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In this paper, a visualization model based on the mathematics of fiber bundles is described. A 
brief, intuitive description of the mathematics of fiber bundles is given, introducing the 
concepts using typical application examples and emphasizing aspects relevant to our 
visualization model. Three important classes of operations on fiber bundles are described. A 
flexible scheme is developed for constructing graphic representations of fiber bundles and a 
simple but useful visualization taxonomy. 

INTRODUCTION 
In this article, we describe a specific visualization model 
based on the mathematics of fiber bundles. In a companion 
article, 1 we introduced the visualization management sys­
tem (ViMS), a new approach to the development of soft­
ware for visualization in scientific computing (ViSC). A 
visualization management system is an abstraction of data 
structures and functions common to many ViSC applica­
tions. It is a generalized, application-independent facility 
for the definition, analysis, and presentation of visual rep­
resentations of scientific data. A ViMS implements an ab­
stract visualization model which specifies a class of geo­
metric objects, the graphic representations of the objects, 
and the operations on both. In the model described here, 
the geometric objects are sections of fiber bundles. The fi­
ber bundle formalism provides a unified, dimension-inde­
pendent framework that encompasses both simple and 
complex visualization problems, forming the basis for a 
powerful and widely applicable visualization management 
system. 

The article is organized as follows. In Sec. I, we dis­
cuss the general notion of a visualization model and review 
the requirements it must satisfy. In Sec. II, we introduce 
and motivate the use of fiber bundles as the geometric ob­
jects of our model. We give a brief, intuitive description of 
the mathematics of fiber bundles, emphasizing aspects rel­
evant to our visualization model. In Sec. III, we describe 
the graphic representations and operations of our model. 
In Sec. IV, we evaluate our model with respect to the re­
quirements described in Sec. I. In Sec. V, we develop a 
simple but useful taxonomy for fiber bundles and their gra­
phic representations. 

I. VISUALIZATION MODEL REQUIREMENTS 
As we described in the Introduction, a visualization model 
specifies a class of geometric objects, the graphic represen­
tations of the objects, and the operations on both. The re­
quirements a visualization model must satisfy were devel­
oped in the companion article; we review them here. 

( 1) Application independence: the visualization mod­
el must provide a class of geometric objects suitable for a 
wide range of applications. 

(2) Integrated visualization and computation: the ge­
ometric objects must provide useful and widely applicable 
computational operations. 

( 3) Flexible geometric representation: the geometric 
objects must support multiple dimensions and complex to­
pologies. 

( 4) Flexible graphic representation: the model must 
provide a flexible and complete set of graphic representa­
tions. 

( 5) Data representation independence: the geometric 
objects defined must provide general, multilevel access to 
the geometric information. 

II. GEOMETRIC OBJECTS AND OPERATIONS 

A. Motivation for fiber bundles 
Although the requirements described in Sec. I are formida­
ble, the following considerations suggest the mathematical 
theory of fiber bundles provides a suitable class of geomet­
ric objects. The requirement for multiple dimensions and 
complicated topologies, coupled with the requirement for 
wide applicability, strongly suggests we use the formalism 
of differential geometry. Differential geometry explicitly 
encompasses multiple dimensions and complicated topolo­
gies and has recently gained increasing recognition as a 
powerful and precise mathematical formalism applicable 
to a wide range of problems in the physical sciences. Differ­
ential geometry provides a number of candidates for the 
geometrical objects of our model. However, the require­
ment for integrated visualization and computation, for 
widely applicable computational operations, singles out 
structures called fiber bundles. This is because the majority 
of computations require calculus and the differential geo­
metrical generalization of calculus takes place on fiber bun­
dles. Thus, fiber bundles are the natural geometrical ob­
jects for a visualization model that supports calculus and 

CIIMPUTEJIS IN PHYSICS, SEP/OCT 1888 45 



related computations in arbitrary dimensions and topolo­
gies. 

Motivated by the preceding observations, we devel­
oped a visualization model based on the mathematics of 
fiber bundles. In this paper, we give a very informal and 
intuitive description of the mathematics of fiber bundles. 
For a more complete treatment the interested reader 
should see the discussion in Burke, 2 in Nash and Sen, 3 or in 
Abraham et a/. 4 

B. Structure of fiber bundles 
Roughly speaking, a fiber bundle is a space that is con­
structed from two spaces, a base space and a fiber space, by 
attaching a copy of the fiber space to each point of the base 
space. The bundle is the Cartesian product of the base and 
the fiber. In Fig. 1, we show a simple example of a fiber 
bundle. If we pick a particular point on each fiber of the 
bundle, we define a (cross) section of the bundle, also 
shown in Fig. 1. 

In the example, the base and fiber are both the real 
number line, a one-dimensional space with a familiar topol­
ogy. However, in general, the fiber and base can both be 
arbitrary, multidimensional spaces. Figure 2 shows a more 
complicated example. The base space is a torus, while the 
fiber is a three-dimensional vector space. A section of this 
bundle is a vector field on the torus. This example is typical 
of scientific applications: the fiber is a multidimensional 
vector space and the base is a multidimensional space with 
a nontrivial topology. For the simple example given in Fig. 
1, familiar geometric ideas such as ordinate, abscissa, and 
curve are adequate, and the machinery of fiber bundles is 
unnecessary. However, in the more complicated applica­
tions, the familiar ideas become inadequate. The fiber bun­
dle formalism provides a unified, dimension-independent 
framework that encompasses both simple and complex vi­
sualization problems. 

To connect the fiber bundle formalism with a more 
familiar formalism, a fiber bundle may be viewed as a gen-

(a) (b) (c) 

(d) (e) 

FIG. I. A trivial fiber bundle. Attaching a copy of the fiber (a) to each 
point of the base (b) gives the bundle (c). Picking a point in each fiber 
space defines a section (d). Another section of the same bundle (e). 
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(a) (b) 

(c) (d) 

FIG. 2. A more complicated trivial fiber bundle. The fiber (a) is a three­
dimensional vector space; a point in this space is represented by an arrow. 
The base (b) is a torus. The bundle (c) is formed by attaching a copy of 
the fiber to each· point of the base. Choosing a point, i.e., a vector, in each 
fiber defines a section (d). 

eralization of a function of one or more variables. The base 
space is analogous to the independent variables of a func­
tion; the fiber space is analogous to the dependent variable 
of a function; a section corresponds to the function itself; 
and the fiber bundle is the space in which we graph the 
function. To reinforce this analogy and help the reader be­
come familiar with the fiber bundle interpretation, we re­
turn to the example of Fig. 2. The field is given by 

where0<;81, 82 < 21T, and/1, fz, and_t; are real-valued func­
tions. 

To interpret this function as a fiber bundle, we empha­
size not the individual variables (8 1,B2,v 1,v2,v3 ) but the 
spaces in which they take their values. The independent 
variables B 1 and 82 are coordinates on the surface of a torus. 
Thus the base space is the surface of the torus T 2

• The 
dependent variables v 1, v2, v3 are coordinates of the vector 
spaceR 3• Hence the fiber is the vector spaceR 3 • The fiber 
bundle is the product space T 2 X R 3

. The section is defined 
by the values of the three functions (/1,/2,/3 ) at each point 
of the base. Note that by emphasizing the space rather than 
the variables, the toroidal topology of the base is explicitly 
incorporated in the interpretation. 

In this manner, a scalar, vector, or tensor field can be 
interpreted as a fiber bundle. The base is the space for 
which the independent variables are coordinates. The fiber 
is a vector space: R 1 for scalar fields, R 2 or R 3 for vector 
fields, and Rn (n > 3) for tensor fields. 

Technically, the bundles we have described are called 
trivial bundles; they are locally and globally the Cartesian 
product of the base and the fiber. Nontrivial bundles, 
which we will not discuss, contain an additional structure 
that describes the way in which the bundle is "twisted" so 
that it is not a product globally. The analytical power of the 
theory of fiber bundles is mostly due to the nontrivial bun­
dles, and they provide a very general basis for a visualiza­
tion model as well. However, the full theory substantially 
complicates the model and much progress can be made 



Fiber Base 

FIG. 3. Layers in the geometry of a vector bundle. The layers are indicat­
ed by boxes. The lines joining the layers are labeled with the structure 
added to obtain each layer from the one below it. The simple product 
structure of the bundles results from our restriction to trivial bundles. 

with only the trivial bundles. Indeed, as suggested by the 
examples above, we are most interested in vector bundles, 
that is, fiber bundles in which the fiber is a vector space. A 
nontrivial vector bundle can always be mapped to a trivial 
vector bundle having the same base space but a fiber space 
of higher dimension than the original. Thus we can support 
nontrivial vector bundles indirectly by supporting trivial 
vector bundles and mappings. To simplify both the presen­
tation and implementation of the visualization model, we 
restrict the model to trivial vector bundles for the remain­
der of this discussion. 

The geometry of a section of a vector bundle is built up 
from set theory by repeatedly aggregating simpler objects, 
creating a layered structure. We describe the layered struc­
ture here; in Sec. IV, we discuss its importance for the visu­
alization model. We need to discuss only the general fea­
tures of the structure, as shown in Fig. 3. At the lowest 
level, both the base and fiber are point sets, just collections 
of points. For the next layer, we add the notion of neighbor­
hoods to obtain a topological space. Then we add the no­
tion of coordinates and differentiability to get a manifold. 
The fiber is a vector space, which can be considered a mani­
fold with an additional layer of structure, its linear algebra 
structure. The next layer aggregates the base and fiber into 
a bundle. Finally, the bundle is aggregated with a map, 
specifying a value in each fiber, to give the section. Thus the 
section is a multilayer structure and each layer contains a 
specific type of abstract geometric data. 

C. Visualization model 
Having given a brief description of the structure of fiber 
bundles, we can state the visualization model more precise­
ly. Sections of trivial vector bundles are the geometric ob­
jects of the model. A geometric representation of an appli­
cation data structure is a mapping between the data 

structure and one or more sections of a vector bundle. We 
will refer to the number of sections as the multiplicity of a 
representation. A typical application will have several data 
structures associated with it and will have one or more 
geometric representations for each data structure. The col­
lection of representations associated with an application 
typically consists of several bundles and several to many 
sections on each bundle. 

D. Operations 
Vector bundles support a number of useful operations. To 
give the reader ah idea of the abilities that can be implemen­
ted in the context of the model, we outline some of the 
important classes of operations and briefly show how each 
might be applied to the example of Fig. 2. The fundamental 
categories are constructors, mappings, and section opera­
tions. 

Constructors allow us to construct geometric objects, 
for instance, a base or a section. In an implementation of 
the visualization model, the constructors are responsible 
for allocating and initializing the program variables which 
store the geometric objects. In general, values for these 
variables can be defined explicitly or by importing some 
application data. In the discussion below, we assume some 
imported application data corresponding to the example. 
The most important classes of constructors are the follow­
ing. 

( 1 ) Base constructors: operations that specify the 
structure ofthe base space, especially definition of the point 
set and topology or assignment to an application data 
structure. In the example, base constructors would be used 
to allocate a variable b of type base and store a torus in it. 
The grid of values for the coordinates () 1 and ()2 could be 
defined directly or by using some application data. 

(2) Fiber constructors: operations that specify the 
structure of the fiber by definition or by assignment to an 
application data structure. In the example, fiber construc­
tors would be used to define the fiber f, setting its dimen­
sion to three and the data type of its components v1, v2, nd 
V3 to match the application data, perhaps REAL or 
DOUBLE PRECISION. 

( 3) Bundle constructors: operations that assign a base 
or a fiber to a bundle. To construct the bundle for the exam­
ple, we would allocate a variable B of type bundle, with 
base b and fiber f. 

( 4) Section constructors: operations that specify a 
section of a bundle, especially assignment to an application 
data structure. In the example, we could allocate a variable 
S of type section and initialize its components with the 
values of the application data. 

Mappings are used to create new objects from existing 
objects. A bundle mapping is a mapping from one bundle to 
another that preserves the fibers; it maps base to base and 
fiber to fiber. We describe two major classes, bundle re­
striction and subbundle, and some useful subclasses. 

( 1) Bundle restriction: a bundle mapping in which the 
base of one bundle is a subspace of the base of the other but 
the fibers are the same. In other words, we form a new 
bundle by extracting some subspace of the base and the 
fibers just get dragged along. Or, by interpreting the map­
ping in the opposite direction, we can immerse the base as a 
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subspace in a higher dimensional base, dragging along the 
fibers. 

( 2) Subbundle: a bundle mapping in which the fiber of 
one bundle is a subspace of the fiber of the other but the 
bases are the same. In other words, we form a new bundle 
by just discarding some of the fiber. Again, we can interpret 
the mapping in the opposite direction, adding dimensions 
to the fiber. 

( 3) Boolean operations: bundle restrictions corre­
sponding to the boolean operations of constructive solid 
geometry.5 The boolean operations are essentially the set 
operations union, intersection, and difference applied to 
the point sets representing objects. They are widely used in 
computer-aided design applications for composing and de­
composing three-dimensional objects. Extending the defin­
ition to fiber bundles, boolean operations on the base in­
duce restrictions on the bundle, allowing the user to 
compose or decompose the base while carrying along the 
fibers. In the example, boolean operations could be used to 
cut the torus in two, forming two half-donuts with a vector 
field on each half. 

( 4) Slicing: a bundle restriction induced by decom­
posing the base into a family of subspaces, producing a 
family of bundles of lower dimension. Slicing converts a 
representation of given dimensionality and multiplicity 
into a representation of lower dimensionality and higher 
multiplicity. In our example, we can slice the torus into a 
collection of circular cross sections, each a bundle itself. 
The fiber is still the three-dimensional vector spaceR 3

, but 
the base is now the circle S 1

, a one-dimensional space. 
( 5) Stacking: the inverse of slicing, composes a family 

of lower dimension bundles into a higher dimension bun­
dle. Stacking converts a representation of given dimension­
ality and multiplicity into a representation of higher di­
mensionality and lower multiplicity. In our example, we 
can stack the collection of circular cross sections back into 
a torus. 

( 6) Component projection: a subbundle created by 
ignoring all the components of the fiber except one. We can 
use component projection repeatedly, once for each com­
ponent, to reduce a representation of fiber dimension d1 
and multiplicity one to a representation of fiber dimension 
one and multiplicity d1 . In our example, we can project the 
three components of the vector field. The resulting subbun­
dle still has the torus as a base, but the fiber is now a one­
dimensional vector space R 1

, and we have three sections 
defined on it. 

(7) Component direct product: a bundle formed by 
taking the direct product of the fibers of two bundles de­
fined over the same base. We can use the direct product to 
increase the dimensionality and reduce the multiplicity of a 
representation, forming the inverse of component projec­
tion. In our example, starting with the subbundle we pro­
duced with component projecton, we can reassemble the 
three one-dimensional sections into a three-dimensional 
vector using the component direct product. 

The mappings we have described are not an exhaus­
tive classification. However, they do provide the basis for 
manipulating the dimensionality of a representation. We 
will use this ability in the visualization taxonomy we devel­
op in Sec. V. 

Section operations provide integrated visualization 
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and computation. These operations can be defined entirely 
in terms of the geometric objects and hence are application 
independent. Some of the useful classes of operations for 
vector bundles are the following. 

(I) Approximation: interpolating or smoothing a sec­
tion. For instance, we could fit multidimensional splines to 
the vector field on the torus. 

(2) Linear algebra: multiplying a section by a con­
stant, adding or subtracting two sections defined on the 
same bundle. For instance, if we had two vector fields on 
the torus, perhaps corresponding to two different experi­
mental measurements, we could calculate the difference or 
the average of the two fields. 

( 3) Calculus: integrating and differentiating a sec­
tion. In the example, we could calculate the divergence or 
curl of the vector field. 

Ill. GRAPHIC REPRESENTATIONS AND OPERATIONS 
A graphic representation in our visualization model is a 
mapping between one or several sections of a vector bundle 
and a visual display. In this section we describe the general 
structure of the graphic representation, assuming the facili­
ties of a modern computer graphics environment: a repre­
sentation space in which graphic objects can be defined, a 
structured database for storing and retrieving objects, and 
operations for manipulating the graphic attributes of the 
objects. 

Our representation scheme provides two levels of gra­
phic composition, the graph level and the visualization lev­
el. The graph level provides graphic representations of in­
dividual geometric structures. The visualization level 
integrates these individual graphic objects into a complete 
visualization. 

The graph level provides for the creation and manipu­
lation of graphic objects representing individual geometric 
structures. We refer to a graphic object associated with a 
geometric structure as a "geometric structure graph," or 
just "graph" for short. These graphs are constructed by 
mapping the geometric structure to the graphic representa­
tion space. Since our visualization model supports geomet­
ric structures of arbitrary dimension, not all structures can 
be mapped to the representation space in their entirety. We 
discuss this problem in Sec. V; in this section we limit the 
discussion to those geometric structures which can be rep­
resented directly. 

Two categories of representations can be constructed, 
explicit representations and parametric representations. 
Parametric representations can only be constructed for 
multiple sections of bundles with the same base. For simpli­
city, we describe only the explicit representation. 

In the explicit representation, a section has four 
graphs associated with it: the fiber graph, the base graph, 
the bundle graph, and the section graph itself. Figure 4 
shows typical graphs for the example in Fig. 1. The fiber 
graph, Fig. 4(a), depicts the geometric structure of the 
fiber space by indicating a coordinate axis for the space. 
The base graph, Fig. 4(b), does the same for the base space. 
The bundle graph, Fig. 4(c), combines the base and fiber 
graphs to indicate the strucure of the bundle space. The 
section graph, Figs. 4 (d) and 4 (e), depicts the actual data. 
A fifth type of graph, the text graph, is an independent 
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FIG. 4. Graphic representations at the graph level. The fiber graph (a), 
the base graph (b), the bundle graph (c), the section graph (d), and an­
other section graph (e) are graphic representations of the corresponding 
geometric objects of Fig. I. 

component which provides arbitrary annotation. 
The visualization level provides for the integration of 

the graphs into a complete visualization. A visualization is 
an arbitrary collection of graphs. Graphs can be flexibly 
combined in any way; Fig. 5 shows two visualizations con­
structed from the graphs of Fig. 4. 

IV. EVALUATION OF MODEL 
While the efficacy of the vector bundle visualization model 
can ultimately be determined only from experience with a 
ViMS based on it, we can review its properties with regard 
to the requirements we have defined. 

A VISUALIZATION 
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(a) 

ANOTHER VISUALIZATION 

(b) 

FIG. 5. Graphic representations at the visualization level. A visualization 
(a) is an arbitrary collection of graphs. Another visualization (b) con­
tains two section graphs but no fiber graph. Both contain a text graph. 

A. Application independence 
Vector bundles, the geometric objects provided by the 
model, are suitable for a very wide range of applications. As 
the examples given above indicate, scalar, vector, and ten­
sor fields on arbitrary spaces can be interpreted as vector 
bundles. Two additional observations further indicate the 
generality of the model. 

The first observation is the wide and growing accep­
tance of differential geometry as a mathematical formalism 
for problems in the physical sciences. Point mechanics, 
continuum mechanics, fluid dynamics, thermodynamics, 
statistical mechanics, classical field theory, and quantum 
field theory·all have well-established difft(rential geometric 
formalisms in which vector bundles appear explicitly as 
important objects of study. Thus it is likely that a visualiza­
tion model based on vector bundles will be useful in all 
these application areas. 

A second observation is that the central notion pro­
vided by the definition of a section of a fiber bundle is the 
notion of relationship between points in the base and points 
in the fiber. In fact, a section of a fiber bundle can be consid­
ered a geometrization of a relation, in the sense of set theo­
ry, between the point sets of the base and the fiber. By 
imposing geometry on otherwise unstructured sets, the 
model can be used to visualize arbitrary relations between 
arbitrary sets. This interpretation essentially formalizes 
and generalizes common practice. For instance, in con­
structing a bar chart of grant revenue versus faculty mem­
ber, geometry must be imposed on the set of faculty 
members. 

B. Integrated visualization and computation 
The model integrates visualization with calculus in arbi­
trary dimension and topology. Hence, it provides an inte­
grated environment applicable to most of scientific com­
puting. 

C. Flexible geometric representation 
The model provides geometric representations with arbi­
trary dimension and topology. In particular, the model al­
lows geometric interpretation of high-dimensional, nonvi­
sualizable structures and provides operations for mapping 
such structures to lower dimensional, visualizable ones. 

D. Flexible graphic representation 
The model provides flexible graphic representation based 
on two levels of graphic composition. At the lower level, 
the model allows multiple graphic representations of each 
of the four graph types: base, fiber, bundle, and section. At 
the upper level, it provides arbitrary combination of these 
objects into a complete visualization. 

E. Data representation independence 
A section of a vector bundle has associated with it the lay­
ers shown in Fig. 3: point set, topological space, manifold, 
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DIMENSION OF FIBER (d f) 

l I .. 
>3 

FIG. 6. The space of geometric representations. In this space, a geometric 
representation of some application data is a point, specified by the triple 
(d.,df,m). The directly visualizable region is crosshatched. 

vector space, bundle, and section. Each layer provides an 
interface for the exchange of the geometric data associated 
with that layer. Together they provide general and com­
plete access to the geometry, independent of any particular 
data structure chosen to store the geometry. 

VI. TAXONOMY 
We conclude by describing a simple visualization taxon­
omy based on the vector bundle model. While a complete 
taxonomy for this model is both beyond the scope of this 
paper and an open research question of some complexity, 
the taxonomy we present covers many practical cases and 
indicates the value of a visualization taxonomy. 

We can parametrize the set of geometric representa­
tions by the dimension of the base db, the dimension of the 
fiber d1 , and the multiplicity m. We can then visualize the 
three-dimensional "space" of geometric representations as 
shown in Fig. 6, which shows the region spanning most 
scientific applications. Most applications can be represent­
ed as bundles having a base of dimension four or less, be­
cause the base is typically space, time, or space-time, with 
space having a dimension between one and three. The di­
mension of the fiber can be grouped into four categories: 
dimension one, dimension two, dimension three, and di­
mension greater than three. The categories arise from sca­
lar, vector (dimension two and three), and tensor fields, 
respectively. The multiplicity varies widely, as suggested 
by the logarithmic scale in the figure. Large multiplicities 
can be intrinsic to the application or can be generated in the 
course of visualization. 

Having classified the geometric representations, the 
next task is to develop graphic representations for each 
class. First we consider the geometric representations with 
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multiplicity greater than one. Graphic representation of an 
object (db,d1,m > 1) can always be constructed using a 
representation of (db,d1 ,m = 1) and either serialization or 
superposition. Serialization presents the graphic represen­
tations in a static or dynamic series, while superposition 
presents them at once, superimposed on each other. With 
these techniques, we need to develop graphic representa­
tions for only them= 1 plane of the geometric representa­
tion space. 

A graphic representation maps the geometric object to 
the graphic representation space. For simplicity, we as­
sume the graphic representation space has three spatial di­
mensions and supports one local attribute,6 intensity or 
color. Most color models are three dimensional, but the 
effectiveness of color for representing multidimensional 
quantities is limited,7 so we will consider the dimension of 
the local attribute to be (at least) one. 

There is no natural, direct way to represent bundles 
with base or fiber dimension greater than three, since there 
is no structure in the representation space of dimension 
greater than three. Thus there are nine geometric represen­
tations for which we can construct direct graphic represen­
tations. Table I presents canonical forms for the graphic 
representations of these geometric representations. 

Bundles which cannot be visualized directly can be 
reduced to collections of visualizable ones using bundle 
mappings. In terms of Fig. 6, bundle mappings move the 
point corresponding to the representation into the directly 
visualizable region by decreasing the dimensionality of the 
base or fiber and increasing the multiplicity. Serialization 
or superposition must then be used to present the graphic 
representations. For instance, base dimension four, which 
usually corresponds to one time dimension and three space 

TABLE I. Canonical graphic representations of them= I geometric rep­
resentations. 

db,df Canonical representation 

1,1 (a) line plot 
(b) color scale 

1,2 (a) 1-D distribution of2-D arrows 
(b) trajectory 

1,3 (a) 1-D distribution of 3-D arrows 
(b) trajectory 

2,1 (a) pseudocolor image 
(b) contour plot 
(c) surface plot 

2,2 (a) 2-D distribution of 2-D arrows 

2,3 (a) 2-D distribution of3-D arrows 

3,1 (a) pseudocolor volume image 

3,2 (a) 3-D distribution of 2-D arrows 

3,3 (a) 3-D distribution of 3-D arrows 



dimensions, is naturally represented by serializing on time. 
Subbundle mappings, component projection in particular, 
can reduce representations with fiber dimension greater 
than three to visualizable representations. 

To summarize the taxonomy, the geometric represen­
tations are classified by the base dimension, the fiber di­
mension, and the multiplicity. Canonical graphic represen­
tations are provided for the geometric representations with 
base dimension three or less, fiber dimension three or less, 
and multiplicity one. The remaining bundles must be re­
duced to collections of visualizable bundles using bundle 
mappings. The collection of reduced bundles can then be 
visualized using superposition or serialization of their ca­
nonical graphic representations. 

The visualization taxonomy benefits both ViMS deve­
lopers and ViMS users. The ViMS developers benefit from 
a taxonomy because it provides a framework for identify­
ing, analyzing, and implementing necessary visualization 
functionality, in particular the canonical graphic represen­
tations. The ViMS users benefit because an arbitrary visu­
alization problem can be formulated and its solution com­
municated using this taxonomy. 

The taxonomy we have described can be extended in a 
number of ways. A more complex graphic representation 
space, supporting attributes such as reflectivity, transpar­
ency, and texture, can be used. Direct graphic representa­
tions of geometric representations with multiplicity greater 
than one can be developed. A more extensive and detailed 
set of canonical graphic representations can be provided. 
The specific bundle mappings needed to reduce various 
classes of nonvisualizable bundles can be identified. Ex­
tending the taxonomy would enhance its utility to both 

developers and users. We plan to extend the taxonomy in 
the future. 
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