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Abstract. We present a method to semiclassically compute the pair creation rate of bosons and fermions in de
Sitter spacetime. The results in the bosonic case agree withthe ones in the literature. We find that for the constant
electric field the fermionic and bosonic pair creation rate are the same. This analogy of bosons and fermions in the
semiclassical limit is known from several flat spacetime examples.

1 Introduction

Quantum field theory (QFT) in curved spacetime is one way of merging Einstein’s theory of gravitation
and QFT in the usual Minkowski spacetime within a self consistent framework [1, 2]. One of its central
results is the discovery of particle creation in a time-dependent gravitational field [3]. This mechanism
is believed to generate the primordial cosmic inhomogeneities that serve as seeds for the observed large-
scale structure of the universe.
A lot of studies of QFT in curved spacetime are investigatingde Sitter (dS) spacetime. It has constant
scalar curvature and is maximally symmetric for any given dimension, in the same way as Minkowski
spacetime. In cosmology, dS space is used as a model for both the early stage of inflation (for reviews see
[4]) and the late stage of acceleration of the expansion (an introductory review is given in [5]). In addition
to its relevance for cosmology, dS space may give hints to understand the quantum nature of spacetime
[6]. These facts motivate the investigation of physical processes in this spacetime.
Originally, particle creation was studied under a strong field background originating from a time depen-
dent vector potential [7]. Since then, it has been explored in a more general set-up, where the effects of
the gravitational field and the electric field are both contributing to the creation of pairs. The Schwinger
mechanism in curved spacetime, more specifically, in dS space, has recently started to be studied in depth
[8, 9, 10, 11, 12, 13, 14, 15, 16, 17].
Better understanding Quantum electrodynamics (QED) in dS spacetime could be insightful for a couple
of problems. It is an interesting framework for the study of false vacuum decay or bubble nucleation
[9, 11]. Constrains on magnetogenesis scenarios were put in[8] via the backreaction of the created pairs
and its induced current. In some models of preheating, it might give clues on the open problem of baryo-
genesis. Via the AdS-CFT correspondence, it has also been used as a playing field to test the ER=EPR
conjecture [10]. Additionally it might help to better understand renormalization schemes in curved space-
time [1, 18] and the relations of these schemes to each other.
The purpose of this paper is to investigate spin 1/2 pair production under the influence of an external
electric field, in four-dimensional dS spacetime (dS4). This problem has already been studied for bosons
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in two-dimensional dS spacetime (dS2) [9] and in dS4 [8]. In [13, 19] spin 1/2 pair production in dS2 was
investigated but the 4D analog case is much less studied. We propose a derivation of the number of pairs
created in the semiclassical limit following the ideas of [20]. We find that there is no difference between
bosons and fermions in this limit.
The paper is organized as follows: in section 2 we investigate the Schwinger effect in dS4. After describ-
ing the basic equations, we show how the Dirac equation becomes a coupled second order differential
equation in the presence of both electric and gravitationalterms. We review the derivation of the bosonic
pair creation rate and calculate the fermionic one with the help of a semiclassical expansion for general
electric fields in dS spacetime in section 3. We use this result in section 4 to compute the bosonic and
fermionic pair creation rate of a constant electric field in dS spacetime. Finally we draw some conclusions
in section 5.

2 Dirac field in dS Space-time

We consider QED coupled to a Dirac fermion in dS4. In order to study Schwinger pair production, we
assume that the gravitational and electrical field are background fields and that the fermionic field is
dynamic. The action is given by

S =
∫

d4x
√
−gL =

∫

d4x
√
−g

[

−1
κ

R+
i
2

(ψ̄γµ∇µψ − ∇µψ̄γµψ) −mψ̄ψ − 1
4

FµνF
µν

]

, (1)

where the field strength is defined in the usual wayFµν ≡ ∂µAν − ∂νAµ.
The dS4 spacetime we want to study is described by the metric

ds2 = a(η)2(dη2 − dx2), (2)

with signature (+,-,-,-). Hereη is the conformal time which is parametrized by the Hubble factor in the
following way

η = − 1
a(η)H

, a(η)2H ≡ da(η)
dη

, (−∞ < η < 0). (3)

For the description of spinors the tetrad field is used. It is related to the metric through the relation

gµν = ea
µe

b
νηab, (4)

whereηab is the usual Minkowski metric. Throughout this paper, we useGreek indices for spacetime
indices (µ, ν = η, x, y, z) and Latin indices for tetrad ones (a, b = η, x, y, z). Applying the tetrad formalism
to dS4, one gets

ea
µ =





























a(η) 0 0 0
0 a(η) 0 0
0 0 a(η) 0
0 0 0 a(η)





























. (5)

The covariant derivative for fermion fields is defined as

∇µ ≡ ~∂µ + ieAµ(x) − i
4
ωab
µ σab, (6)

with the commutator of the gamma matrices

σab ≡
i
2

[γa, γb] (7)



and the spin connection are defined as

ωab
µ ≡

1
4

[

ebα(x)∂µe
a
α(x) − eaα(x)∂µe

b
α(x) + eaα(x)∂αeb

µ(x) − ebα(x)∂αeaµ(x)

+ebν(x)eaλ(x)ecµ(x)∂λec
ν(x) − eaν(x)ebλ(x)ecµ(x)∂λec

ν(x)
]

.

(8)

The non-zero components of the spin connection (8) can be shown to be

ω01
1 = ω

02
2 = ω

30
3 = −ω

10
1 = −ω

20
2 = ω

30
3 =

a′(η)
2a(η)

, (9)

where prime denotes derivative with respect to conformal timeη.
The gamma matricesγµ are related to the gamma matrices in the tangent flat spaceγa viz.

γa ≡ γµea
µ. (10)

We will work with the Dirac representation of the gamma matrices,i.e.

γ j =

(

0 σ j

−σ j 0

)

, γ0 =

(

I2 0
0 −I2

)

, where σx =

(

0 1
1 0

)

, σy =

(

0 −i
i 0

)

, σz =

(

1 0
0 −1

)

. (11)

Varying the action with respect to the spinor field gives the Dirac equation
(

iγµ∇µ −m
)

ψ(x, η) = 0. (12)

Using Eqs. (5) and (9), this equation becomes
{

i

(

γµ~∂µ +
3
2

aHγ0 + ieAµγ
µ

)

−m

}

ψ(x, η) = 0. (13)

One now considers the auxiliary fieldΨ(x, η) = a3/2(η)ψ(x, η) which can be thought of as the equivalent
of the Mukhanov-Sasaki variable in inflation models [1]. With this substitution the Dirac equation takes
the form

{

γµ(i~∂µ − eAµ) −m
}

Ψ(x, η) = 0. (14)

We will also decompose this field in momentum modes accordingto

Ψ(x, η) ∼ e
i
~

k.xψk . (15)

To solve the Dirac equation, for the purpose of the calculation of the pair creation rate, it is often useful
to use the squared version of the Dirac equation because of its similarities to the Klein-Gordon equation,
see e.g. [20, 21]. The squared Dirac equation can be found using

Ψ(x, η) = γµ
[

(i∂µ − eAµ(η)) +ma(η)
]

φ(x, η) (16)

with

φk(η) =

(

φ1(η)
φ2(η)

)

, φi(η) =

(

φ+i (η)
φ−i (η)

)

. (17)

in the Dirac equation. In the previous equation,φk(η) is the Fourier transform (in the sense of (15)) of
φ(x, η). Here we consider a background vector potential for the electromagnetic sector such that

Aµ ≡ A(η)δz
µ. (18)



For such fields the squared Dirac equation takes the form
(

~
2∂2

η + ωk(η)2 − i~ma′(η)
)

φ±1 ± i~eA′(η)φ±2(η) = 0, (19)
(

~
2∂2

η + ωk(η)2 + i~ma′(η)
)

φ±2 ± i~eA′(η)φ±1(η) = 0, (20)

where the effective pulsation and the kinetical momentum are defined as

ωk(η)2 ≡ pz(η)2 + k2
⊥ +m2a(η)2, pz(η) ≡ kz + eA(η), k2

⊥ ≡ k2
x + k2

y. (21)

This equation can be compared to the equivalent bosonic problem. The equation of motion derived from
the Klein-Gordon equation is (see Eq (2.13) of [8])

(

~
2∂2

η + ωk,boson(η)2
)

qk = 0, (22)

with

ωk.boson(η)2 = ωk(η)2 − 2
η2
. (23)

The equation of the bosonic problem (20) can be understood asa harmonic oscillator with a time depen-
dent pulsation. The two other terms in Eq. (20) are new and dueto the fermionic nature of the particles
considered. On the one hand, the mass term was already derived e.g. in [18] where no background electric
field was considered. On the other hand, the electric term is present for instance in [22] in flat spacetime.
Such that this equation is a generalization of the Dirac equation in curved spacetime with background
electric and gravitational field.
The squared Dirac equation is also analogous to the Dirac equation for two-component fields in flat space-
time. In [20] a method was used to semiclassically compute the pair creation rate for these fields. It is
possible to use the same method for the case studied here. Instead of looking for a solution of the squared
Dirac-equation (20) we will however use the ansatz

ψ~k,↑(η) =





























−ik⊥ ψ+2 (η)
(kx + iky)ψ+2(η)
−ik⊥ ψ+1 (η)

−(kx + iky)ψ+1 (η)





























, ψ~k,↓(η) =





























(kx − iky)ψ−2 (η)
ik⊥ ψ−2 (η)

−(kx − iky)ψ−1 (η)
ik⊥ ψ−1 (η)





























. (24)

This ansatz can be derived by finding the solution of the squared equation analogous to [20] and then use
(16) to construct a solution for the Dirac equation (14). Observe thatψ~k,↑(η) andψ~k,↓(η) are independent
since

ψk,↑(η)† · ψk,↓(η) = 0. (25)

Putting (24) in the Dirac equation (14) leads to the equations

i~ψ
′±
1 (η) +ma(η)ψ±1(η) ± (pz(η) + ik⊥)ψ±2 (η) = 0, (26)

i~ψ
′±
2 (η) −ma(η)ψ±2(η) ± (pz(η) − ik⊥)ψ±1 (η) = 0, (27)

which we will solve in section 3.

3 Semiclassical number of pairs in dS spacetime

The semiclassical expansion is considering cases where a vacuum state for the produced particles exits
in the asymptotic future. That is true if the background fields are evolving slowly. To quantify the slow
varying background more precisely, we introduce a dimensionless slowness parameterT by replacing



the scale factora(η) by a family of functionsaT(η) ≡ a(η/T). Doing that, in the limit of infinitely slow
varying backgrounds,T → ∞, the derivatives ofa(η) will tend to zero. Orders ofT are usually called
adiabatic orders [1] but it can be noticed that the only placewhereT is involved is in the derivative∂η of
the Dirac equation so it is possible to "formally" poseT = 1/~ and expand in power of~.
In this section, we will first review the calculation of the number of particles in the bosonic case, which
can be carried out with flat spacetime techniques and then present the fermionic case. The strategy will
be the following:

• Reformulate the equation of motion in terms of an equation for the mode functionsα(η), β(η).
• Perform a multiple integral iteration to compute|β|2.
• Calculate the integrals with a semiclassical saddle point approximation to derive the number of

created pairs for each momentum modek.

3.1 Equations for the mode functions

In this section we derive the equations for the mode functions from the Klein-Gordon and Dirac equation
respectively. The aim is to construct equations in whichα′(η) depends only onβ(η) and vice versa, in
order to perform the multiple integral iteration of the nextsection.

3.1.1 Bosonic case

To compute the semiclassical pair creation rate we start from (22). The form of these equations is the same
as in flat spacetime, the only difference being the specific time dependence of the fields. We will shortly
review the well know techniques of flat spacetime (see e.g. [21]) applied to our field configurations. One
can use the ansatz (which is inspired by a WKB expansion)

qk(η) =
α(η)

√

ωk(η)
e−

i
2 K0(η) +

β(η)
√

ωk(η)
e

i
2 K0(η), (28)

q′k(η) = −
iω′k(η)

~















α(η)
√

ωk(η)
e−

i
2 K0(η) − β(η)

√

ωk(η)
e

i
2 K0(η)















, (29)

where

K0(η) =
2
~

∫ η

−∞
ωk(τ)dτ, (30)

whereα(η), β(η) are the mode functions.
The momentum spectrum of the pair creation rate is defined as

nk ≡ lim
η→0
|β(η)|2 , (31)

with the boundary conditions

β(−∞) = 0, α(−∞) = 1. (32)

Using this, together with the ansatz (28)-(29) in the Klein-Gordon equation (22) we find that the mode
functions are connected through coupled differential equations

α′(η) =
ω′k(η)

2ωk(η)
eiK0(η)β(η), (33)

β′(η) =
ω′k(η)

2ωk(η)
e−iK0(η)α(η). (34)



3.1.2 Fermionic case

To derive analogous equations in the fermionic case we startfrom the equations (26) and (27). The initial
idea of this work comes from the similarities between this equations and Eq. (11-12) of [20]. For the
semiclassical treatment one makes the following ansatz

ψ±1 (η) =
C±

√

ωk(η)

√

p(η)
√

pz(η) − ik⊥

(

α±(η)[ωk(η) −ma(η)]e−
i
2 K(η) + β±(η)[ωk(η) +ma(η)]e

i
2 K(η)

)

, (35)

ψ±2 (η) =
∓C±

√

ωk(η)

√

p(η)
√

pz(η) + ik⊥

(

α±(η)[ωk(η) +ma(η)]e−
i
2 K(η) + β±(η)[ωk(η) −ma(η)]e

i
2 K(η)

)

, (36)

with the integrals

K(η) ≡ K0(η) + K1(η), (37)

K1(η) ≡ k⊥

∫ η

−∞

ma(τ)p′z(τ)

ωk(τ)p(τ)2
dτ. (38)

Using the ansatz (35)-(36) in (26) and (27), we find that the mode functions are connected through coupled
differential equations

α′±(η) = −
ω′k(η)

2ωk(η)
Gα(η)eiK(η)β±(η), (39)

β′±(η) =
ω′k(η)

2ωk(η)
Gβ(η)e

−iK(η)α±(η). (40)

with

Gα =
ma(η)
p(η)

−
ωk(η)ma′(η) − ik⊥p′z(η)

p(η)ω′k(η)
, (41)

Gβ =
ma(η)
p(η)

−
ωk(η)ma′(η) + ik⊥p′z(η)

p(η)ω′k(η)
, (42)

representing the fermionic corrections to the analog bosonic case.

3.2 Multiple integral iteration

In this section we will perform the multiple integral iteration for the fermionic case. Because of the similar
form of the equations (33)-(34) and (39)-(40) the results for the scalar case can be derived from the ones
obtained below by settingGα(η) = Gβ(η) = 1 andK(η)→ K0(η).
By iteratively using Eqs. (39) and (40) and the boundary conditions (32) one finds

β±(0) =
∞
∑

m=0

∫ ∞

−∞
dη0

ω′k(η0)

2ωk(η0)
Gβ(η0)e−iK (η0)

×
m

∏

n=1

∫ ηn−1

−∞
dτn

ω′k(τn)

2ωk(τn)
Gα(τn)eiK (τn)

∫ τn

−∞
dηn

ω′k(ηn)

2ωk(ηn)
Gβ(ηn)e−iK (ηn).

(43)

As described in [23] these integrals are dominated by the classical turning points given by

ωk(η±p) = 0. (44)



It can be shown (see [20, 21, 23]1) that for one pair of simple turning points the momentum spectrum of
the pair creation rate (31) in a semiclassical saddlepoint approximation is equal to

nfermion
k =

∣

∣

∣e−iK (η−p)
∣

∣

∣

2
. (45)

For the bosonic case we can find

nscalar
k =

∣

∣

∣e−iK0(η−p)
∣

∣

∣

2
. (46)

by using the substitution discussed above. We thus find that analogous to the case of two-component
fields in flat space-time the difference between fermions and bosons is a factor of the form exp(K1(η−p)).

4 Pair creation rate of a constant electric field in dS spacetime

In this section we derive the pair creation rate for a constant electric field, which is described in dS4 by

A(η) =
E

H2η
. (47)

This is due to the fact that a co-moving observer, with a four-velocityuµ, would measure an electric field
of

Eµ = uνFµν = aEδz
µ, (48)

which leads to a constant field strength sinceEµEµ = E2.
For convenience we introduce

µ2 =
e2E2

H4
+

m2

H2
= λ2 + γ2, (49)

whereλ = eE
H2 represent the electric field divided by the Hubble rate as usually in cosmological spacetime

andγ = m
H is the mass term divided by the Hubble rate. These two quantities represent the electric and

gravitational contribution respectively. We can now checkin which limit the semiclassical approximation
holds. It requires the rate of change of the background to be small in the asymptotic future, that is













ω′k(η)

ω2
k(η)













2

∼
η→0

µ−2 and













ω′′k (η)

ω3
k(η)













∼
η→0

2µ−2 (50)

being small, we see that this is the case whenµ ≫ 1. Comparing to the bosonic case we see that in the
limit µ ≫ 1 the "-2" in (23) is negligible, so that the fermionic and bosonic pulsation are the same. To
compute the pair creation rate we first have to compute the integralsK0(η) andK1(η) defined in (30) and
(38) respectively. The value ofη at the turning point (44) is found to be

η−p =

−λ kz

k − i

√

γ2 + λ2
(

1−
(

kz

k

)2
)

k
. (51)

The imaginary parts ofK0(η−p) andK1(η−p) are the only ones contributing to (45). One can show that

Im[K0(η−p)] = −π
(

µ − kz

k
λ

)

θ(kzλ), (52)

Im[K1(η−p)] = 0, (53)

1The detailed intermediate steps can be found in Eqs. (32)-(38) of [20]. Observe that in the current paper the integrationcontour
is closed in the lower imaginary half plane because of opposite convention for the phases in (43).



Whereθ(x) is the Heaviside step function. It was introduced since thereal part of the turning point (51) has
to be negative for the turning point to be inside of the closedcontour which is needed in the approximation
of (43). We thus find that only pairs with a momentum inz-direction which has the same sign asλ are
produced in the semiclassical limit. This is what was calledpair production in “screening” direction or
“downward” tunneling in [9]. The case of opposite sign, called “upward” tunneling is suppressed in the
semiclassical limit.
K1(η−p) was the only difference between bosons and fermions and is not contributing to the number of pairs
created. Thus we find that the number of pairs in the semiclassical limit for both bosons and fermions is
given by

nk = exp

[

−2π

(

µ − kz

k
λ

)]

θ(kzλ). (54)

We will close this section by performing the flat spacetime limit and making the relation with the bosonic
case of [8] explicit. The definition of the pair production rate is

Γ ≡ 1
(2π)3V

∫

d3k nk , (55)

whereV = a(η)4dη is the unit four volume of the spacetime. As in [8], an estimate for the moment when
most of the particles are created can be found by analyzing when the adiabaticity is violated. This gives

η ∼ −µ
k
. (56)

Using this thek-integral can be changed into a time integral. Going to spherical coordinates thekz integral
can be performed. Putting everything together, one finds

Γ =
H4

(2π)3

µ3

|λ|
(

e2π|λ| − 1
)

e−2πµ. (57)

We can compare this with Eq. (2.33) of [8], that we reproduce here

Γ =
H4

(2π)3

(|µ|2 + 1/4)3/2

sinh(2|µ|π)

{

H2

eE
sinh

(

2πeE
H2

)

+ 2πe−2|µ|π
}

. (58)

We see that in the semiclassical limitµ ≫ 1 andλ ≫ 1 the expressions are equal. As in the bosonic case
the physical number densityn of produced pairs at the timeη is given by

n =
1

a(η)3

∫ η

−∞
dτa(τ)4Γ =

Γ

3H
. (59)

The fact that it is constant shows that the dilution from the expansion of the universe is exactly compen-
sated by the particles created from Schwinger and gravitational particle creation. Hence in the semiclas-
sical limit, the population of fermions is always dominatedby the particles created within a Hubble time.
The vacuum decay rate is defined for fermions as

Υ = log(1− |βk |2). (60)

The limit in which the Hubble parameter is negligible compared to the gravitational and electrical strength
corresponds to the limit to flat spacetime. After some calculations which are analogous to the ones in [8]
one can find the Minkowski limit by takingH → 0, which gives

lim
H→0
Γ =

(eE)2

(2π)3
exp

(

−πm2

|eE|

)

,

lim
H→0
Υ =

∞
∑

i=1

1
i2

(eE)2

(2π)3
exp

(

− iπm2

|eE|

)

.

(61)

These are the familiar results for Schwinger pair production in Minkowski spacetime [7].



5 Conclusions

In this work, we investigated the fermionic pair creation rate by the combination of an electric and a
gravitational field in dS4. We first presented the basic equations of our setup and derived the corresponding
Dirac equation in section 2. In section 3, we proposed a semiclassical approximation to compute the
number of pairs produced. This approximation is based on a saddle point approximation of the integrals in
(43). To make the comparison to the analog bosonic case easier, we first reviewed its computation within
our formalism. Then we presented the computation of the number of fermions created for a constant
electric field. It is the main result of this paper shown in (54). The pair creation rate, in this limit, is the
same in the fermionic case as in the bosonic case. This equivalence between fermions and bosons in the
semiclassical limit occurs also for one-component fields inflat spacetime when there is only one pair of
turning points (see e.g. [20]). The limit to flat Minkowski spacetime is presented in (61) and agrees with
the usual expression for the Schwinger effect.
Going beyond the semiclassical limit is possible but is out of the scope of this paper. To do this one
can compute a more general quantity: the fermionic induced current. The current is proportional to the
number of pairs created in the semiclassical limit but allows to explore a regime where the notion of
adiabatic vacuum and of particles does not necessarily exist. It is a more precise way of describing the
Schwinger effect because its definition does not depend on the time of creation of the pairs and the rough
estimate (56) can be avoided. A calculation of the current induced by an electric field in dS2 is performed
in [24].
Throughout this paper the electric and gravitational fieldshave been assumed to be external sources. One
of the next steps could be to consider backreaction effects of the newly created particles to the external
electric and gravitational fields. To do so, for the electromagnetic side, the electric current needs to be
computed and be plugged into the equivalent of the Maxwell equation in curved spacetime. For the
gravitational side, the density of particle needs to be plugged in the Friedman equation. Another direction
could be to look for cosmological applicatione.g. magnetogenesis, baryogenesis and the relation between
dark energy and dark matter in the context of neutrino physics.
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