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The symmetry properties of elementary particles—in particular the number of linearly independent
states with a fixed mass and momentum—can be explained by relativistic covariance alone, if the irreducible
representation assigned to particles with antiparticles is chosen so that it contains 2(2s+1) linearly inde-
pendent states for fixed mass and momentum. No nongeometric symmetry element such as charge conju-
gation is introduced. The existence of superselection rules within these irreducible representations is made
necessary by the postulate that time-reversal invariance be directly verifiable. In this representation, _
the space-inversion operator has the same effect as the product PC in the usual representation. A charge
operator Q is defined and it is shown that all physically realizable states are eigenstates of Q with integral
eigenvalues. For “simple” particles, Q can have only the eigenvalues 0, 1.

I. INTRODUCTION

N the absence of a satisfactory detailed theory of

elementary particles, it is desirable to exhaust the
possible inferences from space-time symmetry princi-
ples. Indeed, the consequences of the invariance of
natural laws under the full Lorentz group have been
studied with great success by many authors. Unfortu-
nately, it has not been possible to explain even such
basic properties of elementary particles as the multi-
plicity of linearly independent states by relativistic
invariance alone. In particular, the existence of anti-
particles is explained by an added symmetry, charge
conjugation, which is extraneous to the space-time
mappings of the Lorentz group. The assignment of
irreducible representations of the Lorentz group
presently accepted for spinless particles, for instance,
provides only one linearly independent state for a given
momentum. The fact that two linearly independent
states with precisely the same mass are observed is
explained by the existence of two irreducible represen-
tations with the same mass, which are coupled by a
nongeometric symmetry element, viz., the charge
conjugation. The case of fermions is exactly analogous
except for the doubling of the number of linearly
independent states.

This disappointing outcome of Dirac’s attempt to
explain the basic properties of particles from Lorentz
invariance and quantum mechanics alone, was further
complicated by the observations on nonconservation
of parity. It seems that either I, invariance under
space-reflection, has to be completely dropped or that
the product of 7 and charge conjugation alone can be
maintained as a physical symmetry element.

On the other hand, it is just those observations
which revive the hope for a satisfactory explanation on
the basis of relativistic symmetry alone. If we postulate
invariance of natural laws under the full Lorentz group,
then the explanation of the experiments (e.g., decay of

* Work performed under the auspices of the U. S. Atomic
Energy Commission.

T Permanent Address: Argonne National Laboratory, Argonne,
Illinois.

polarized neutrons) can only be that the inversion
operator U(I) does not convert a neutron into itself,
ie., does not leave the subspace of neutron states
invariant. If the conjecture advanced by Landau! is
correct (and there is, at least, no experimental evidence
against it), then the antineutron would have the
“inverted” decay pattern of the neutron. From the
viewpoint of the postulated invariance under the
Lorentz group alone, we would have to interpret this
(anticipated) fact as indicating that U(I) converts a
neutron into an antineutron. It follows that the
irreducible subspace must include both neutrons and
antineutrons, and must therefore have 4 linearly inde-
pendent states for a given momentum. One is led to
suspect that the assignment of the irreducible repre-
sentation was erroneous in the past, and that one has
to look for an irreducible representation with 4 linearly
independent states. In fact, such “doubled” represen-
tations (up to a factor) exist and have been enumerated
by Wightman.?2 These considerations have motivated
a renewed attempt to explain the basic properties of
elementary particles on the basis of the full Lorentz
invariance alone.

We adopt the tentative postulate that all rigorous
degeneracies of elementary particles must be accounted
for by the assignment of the appropriate irreducible
representation of the Lorentz group. Thereby, we rule
out the existence of two irreducible subspaces with the
same spin and exactly equal masses (‘“‘Accidents don’t
happen”).

A summary of the arguments and results will now
be given. In Sec. II, it is pointed out that the necessity
of giving an experimentally verifiable meaning to time-
reversal invariance leads to a condition on state vectors
which excludes some vectors in the ‘“doubled” irre-
ducible representations from the set of physically
realizable states. As a mathematical consequence (Sec.
II1), two of the doubled irreducible representations are

1 L. Landau, Nuclear Phys. 3, 127 (1957). .

2 A. S. Wightman, Les Problemes Mathématiques de la Théorie
Quantique des Champs, Colloques Internationaux du Centre N ational
de la Recherche Scientifigue (Centre National de la Recherche
Scientifique, Paris, 1959).
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found to be empty of states and are discarded, while
the remaining representation receives a superselection
rule. The two mutually orthogonal sets of states are
interpreted (Sec. IV) as particles and antiparticles, and
they are carried into each other by the space-inversion
operator. In our representation, the space-inversion
operator has the same effect as the product of space-
inversion and charge-conjugation operators in the
usual representation.

In Sec. V, the many-particle states of a system with
one type of particle with “‘doubled” representation are
investigated. The superselection rule on the one-particle
subspace implies similar rules for many-particle states
which may be expressed in terms of a self-adjoint
operator ) which commutes with all observables, has
integral eigenvalues, and separates subspaces of states.
The operator () may be interpreted as a charge or
baryon-number operator.

In Sec. VI it is pointed out that in the presence of
superselection rules, the choice of the representative of
an element of the Lorentz group in a given irreducible
representation space is ambiguous by more than a
factor of unit modulus. As a consequence, at least two
essentially different operators may be considered to
represent time-and-space inversion. In the presence of
several types of particles, many different operators
U™ (T) on the reducible part of Hilbert space may be
defined.

In the general case of several types of particles, the
implications of the superselection rules on many-
particle states are doubtful. If the most natural rule
for the selection of the separating operators Q™ is
adopted (namely, the rule that defines “simple” parti-
cles), it is found that the operators Q™ can have only
the eigenvalues 0 and 1. All rigorous degeneracies and
absolute selection rules for known elementary particles
can be accounted for by introducing two sets of oper-
ators U™ and the corresponding Q™ (charge and
baryon number). This is perhaps the first nonarbitrary
distinction between elementary and composite particles.

In Sec. VIII, field operators are defined whose
transformation properties are induced by those of the
functions in the one-particle subspaces. The simplest
covariant equation of motion of the field operator in
the presence of an external electromagnetic field
confirms the interpretation of the two sets of states in
the one-particle subspaces as positive and negative.

II. VERIFIABILITY OF SYMMETRY ASSUMPTIONS

The assumption of invariance of natural laws under
the orthochronous relativity group can be given a form
that can be directly compared with experiment?: Given
a state represented by a vector ¥ in Hilbert space,
there exists another state represented by the vector
U(L)¥ which is obtained by repeating the preparation
of state ¥ with all instruments involved in the prepa-

3 R. Haag, Kgl. Danske Videnskab. Selskab, Math.-fys. Medd.
29, 12 (1955).
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ration of ¥ being translated, rotated, or accelerated
with respect to the original experiments. The kind of
modification prescribed is implied in the geometric
meaning of the element L of the group of length-
preserving mappings of space-time into itself. In the
case of space translations and rotations, the operational
instructions implied in L are self-evident. In the case
of Lorentz transformations, the instruments which
produce the state U(L)¥ are to be given a velocity
with respect to the laboratory. Finally, for elements L
involving space inversion, all instruments used to
prepare the state U(L)¥ are to be changed by inter-
changing the words “left” and “right” in the oper-
ational instructions. The verifiable prediction of the
invariance statement is then contained in the statement
that a scalar observable ¢ which represents a measure-
ment made at the space-time point x« will have the new
expectation values*

(o(La))'=(U(L)¥,¢(Lx)U(L)¥)
=(e(@)=F,e(x)¥). (2.1)

We have repeated with great explicitness the well-
known physical interpretation of relativistic invariance,
in order to point out that no such direct operational
instruction for the verification of the time-inversion
invariance exists.

One might attempt to introduce an analogous
instruction for the preparation of the state U(T)¥ by
“letting time run backward,” but this is only a verbal
exercise.’ It is necessary therefore to replace the direct
geometric meaning of U(7T) by an instruction which is
obtained from experience.

.Consider first the classical case. The statement is:
If a state ¥; (specified by positions, momenta, and
possibly intrinsic angular momenta of all particles at
one time) evolves into a state ¥, after a time ¢, then
there exists a state 7W; which evolves into a state
TV, during time /. The statement is empty unless an
instruction for the preparation of any state 7'V corre-
sponding to a given ¥ is provided. The statement
would still be empty if this instruction had to rely on a
specific theory, since symmetry statements should be
used as requirements to be imposed on a theory, and
not be deduced from it. In fact, the instruction is easy
to formulate: 7°F is obtained from ¥ by reversing all
momenta and angular momenta and leaving the
positions unchanged. In this purely empirical form the
statement is verifiable, and has been verified to a large
extent. The essential point is that a directly verifiable
statement of time-reversal invariance has to be made
in terms of a geometric operation (180° rotation).

4 For nonscalar observables, the generalization of this statement
can be given in an elegant way according to A. Wightman,
Problémes Mathématiques de la Théorie Quantique, University
of Paris, 1958 (unpublished).

5 This distinctive nature of the time-reversal element of the
relativity group was pointed out by R. Haag (reference 3). For
the classical case, we adopt the viewpoint of S. Watanabe, Phys.
Rev. 84, 1008 (1951).
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For at least a restricted set of (improper) quantum
mechanical states, the classical statement can be
immediately adapted.

Postulate I: For a one-parlicle slale whick is a simul-
laneous eigenvector of momentum P and of the projection
of angular momentum (s=J-P/|P|) on il, the time-
reversal operator is equivalent to a 180° rotation with
respect 1o a direction normal to P, i.e.,

U(T)V,,s=eU(Rp)Vp =ePV_, . (2.2)

In this form, the statement is in agreement with
observations as well as with all theories of elementary
particles considered in the past. In the case of the
“doubled” representations, it will be seen that not all
simultaneous eigenvectors of P and s satisfy Eq. (2),
and therefore we have to impose it as a condition on
states. The fact that not all vectors or rays in Hilbert
space can be states, is well known.® Qur particular
superselection rule seems indispensable to give a veri-
fiable meaning to time-reversal invariance in the
“doubled” representations.

We state explicitly two more assumptions on super-
selection rules.

Postulate 11: If a vector ¥ is a state, then all vectors
> a;U(L:)Y are states, if the L; are the elements of the
proper Lorentz group.

Indeed, it would be absurd if, for instance, the time
development of a state could turn it into a vector
which is not physically meaningful.

Postulate 111: States form mulually orthogonal sub-
spaces in the Hilbert space.

These are usually assumed properties of superselec-
tion rules, and it seems difficult to obtain reasonable
physical results without them.

III. SELECTION OF PHYSICALLY ADMISSIBLE
IRREDUCIBLE REPRESENTATIONS

The “doubled” irreducible representations for non-
vanishing mass have been enumerated by Wightman.?7
The three “doubled” representations may be obtained
from the usual one by doubling the number of com-
ponents of the function in representation space. The
operators may be written under the form of a direct
product V(L)QUo(L) of 2X2 matrices V(I), V(T),
V(IT), and operators Uo(L) which act only within the
subspace defined by the usual representation. The usual
representations, which will be referred to as type 7, may
be realized either on sets of normalizable functions of
25-+1 components®® or on the normalizable solutions
of Dirac-type equations.!® In the first case, particles with

8 G. C. Wick, A. S. Wightman, and E. P. Wigner, Phys. Rev.
88, 101 (1952).

7L. Michel and A. S. Wightman, Princeton University Lecture
Notes (unpublished).

8 E. P. Wigner, Ann. Math. 40, 149 (1939).

? Yu. M. Shirokov, J. Exptl. Theoret. Phys. (U.S.S.R.) 33,
861, 1196, 1208 (1957); 34, 717 (1958) [translation: Soviet
Phys.—JETP 6, 664, 919, 929; 34(7), 493 (1958)7.

V. Bargmann and E. P. Wigner, Proc. Natl. Acad. Sci. (U.S.)
34, 211 (1948).
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TasLE I. Matrices of the various types of representation.

Type (U(DF [UUDTF V(D) vy van
I =+1 +1 1 1 1

woowt w0 9) (7 o) (1 7o)
mooFow= (o) (LY o) (3 o)
vowooF= (1) (7o) (o)

spin 3 are described by 4-component, in the second case
by 8-component functions for the “doubled” representa-
tions. We will write the wave functions as

()

¥

where ¢ and ¢ have the same number of components
as in representation /, and both ¢ and ¢ span subspaces
which are the bases of irreducible representations of the
proper Lorentz group. Since the operators U, and their
generators have been described in great detail®!° we
do not discuss them.

The matrices V are tabulated in Table I?7 together
with the squares of U(T) and U(IT). While the ma-
trices V are, of course, determined only up to a factor
of unit modulus, the squares of the antiunitary oper-
ators such as V(T)U.(T) are well-defined numbers
which do not change with the phases of the operators.
(See, e.g., reference 6.) The upper sign in Table I
applies to integral, the lower to half-integral spin.

Consider first spinless particles in the representations
IIT and IV. The eigenfunctions of the momentum
operator in representation I may be chosen to be real,

e.g., ¥,=06(p—p’). The general eigenfunctions of the
momentum operator in representations IIT and IV are

lhen ()f t]le fOIIn
(b lI :)

where ¢ and & are complex numbers. To test such
vectors for physical validity, we write according to
Eq. (2.2)

() (o) o Ga) 60

If these are to be equal to

av_,
eWU(Ro( ) =(07) 62
bv_,
then we must have
a=e%b*, b= —e¥a*, (3.3)
or
a=—e®* b=erPa*
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for representations IIT and IV, respectively. Clearly,
these equations have no nonzero solutions, and we
conclude that the representations IIT and IV have no
physical states at all.

For the general case of particles with spin, it is more
convenient to use a unitary transformation to diago-
nalize V(7). If there are physical states at all, then,
according to our assumptions, there must exist a
representation in which they have the form

(o) ()

where the functions ¢ form the basis of an irreducible
representation of the proper Lorentz group. It is also
easy to see that the matrix V(7") must be diagonal in
this representation.

However, U(T) is an antilinear operator, and the
diagonalization problem does not, as in the case of
unitary operators, have a solution unique up to a
reordering of the diagonal elements. It will be shown
that in this case the problem may have either no
solution or several essentially inequivalent ones. Since
any antiunitary operator may be written as the product
of a unitary operator R and the operator K of complex
conjugation, the operator U(7) has the form
V(T)KRo(T), where R leaves the subspaces invariant.
Since we are not concerned with transformations within
the subspaces, the problem requires the finding of a
unitary 2X2 matrix M such that

MVKM—=DK, (3.4)

or
MVKM-K=D,

where D is a diagonal matrix.

It is easy to verify that the problem has no solution
for representations IIT and IV. Therefore, these repre-
sentations must be discarded in general. The only
remaining possibility is the representation II, which by
the orthogonal transformation

=, )

is brought into the desired form

o), voe(: )
(7).

The squares of the operators U(7T) and U(IT) remain,

of course, unchanged by the transformation.
Clearly, the vectors

) ()

3.5)
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are states, while vectors of the form
L3
(s2)
are not. However, the diagonalization problem in this

case has many other solutions. Correspondingly, in the
representation (6), there are vectors

(o)

which would also, by our first requirement (Sec. II,
Postulate I) alone, qualify as states. By our Postulate
III, we must discard some of these vectors, and retain
only two mutually orthogonal sets. We choose the set

() ()
0/’ @
and we omit the proof that another choice would lead
to physically identical results.
A similar analysis shows that for particles with zero

mass the ‘““doubled” representations are empty of
physical states.

IV. PHYSICAL INTERPRETATION OF THE
IRREDUCIBLE REPRESENTATIONS

We have postulated in Sec. I that the multiplicity of
linearly independent one-particle states with a given
mass and momentum must be due to the structure of
the irreducible representations of the Lorentz group
alone, and not to the existence of additional symmetry
principles. To all particles with antiparticles, we must
therefore assign representation II, which has 2(2s41)
linearly independent states for a given momentum.
We interpret the states

(2) = ()

as particle and antiparticle states. We have three
verifiable predictions from this assignment :

(1) There is a superselection between particle and
antiparticle states. This result is in agreement with
experience, and it has been conjectured previously by
Wick, Wightman, and Wigner.6

(2) Particles with momentum p and projection s are
converted into antiparticles with (—p, —s) by space
inversion. This result, while not confirmed experi-
mentally, is not in disagreement with experiment. It
was conjectured by Landau.! In our assignment, the
operator U(I) has the same effect as the product of
U(I) and the charge conjugation operator C in the
usual assignment.

(3) Since the time-reversal operator does not trans-
form particles into antiparticles, the usual argument
concerning the expectation value of a vector that is
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invariant under time reversal leads to the conclusion
that the electric dipole moment must vanish, but not
the magnetic moment.

V. ONE TYPE OF CHARGED PARTICLE ONLY

To discuss the implications of the superselection
principle on many-body states, we consider first a theory
in which only one type of particle with antiparticle
exists. We are going to refer to the two types of states
as positive and negative, although the argument applies
also to neutral particles with antiparticles. The impli-
cation of the superselection rule for one-particle states
in the many-particle system may be formulated as
follows.

If a physical state is defined by the addition of an
extra particle to a pre-existing system, the added
particle can be only purely positive or purely negative
—not a linear superposition. In the general theory of
scattering, the creation of physical particles at a finite
time is described by quasi-localized particle-creation
operators™2 ¢ [called Q(0) by Haag] which create
rigorous one-particle states when applied to the physical
vacuum

cl=yW, (5.1)

and have certain other restrictive properties which
define their quasi-local nature.!?13

A many-particle state ¥’ of the above-mentioned
type is then defined by

V=3 c¥, (5.2)

where ¥ is any state. The superselection rule states
that a vector obtained by adding a linear combination
of a positive and of a negative particle, i.e.,

¥'= (ac,+bc )T, (5.3)

is not a state unless either ¢=0 or 6=0.

It is known that every superselection rule implies
restrictions on that class of self-adjoint operators which
may be considered as observables.® It is therefore
desirable to replace the restriction on states by a
restriction on observables. The connection between
states and observables is given by the remark that
immediately after the measurement of a nondegenerate
observable (a complete commuting set of observables),
the state of the system is the eigenvector that corre-
sponds to the observed values.® The superselection rule
states therefore that a vector that is not a state cannot
be an eigenvector of a nondegenerate observable.

In the irreducible subspace, the superselection rule
can be expressed by the requirement that every non-
degenerate observable © must commute with a set of

matrices
e 0
(0 e‘”) '

11 H, Ekstein, Nuovo cimento 4, 1017 (1956).
2 R. Haag, Phys. Rev. 112, 669 (1958).
13 H, Ekstein, Phys. Rev. 117, 1590 (1960).
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Clearly, the eigenvectors of such operators can be only

of the form
(¢) (O )
b b
0 ¢

(::) (a0, b=0),

and this is just the statement of superselection. If all
nondegenerate observables commute with a matrix,
then the degenerate observables do so & fortiori. With
the notation

but not

me(™ ) 5
5= ; .
0 e
we have
[®7W5}|/’(1)=07 (55)
where the ¢ are the one-particle states.
By Eq. (1), the operators W; have the property
Wsc Vo= e %c . (5.6)

We now wish to extend the definition of W; from the
one-particle state to the whole Hilbert space 3C.
First, we define

WB\I’():‘I’().
Hence Eq. (6) may be written

WaciW.s_l\I’(): et iaci‘lfo. (57)

It is natural to define a set of unitary operators W
on 3¢ by generalizing this equation to

W&CiWa_l =¢t iaci, (58)

and we may conjecture that the requirement that all
observables commute with the operators thus defined
will imply our superselection rule for many-body states.

We will show that a nondegenerate operator O
cannot have a state of the form ¥’ [Eq. (3)] for
eigenvector if

Lo,W;]=0. (5.9)

If, contrary to our assertion, such a vector were an
eigenvector of 0, we would have

oV’ = 0(acy+be_)¥=A(ac.+bc)¥, (5.10)
where 220, b>£0; and, because of Eq. (9),
0(aee,+be e YWs¥=X\(ae?cy+bec_)¥. (5.11)

Since © is nondegenerate, the vector on the right-hand
side of Eq. (11) can differ only by a factor e from the
vector ¥/,

Since, by assumption, ¥ is a state, there exists
another nondegenerate observable 0’ of which it is an
eigenvector:

O =u¥,

W' W s W ¥ = O'W 5¥ = ulW 5.

(5.12)
(5.13)
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Hence, Ws¥ can differ from ¥ only by a factor of unit
modulus e, and we have

(ac,+be_ )V =eiotB (geidc +be )W, (5.14)

But, since ¢4 is a creation operator which does not
annul any vector, this equation is absurd, unless =0
or b=0. This proves the assertion.

A state of the type

N M

H cin Il cen¥o=Vn,ar (5.15)

is an eigenvector of the operator W with eigenvalue
¢! M=% We can define a self-adjoint operator Q by

Ws=ei@ (5.16)

and infer that Q commutes with all observables, that
its eigenvalues are integers, and that no two of its
nondegenerate eigenvectors can be linearly combined
to give states. These are properties of the charge and
baryon-number operators.

The asymptotic states W& are constructed from the
states [Tc,JTe_¥o by a well-known limiting process!—'5
which involves only the energy operator H. Since this
must be an observable, it commutes with Q. We can
therefore infer that the asymptotic particle-creation
operators A." are transformed by W, in the same
manner as the operators ¢, i.e.,

WaA :ETW5_1= et 4 :ET (517)

for both “in” and “out” operators.
It follows then that the .S operator itself commutes
with Q.

VI. RAY MAPPING IN THE PRESENCE
OF SUPERSELECTION

It is well known'® that the physical invariance
principles do not require a proper representation of the
group elements L by operators U(L) on Hilbert space,
but only a mapping of elements L on operator rays
U(LZ) which consist of all operators 7(L)U (L) (|| =1)
such that

However, if Eq. (1) is to be satisfied for every ray f in
Hilbert space, it is possible to select one representative
operator U(L) from each operator ray U(L) so that
the mapping becomes a many-to-one mapping from
elements L to representative operators U(L).!® Such a
choice is essentially unique, because the only other
possible operators which are representative for a given
set U(L) are of the form 7(L)U(L) (|r]=1).

In presence of superselection rules, Eq. (1) must be
modified so that its assertion is restricted to physical

14 R. Haag, Suppl. Nuovo cimento 14, 131 (1959).
15 W. Brenig and R. Haag, Fortschr. Physik 1, 183 (1959).
16V, Bargmann, Ann. Math. 59, 1 (1954).
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states only:

U(L)U(Ly)f=U(L.Ly)f, (6.2)

where f is a ray which represents a physically realizable
state. In this case, the choice of representative operators
is not unique up to a factor of unit modulus.

By our Postulate II (Sec. II), the states f span
subspaces JC; in Hilbert space. If a given representative
U(L) is replaced in its action on f,(f;€3¢;) by r.U(L),
Le., if

U (Dt=7,(L)U (L), 6.3)

then clearly U’(L) is also a possible representative of
the operator ray U(L). Therefore, there may be several
inequivalent representatives U™ (L) in a representation
in the presence of superselection rules. This possibility
was discussed by Wightman.!?

In our representation II, it is possible to adopt the
unit matrix for V(7) in addition to the matrix

(1 0

0 —1)

This is not the most general possibility, but it will be
sufficient for our purpose.

For representation II, with the adopted superselec-
tion rule, we consider the two assignments given in
Table II.

Of course, the matrices of class (b) can be reduced
to give two representations of type I, but this is an
unphysical operation, since the vectors in the two
invariant subspaces are not states. The representation
is mathematically but not physically reducible because
of the superselection rule.

(|7l =1, f:e50,),

VII. SEVERAL TIME-REVERSAL OPERATORS IN
THE COMPLETE HILBERT SPACE

We have seen that in an irreducible subspace of type
II at least two essentially inequivalent time-reversal
operators can be defined. The extension of a symmetry
operator from the one-particle states to the many-body
states is accomplished by the construction of direct
products of the irreducible representations.? In the
case where only one type of particle is present, this
construction is unambiguous, and the introduction of
the operators U, in addition to U, does not give any
new results. However, in presence of several types of
particles, one cannot know a priori which of the

TasLE II. Assignments for representation II.

V) v(T) vary [UMF LUANr
c 0D G Ty owm
SN R (I R

17 R. Haag (private communication).
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operators U™ (defined on the whole Hilbert space)
will have the form U, or U, on a particular irreducible
subspace.

If there are two types of particles with representation
II, we could have, e.g., either of the schemes shown in
Fig. 1. These diagrams symbolize the assignments

U%o=U o,

U(l)'l’a,ﬁz Ua‘pa.ﬂ; Il/ ¥
UDYp=Upyls, 7.1)
U= Uga, '

U 5= Upbas,
Ver=Uobets ogem Ut

The operators U™ are the operators defined on the
whole Hilbert space, while U, are the operators defined
on the irreducible representations in Table II. Factors
of unit modulus may be inserted in Eq. (7.1) for
greater generality.

The existence of superselection rules in the one-
particle subspaces again implies superselection rules for
the many-particle states. In order to guarantee these,
we can again define operators W™ with the properties

W50y (WD) 1= gt ide,
Ws@cpy (W)= etidey,

which commute with all observables. These operators
guarantee the superselection rules for states which
consist only of « or only of 8 particles, but the commu-
tation rules of W, with ¢g and of W;® with ¢, are
not given by any symmetry property. One could have,
for instance

(7.2)

[(Ws®,e6]=[W:?,c.]=0, (7.3)

or

W0 =W;®. (74)

The most natural assumption is that the operators
W™ are associated with the operators U™ as follows.
For any particle of type », the commutation rules are
of the form

Wsme, (Ws™) T =exp(£i8,)e,s,  (7.5)

and 8, =0 for those particles » on whose irreducible
subspace U™y,=Uw,, i.e., where the operator U™
does not imply any superselection rules on particle ».
Those particles which satisfy this assignment rule, will
be called simple. Even with this assumption, the relation
between two nonvanishing phases remains indetermi-
nate at this point. For instance, in Fig. 1(2), we have

W s®cp (WD) 1= etideg, ;
Ws®@cgy (Wy®) 1= e idey,

. (7.6)
Ws(l)cai(Wa(l))v—lz e;{:zﬁcai;
Ws®ar(W3®) ™' =cCax,
which is unambiguous, but in Fig. 1(1),
Ws®Ca,p2(Ws®) ™' =Ca,pa,
WsWeqy (WD)t =exp(Ei8a)Cax, (7.7)

W s® gy (W 5D) 1= exp(2=i8s)cay,
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Fi16. 1. Possible schemes for two types of particles
with representation II.

where g may be considered to be any nonvanishing
function of §,. However, this ambiguity will be removed
by further analysis.

By the argument given at the end of Sec. V, the
scattering operator S commutes with the operators
W;s™. Now consider many-particle processes in which
an initial state of the form

ITA404 O (k)] TA 0O (R)ITA 5T (k) [ LA (k) ¥o

is converted into a state of the same type, but with
different particle numbers #,', n_', m’, m_'. The
matrix element for this scattering process can be
nonvanishing only if

(ny—n_—n +n_")oe= (my' —m_'—m_—+my)bs.

Therefore, the phases 8, and 8 must be integral
multiples of a constant g.
We have then, for the phases §,” in Eq. (7),

5;:("): g(")m,,é,

where m, is an integer and ¢™ a real number.
We can now introduce, as in Sec. V, a self-adjoint
operator Q™ such that

W™ = exp (iQ™ ¢™s), (7.9)
with

Ws™e, . (Ws™) ' =exp(£iom,g™)e,s.  (7.10)

The operator Q™ is diagonal with respect to all states,
and has integral eigenvalues. This result supports our
previous interpretation of Q™ as the charge or baryon-
number operator.

Further information about the properties of simple
particles can be obtained by considering a reaction of
two simple particles @ and # which results in the
creation of a new simple particle 7. Of course, a scatter-
ing process with only three particles would violate the
laws of conservation of momentum and energy, but
we may add a particle of the same type to the final
and initial states. Since the presence of this extra
particle does not charge the following argument, we.
will omit it for the sake of simplicity.

Consider two simple particles @ and 8, both having
either a nonvanishing charge or baryon number. In
our formalism, this means that there exists an operator
U® such that U, s=Uabas We consider the two
operators [U®(T)]? and [U®IT)JE. Since the S
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operator commutes with both, an S-matrix element can
be nonvanishing only if

CUDT) P¥ap, SLUC(T) PUy) = (WS )
=([UOUT) e SLUCIT) P¥X,), (7.11)

where ¥,5 and ¥, are the asymptotic “out” states.
Since the asymptotic states transform like products of
the corresponding one-particle states,® the quantities
[U® ¥ ,5 can be determined from Table I if the spins
of the particles @ and 3 are known. Assume first that
a has integral spin, 8 half-integral. Then, by Table I,

LUD(T) P¥ap= (1) (=) ¥ap,

7.12
(00D Y= () (e

It follows from Eq. (7.1) that
[USY(D) W, =[UDIT)V,=—Y,. (7.13)

The reader will convince himself that for any choice
of spins, the operators [U®(T) and [U®IT)7J
produce the same sign change on ¥,. By Table I, we
conclude that the operators U® act on the subspace v
as operators of type &. Therefore, by our definition of
simple particles, the charge (or baryon number, accord-
ing to the physical meaning of U®W) of the reaction
product is zero. Since both particles & and 8 have
nonzero eigenvalues of Q@ this can be true only if the
reacting particles @ and 8 have equal and opposite
eigenvalues of QW.

We can now consider other reactions of the three
simple particles a, 8, ¥ with other simple particles which
also create simple particles. By repeating the argument
given above, we conclude that the eigenvalue of the
operators Qg™ on the irreducible subspaces either
are zero or are equal in absolute magnitude to a given
constant. Since the eigenvalues of Q™ on many-particle
states can be only larger, in absolute value, we may
take its value to be ¢, the smallest nonzero eigenvalue
of Q™¢™ according to Eq. (9). We have the general
result that the eigenvalues of Q™ on the one-particle
subspaces of simple particles are 0 and =4=1.

These properties are common to those particles which
are currently considered as elementary, and we are
therefore led to a physical interpretation of elementary
particles as being simple.

It was pointed out by Haag? that within the accepted
framework of field theory there is no nonarbitrary
difference between elementary and composite stable
particles. Nevertheless, common sense imposes a dis-
tinction between what are currently considered ele-
mentary particles and stable composite “‘particles” such
as chairs or black dwarfs. Our scheme of classification
offers a nonarbitrary definition of elementary particles
as those that are simple.!®

The assignment of representations and superselection
rules to elementary particles is now obvious. We define

18 But not only elementary particles are simple. The hydrogen
atom, for instance, meets all requirements for simple particles.
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two sets of operators U®, U® with corresponding
Q@ Q®, They are given the physical meaning of charge
and baryon number, respectively. On subspaces of
elementary particles with charge (baryon number) O,
the operators U®(U®) have the form Uj; on those
which have charge (baryon number) 1, it is U.. For
instance, the particles 7%, (p,p), (»,7) are characterized
by Fig. 2.

There is no necessity to introduce a third operator
for lepton number for the purpose of this scheme. For
composite particles, the assignment is obtained from
the reaction which creates them. For instance, the
(a,&) particle is obtained by the reaction

2p+2n— qa,
or
2p+27 — a.
Hence, '

Q(l)‘lba: +2, Q(2)‘/’a= +4y,.

The assignment of the representatives of the Lorentz
group can be read off the reaction equation in con-
junction with Table II. It is U®Y,=UPY,=Uw,.
This example shows the difference between simple and
composite particles. The spin of « is 0, hence the
number of linearly independent states is 2. Both
operators U® U® are of the form U,, and therefore
the representation would be reducible, except for the
existence of a superselection rule which forbids the
existence of linear combinations of states with charge
+2 and —2 (the representation is physically irre-
ducible). The difference between simple and composite
particles can be seen as follows. Since there is no
operator of the type @, the existence of the superselec-
tion rule would appear wholly unmotivated, by con-
sidering the subspace of (a,&) alone. It is only motivated
by the manner in which the « particle has been produced
from simple particles. In other words, the assignment
analysis must start from simple particles, if it is to be
nonarbitrary.

A sensitive test of our scheme is the prediction that
an elementary particle of zero charge and zero baryon
number must belong to representation I, and must
have only (2s5+1) linearly independent states for a
given momentum (for 73%0). The assignment would be
invalidated by the existence of two 7% or K° particles
with exactly equal mass.

For massless particles, our assignment provides no

nt (p.F) (n7)

b Ug Uq Up Uq
)

VA

u

(charge) (baryon number)

F1G. 2. Assignment of representations and superselection
rules to elementary particles.
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charge and baryon number, since the “doubled” repre-
sentations are unphysical.’® The discovery of a massless
particle with nonzero charge or baryon number or with
more than two linearly independent states for a given
spin would also invalidate our assignment.

VIII. INTERACTION WITH THE ELECTRO-
MAGNETIC FIELD

We have justified our interpretation of the operator
Q as charge operator by showing that it has some of
the properties of the latter: its eigenvalues are integers,
its eigenstates are separated by superselection, and its
eigenvalues on one-particle states of simple particles
are 0 and 41. The primary definition of charge by its
interaction with the electromagnetic field cannot be
deduced from mere symmetry considerations, but we
will show that the most obvious type of coupling of
particles with an external electromagnetic field is in
agreement with our interpretation.

For this purpose, field operators must be defined
whose transformation properties reflect those of the
one-particle states. The general prescription for deter-
mining the properties of creation operators AT is as
follows.?20 If the representative U(L) of an element L
transforms a one-particle state y; into y», and if creation
operators 4;" and 4, are defined by

A o=y1; A=y, (8.1)
then

U(L)A,TU (L)'= A", (8.2)

The creation operators are uniquely defined by the
usual commutation or anticommutation relations, and
by the requirement that their adjoints annul the
vacuum state. The operators may be considered as
creating either asymptotic “in” or “out” states.

For spinless particles of representation II, we define
field operators

o(x)= (2m) f @ 6T A, (K)+A_H (—k) ]2k, (83)

One shows readily that under the operations of the
restricted group it follows that

U(L)e®)U(L)™= ¢(Lx). (8.4)
From Egs. (3.6), (8.1), and (8.2), one has
UMAIK)U(I)=A4_1(—k). (8.5)
Hence, )
U)o (x,20)U(I)7'= o' (=X, @). (8.6)

We see again that the inversion operator has the same

1 From this viewpoint, the neutrino has no antiparticle, but
two linearly independent states for a given momentum which are
carried into each other by space inversion.

20 D, Kastler, Ann. Univ. Saraviensis 5, 213, 153 (1956).
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effect in our representation as its product with charge
conjugation in the usual representation.

In an external field, the physical covariance require-
ment is changed to the statement: If an element of the
Lorentz group induces a change 4,— A4,/, the corre-
sponding state is obtained from ¥ — V'=U(L)¥. To
guarantee this convariance, one postulates equations
of motion for the field operators which are invariant
with respect to a simultaneous change A,— A4,/
(induced by L) and ¢ — U(L)e(x)U(L)™ . The only
such equation, linear and second order in ¢ and using
only one coupling constant, is

(i0u—ed ) (i0,—ed ) o (x) +mp(x)=0.  (8.7)

In accordance with Landau’s suggestion,! we assume
that A, behaves as a pseudovector under space inver-
sion. The simultaneous transformation 4;— 4;, (1=1,
2, 3), Ao— — 4o, o(x) > UI)e(x)U(I)™" transforms
Eq. (8.7) into

(10u+ed ) (10, +ed ) o' (v) +m?e' (x) =0, (8.8)

which is the Hermitean adjoint of Eq. (8.7). This
proves the invariance of Eq. (8.7) under space inversion.
To see the observable implications of this equation,
we need only apply the operator to the vacuum, and
observe that because of Eq. (8.3) and A¥,=0, ¢ creates
only negative, ¢’ only positive particles. This estab-
lishes the connection between the two types of physical
states in the irreducible representation and the electro-
magnetic field.

It is more usual to introduce the field operators with
their transformation properties by considering ¢(x)
first as numerical functions which realize the Hilbert
space of the irreducible representation, and by deter-
mining the transformation properties of the field
operators from those of the functions ¢(x). We have
not done so because we would need a two-component
function ¢,(x) for the irreducible representation, while
the field operator has only one component, and the
corresponding change of the formalism by the transition
from functions to operators would seem artificial.

The case of the particles with spin % is analogous.
If one wishes to realize the Hilbert space of the irre-
ducible representation by functions ¥, which satisfy
the Dirac equation, one needs eight components,” but
the field operator defined by analogy with Eq. (3) has
only 2(2s+1)=4 components.

A draft of an article by V. Bargmann, A. S. Wight-
man, and E. P. Wigner, received after completion of
this paper, gives a detailed derivation of the ‘“doubled”
representations and proposes similar assignments.
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