Streamline computation typically requires integration of a vector field across grid boundaries. 
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where x E B, v E Vand g is a general linear transformation. 
In terms of our carpet-gluing analogy, we glue backing to 
backing and fiber to fiber, but in the process we can 
stretch, rotate, or twist the fibers. This added twist in the 
vector spaces is the essential topological feature of vector 
bundles. 

Although not necessary, it is usually convenient to 
use the coordinate-chart neighborhoods of the manifold to 
define the charts for the bundle. In particular, it will be 
convenient for the class library we develop in the next sec
tion, so we assume this for the remainder of the article. We 
can then compose the manifold charts with the bundle 
charts, and think of the transition functions as mapping 
the coordinates of the base point and the components of 
the vector in one chart to the coordinates and components 
in another chart, twist included. 

A section of a vector bundle is formally a smooth 
map from the base space B to the total space E. It picks a 
value in the vector space attached to each point of the base 
space. In terms of the charts, a section determines specific 
component values in each chart. 

Sections support vector algebra. We can add two 
sections of the same bundle by adding the vectors at each 
point. Similarly, if we have a smooth real-valued function 
defined on the base space, we can then multiply a section 
by the function by multiplying the vector value of the 
section by the scalar value of the function at each point. 
Multiplication of a section by a scalar function is very sim
ilar to multiplication of a simple vector by a simple scalar, 
and vector algebra thus essentially propagates from the 
vector space to the bundle. 

In addition to vector algebra, sections support a 
number of other operations that are useful in computation 
and visualization. They support calculus; fields can be 
differentiated and integrated. They support a variety of 
composition and decomposition operations; fields can be 
sliced or glued together. Vector bundles are closed under 
these operations. Both the operands and the results are 
sections of vector bundles. Unfortunately, the description 
of these operations requires more mathematical structure 
than we have room to describe in this article. 

The section of a vector bundle is the top level in the 
natural hierarchy of structure in the vector-bundle data 
model. We will now translate this mathematical hierarchy 
into an object-oriented class hierarchy. 

Vector-Bundle Class Hierarchy 
The mathematical hierarchy described in the preceding 
section can be considered a prescription for a library of ab
stract classes. In this article, we cannot give a detailed spe
cification for all the classes. Instead, we will describe 
simplified specifications for the central classes in enough 
detail to support the later discussion of specific representa
tions and visualization functions. We will start with the 
most general class-point set-and proceed to the more 
specific. Our specifications will be written using the Eiffel 
programming language.2 

Point set. As described above, a point set is a set of 
points, and points are named, but otherwise featureless, 
objects. We will assume that this set is countable so that 
we can index the set-in other words, name the points 
with integers. This assumption holds for a wide range of 

applications, and it simplifies the presentation. More 
general assumptions require more complex specifications 
and exceed the space available in this article. 

An indexed set is very convenient for programming. 
It allows us to use the name of the point as an index into 
arrays, lists, or other data structures. This scheme is quite 
general: points are identified with indices or references, 
while functions of points, for instance coordinates, are 
identified with the value at the location indicated by the 
index or reference. This scheme makes class PT _ SET 
quite simple: 

deferred class P'CSET 
-- abstract indexed set of points 

feature 
pect: INTEGER; 
-- point count, the number of points in the set 
pUtr: PT_ITR is deferred end; 
-- returns an iterator for the set. 

end; -- class PT_SET 

Class PT _SET is abstract, "deferred" in Eiffel, 
because we have not committed to any mechanism for 
storing or otherwise representing the members of the set. 
Nor have we specified a complete set of operations for 
PT _SET-just those we need later. In particular, we have 
not specified any mechanism for inserting or deleting 
members, or for forming subsets. 

The class PT _ITR is an abstract iterator for the 
PT _SET. Iterators are a generalization of the FOR loop 
available in most procedural languages. Once initialized, 
an iterator will return an element of a collection each time 
it is called, until all items of the collection have been 
returned. Iterators hide the representation of a collection, 
its internal structure and indexing methods, while 
allowing a client to access each part. Most object-oriented 
languages do not provide a specific language mechanism 
for iterators; they are constructed as ordinary classes. To 
iterate over our collection of points we have: 

deferred class PT _ITR 
-- abstract iterator over point sets 

feature 
domain: PT _SET; 
-- the point set to iterate over 
point: INTEGER; 
-- the current point 
next is deferred end; 
-- sets point to the next member of the domain 
-- also sets done if iteration complete 
done: BOOLEAN; 
-- true if iteration complete 
reset is deferred end; 
-- resets iteration to first member of domain 

end; -- class PT _ITR 

The operations next and reset are deferred because we 
cannot implement them without knowing the representa
tion of PT _SET. 

Together, PT _SET and PT _ITR provide a simple 
abstraction: point sets we can iterate over. 

Topological space. A topological space is a point set 
with a notion of neighborhoods, or connectivity. Our 
topological space class TSPACE inherits PT _SET and 
adds some neighborhood features. We proceed in the same 
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spirit as PT _SET; we specify an abstract class TSPACE 
that provides the essential operations, without committing 
to any representation. A suitable specification IS: 

deferred class TSPACE 
-- abstract topological space 

inherit 
PT_SET 

feature 
nbrhd_ct: INTEGER; 
-- neighborhood count, the number of neighborhoods 
-- specified 
nbrhd_itr: NBRHD_ITR is deferred end; 
-- returns a iterator for the neighborhoods in the topology. 

end; -- class TSPACE 

The class NBRHD _ ITR is an abstract iterator for 
the neighborhoods ofTSPACE. It has a specification very 
similar to PT _ITR, except that feature domain is of type 
TSPACE, and feature point is replaced by a feature nbrhd 
which returns an array of integers, each a point in the 
neighborhood. 

TSPACE and NBRHD_ITR extend the abstraction 
defined by PT _SET and PT _ITR to provide neighbor
hoods we can iterate over. 

Manifold. A manifold is a topological space with 
coordinate patches and coordinate transformations. Class 
MANIFOLD inherits TSPACE and adds coordinate 
features: 

deferred class MANIFOLD 
-- abstract d dimensional manifold 

inherit 
TSPACE 

feature 
d: INTEGER; 
-- the dimension of the manifold 
charcct: INTEGER; 
-- chart count, the number of charts specified 
chart(c: INTEGER): MCHART is deferred end; 
-- returns the cth chart 
xfcn(cl, c2: INTEGER): MXFCN is deferred end; 
-- returns transition function from chart c 1 to chart c2 

end; -- class MANIFOLD 

Again, operations chart and xfcn are deferred 
because we have not committed ourselves as to how the 
charts and transition functions of the manifold are 
represented. We have, however, specified how the infor
mation in individual charts and transition functions is 
accessed, namely through the classes MCHART and 
MXFCN, respectively: 

deferred class MCHART 
-- manifold coordinate patch 

feature 
coord(p:INTEGER): ARRA Y[REAL] is deferred end; 
-- coordinates of point p 
coordinv(r: ARRA Y[REAL]): INTEGER is deferred end; 
-- returns point with coordinates r 
in_range(r: ARRA Y[REAL]): BOOLEAN is deferred end; 
-- true if coordinates r in range of chart, 
-- sets adjoining if false 
adjoining: INTEGER; 
-- index of adjoining chart containing r if in_range false 
-- returns 0 if no adjoining chart 

end; -- class MCHART 

582 COMPUTERS IN PHYSICS, VOL. 6, NO.6, NOV/DEC 1992 

deferred class MXFCN 
-- manifold transition function (coordinate transformation) 

feature 
domain, range: MCHART; 
-- domain and range of coordinate transformation 
value(r: ARRA Y[REAL]): ARRA Y[REAL] is deferred; 
-- returns coordinate in range corresponding to coordinate r 
-- in domain 

end; -- class MXFCN; 

The MCHART feature adjoining provides an index 
for an adjoining chart, similar to the annotations usually 
provided in the margins of each map in a geographic atlas. 
The various features of MCHART and MXFCN are 
deferred because we have made no decision about how the 
coordinates are represented internally--only how they are 
accessed. 

Classes MANIFOLD, MCHART and MXFCN 
extend the abstractions defined by TSPACE and 
NBRHD _ ITR to provide coordinate patches and trans
formations between patches. 

Vector bundle. A vector bundle has a total space, a 
base space, a projection function, coordinate patches, and 
transition functions. We will identify the class VBDL with 
the total space and, by analogy with common mathemat
ical practice, we will consider the projection function and 
other structures to be features of this class. The class 
VBDL differs from the mathematical structure in one 
important respect: we do not represent the points of the to
tal space. Representing all points of the total space would 
not serve any useful purpose-we are only interested in 
representing the points in a cross section of the total space. 
Class VBDL thus becomes a repository for information 
we want to share among several instances of class VSEC 
(see below), and a factory for allocating the charts used 
by VSEC to store and access the points in a cross section. 

deferred class VBDL 
-- abstract vector bundle 

feature 
db, df, dt, d: INTEGER; 
-- the base, fiber, total and bundle dimension 
base: MANIFOLD 
-- the base space 
chart_ct: INTEGER; 
-- chart count, the number of charts specified 
chart(c: INTEGER): VCHART is deferred end; 
-- allocates and returns a copy of the cth chart 
xfcn(cl, c2: INTEGER): VXFCN is deferred end; 
-- returns transition function from chart c 1 to chart c2 

end; -- class VBDL 

Classes VCHART and VXFCN have specifications 
similar to MCHART and MXFCN, respectively, but have 
different implementations, according to the mathematical 
structure discussed above. The assumption made pre
viously, that the chart neighborhoods were the same for 
the base space and the bundle, makes it convenient to have 
VCHART return only the vector-space components, and 
similarly for VXFCN. The base-space coordinates can be 
obtained from the manifold charts. Both VCHART and 
VXFCN are deferred because no representation has been 
chosen. 

Section of a vector bundle. Class VSEC is the data 
type of central interest. A section of a vector bundle is to-
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pologically equivalent to the base space, which means that 
as a topological space, and hence as a point set, any section 
is identical to the base space. In particular, this means that 
the point and neighborhood iterators for the base space 
can be used for any section. As a result, class VSEC is very 
similar to class MANIFOLD, except that the charts 
return components for the vector space, that is, the 
dependent variables of the field. 

deferred class VSEC 
-- abstract section of a vector bundle 

feature 
domain: MANIFOLD; 
-- the base space, obtained from the bundle 
range: VBDL; 
-- the bundle to which the section belongs 
chart(c: INTEGER): VCHART is deferred end; 
-- returns the cth chart 
scaleby(a: SFCN): VSEC; 
-- multiplies the section by the scalar function a; 
add(other: VSEC): VSEC 
-- adds the current section to other and returns the result. 

end; -- class VSEC 

When it is created, VSEC must define the values of 
the dependent variables, but this is a representation
dependent issue, so an operation chart is deferred. The 
class SFCN models scalar functions defined on the same 
base space, but we will not need to specify it further. 

As specified, class VSEC allows us to access the data 
in a section of a vector bundle, and to scale a section or 
add two sections. Many other operations could be 
specified, most notably the operations of calculus, but 
space limitations preclude a more complete specification 
in this article. 

Representation 
The classes described above are abstract. A number of 
design decisions must be made to produce representations 
of these classes. The various data structures commonly 
used in scientific programming correspond to different 
choices for these decisions. 

There are three primary representation issues: (i) the 
dimension of the base and fiber spaces; (ii) the representa
tion of connectivity information in class TSPACE; and 
(iii) the representation for class CHART and the chart 
operations in classes VBDL and VSEC. As an example, 
we will describe how these issues are resolved in typical fi
nite-difference applications. 

In the finite-difference method, the base space is 
usually represented by one or more regular grids called 
blocks. We will discuss the single-block case first, then 
indicate the extension to multiple blocks. 

The grid is regular in the sense tha,t each interior node 
has the same number of nearest neighbors, namely 2d, 
where d is the dimension of the base space. This grid can 
be stored in an array with d indices. 

It is well known that multiple-index arrays can also 
be indexed with a single index that just gives the offset 
from the base of the array. Each point in the grid is thus 
uniquely associated with an offset and the PT _ ITR class 
can be implemented using this fact; it just increments 
through all the offsets in the array. 

New Methods 
of Celestial 
Mechanics 

Henri Poincare (1854--1912) 

CoMPlKI1l YOUR PHYSICS AND MAlHEMATIcs LIBRARY 
WnH THIS CLASSIC WORK 

.''!'be grand event of the year" announced the Royal Astronomical Society of 
London in 1899 upon publication of the last mlume of l1Jincare's classic worlt 
Pushing beyond celestial mechani~ w Methodes nouvelles de kl Mihmiqlle 

ce1este established basic concepts of modem chaos and dynamical systems the

ory and placed l1Jincare among the most insightful pioneers of science. 

EXPERIENCE POINCARE'S CREATIVITY WITH THE 

FIRsr ACCURATE ENGUSH 'fRANSLATION 

ATP makes l1Jincare's text more acressible by extensil'ely revising, updating, and 

resetting the translation commissioned by NASA in the 19t10s. With careful at

tention to both the formulas and the wording, this new edition captures the true 

spirit of the \\Urk, which has been lost in previous distillations and excerpts. 

1b provide modem readers with a fuU appreciation of this revolutionary work, 

AlP's new edition features more than 100 pages of introduction by Daniel L. 

Goroff of Harvard University. TIlls in-depth prologue guides you through fuin

care's early life and woIi<, provides engaging expositions on major topics in 

Les Methodes nouvelles, and reflects on Fbincare's endudng legacy. 

REDISCOVER TIlE FOUNDATIONS OF CHAOS 
AND MODERN DYNAMICAL SYSIEMS THEoRY 

fuincare developed new tools-including canonical transformations, asymp

totic series exp1U1sions, periodic solutiOns, and integral invadants-Ihat 

are central to a wide range of mathematical disciplines today. Through les 

Metbodes nouvelles Fbincare emerges not only as the founder of chaos and 

dynanJical systems theory, but also as an initiator of ergodic theory, topologi

cal dynamics. symplectic geometry, and the many applications these fields 
have throughout the sciences 

NEW MmlODS OF CELESI1AL MECHANICS 

With a new introduction by Daniel L. Goroff, Harvard University 

\Qlume 13. History of Modem Physics and Astronomy 

November 1992, 1600 pages (3 volumes), illustrated 

ISBN 1-56396-117-2, cloth, $19)00 

Special Introductory Price: $150.00 

(Offer good through January 1, 1993) 

To order call1-800-488-BOOK 
or mail check, MOo or PO (include $2.75 for shippping) to: 

AIVIERICAN American Institute of Physics do AIDC 

INST11UTE 64 Depot Road 
2!PHYSICS Colchester, vr 05446 

COMPUTERS IN PHYSICS, VOL. 6, NO.6, NOV/DEC 1992 583 

D
ow

nloaded from
 http://pubs.aip.org/aip/cip/article-pdf/6/6/576/11500535/576_1_online.pdf



The d indices, or floating-point conversions of them, 
usually define the "computational" coordinates for the 
base space. The computational coordinate system is a 
coordinate chart for the base space, and the MCHART 
class calculates the coordinate indices from the point 
offset. 

The "physical" coordinates map the points of the 
grid into the real, physical space of the application. The 
physical coordinates are not necessarily coordinate charts 
as defined for manifolds above. For instance, the 
computational space may be two-dimensional and the 
physical space may be three-dimensional. For this reason, 
we prefer to think of the physical coordinates as a vector 
field on the manifold, and represent this field using class 
VSEC. 

The d index array representation has the further 
desirable feature that neighboring points can be found by 
calculation: if a point has indices I, J, K ... , then its 
neighbors are at I ± 1, J ± 1, K ± 1..., etc. Stated in our 
manifold language, the neighborhoods can be calculated 
from the charts. The NBRHD _ ITR class can thus be 
implemented in terms of the charts. 

Finally, the VCHART class stores the section values 
in multiple index arrays, indexed by the point offset or the 
manifold coordinates. 

Multiblock finite difference is essentially the same as 
single block, except there are multiple grids, each with its 
own computational coordinates and hence multiple 
coordinate charts. As described previously, coordinate 
transformations between the computational coordinates 
are maintained, and class MXFCN can use them. Class 
VXFCN is implemented using class MXFCN and the 
numerical Jacobian of the coordinate transformations. In 
some cases, explicit interblock connectivity information 
may be stored as well, and NBRHD _ ITR can use this in
formation. 

Visualization 
We return to the streamline example discussed earlier, and 
show how a representation-independent visualization 
algorithm can be constructed using the interface defined 
by the abstract classes. The computation of the streamline 
by integration of the vector field can be accomplished by 
the following algorithm: 

streamline(vfld, pfld:YSEC, pO, max_ct: INTEGER) is 
-- computes streamline of vfld starting at pO 
-- and maps it into the physical coordinates 
-- given by pfld defined on same base; 
-- stops after max_ct points have been drawn 
local 

do 

rl, r2, vI, v2, xl, x2: ARRA Y[REALJ; 
pI, p2, c, cadj, ct: INTEGER; 
base: MANIFOLD; 

base := vfld.domain; 
pI := pO; 
from 

ct:= 1; 
c:= 1; 
-- assume pO in first chart for simplicity 
rl := base.chart(c).coord(pI); 
-- get coordinates of point 
vI := vfld.chart(c).coord(pI); 
-- get value of field 
r2 := r1 + integrate(vl); 
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-- find coordinates of the next 
-- point on the streamline 
-- using one of the calculus operations 
-- we haven't specified 

until 
c = Oorct > max3t 

loop 
if base.chart(c).in_range(r2) then 

-- r2 was in range of current chart 
p2 := base.chart(c).coordinv(r2); 
-- find point with coordinates r2 
xl := pfld.chart(c).coord(pl); 
x2 := pfld.chart(c).coord(p2); 
draw _line(x I, x2); 
-- draw streamline in physical space 
ct:= ct + 1; 
pI := p2; 
-- move to leading point 
rl := base.chart(c).coord(pI); 
vI := vfld.chart(c).coord(pI); 
r2 := r1 + integrate(vl); 
-- find the next point on the streamline 

else 
-- r2 lies outside range of current chart 
-- move to the adjoining chart and try again 
cadj := base.chart(c).adjoining; 
vI := vfld. xfcn(c, cadj).value(rl, vI); 
rl := base. xfcn(c, cadj).value(rl); 
r2 := rl + integrate(vl); 
c :=cadj; 

end; 
end; 

end; 

The algorithm starts at the given initial point, and 
integrates along the streamline until it runs off the current 
chart. It then invokes a transition function to the 
adjoining chart, and continues. The process is repeated 
until there is no adjoining chart, or the requested number 
of points have been drawn. This algorithm is entirely 
independent of the representation chosen for the various 
classes, and it is optimal in the sense that it makes full use 
of the geometric structure of the data. 

capturing Abstractions 
We have described the mathematical structure of vector 
bundles, and shown how they can be used to define a col
lection of abstract classes useful in scientific visualization. 
The particular class specifications we have given- are at 
best a sketch of the full specifications required for 
practical implementation, but they do demonstrate that 
the object-oriented paradigm provides a number of 
mechanisms for capturing scientific abstractions directly 
in code. It is our opinion that the object-oriented approach 
will substantially increase the level of abstraction in future 
scientific codes. 
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