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We reconsider the possibility that the observed baryon asymmetry was generated by the

evaporation of primordial black holes that dominated the early universe. We present a

simple derivation showing that the baryon asymmetry is insensitive to the initial black hole

density and the cosmological model but is sensitive to the temperature-dependence of the CP

and baryon-violating (or lepton-violating) interactions. We also consider the possibility that

black holes stop evaporating and form Planck-mass remnants that act as dark matter. We

show that primordial black holes cannot simultaneously account for both the observed baryon

asymmetry and the (remnant) dark matter density unless the magnitude of CP violation is

much greater than expected from most particle physics models. Finally, we apply these

results to ekpyrotic/cyclic models, in which primordial black holes may form when branes

collide. We find that obtaining the observed baryon asymmetry is compatible with the other

known constraints on parameters.
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1 Introduction

Evidence for matter–anti-matter asymmetry is inferred from studies of the particle con-

tent in cosmic rays, the absence of an intense γ-ray background from matter–anti-matter

annihilations on cluster scales [1], big-bang nucleosynthesis (BBN) [2] and high precision

measurements of the cosmic microwave background (CMB) [3]. However, imposing the ob-

served baryon-to-entropy value, B = nB

s
=

nb−nb̄

s
= 9.2+0.6

−0.4 × 10−11, as an initial condition

seems extremely unnatural. The currently favored alternative is to imagine that the baryon

asymmetry was generated from symmetric initial conditions through a dynamical mecha-

nism.

The idea of producing an excess of baryons over anti-baryons in black hole evaporation

goes back to Hawking [4] and Zeldovich [5]. More recently, this notion has been explored

extensively in the context of grand unified theories (GUTs) (e.g. [6, 7, 8]). As a black hole

evaporates, its horizon temperature eventually becomes higher than the GUT-scale. Hawking

evaporation of a gas of primordial black holes provides out-of-equilibrium conditions, whereas

grand unified theories generically violate CP and baryon number conservation. In particular,

evaporating black holes may emit massive particles whose decay generates a net baryon

asymmetry. Hence, black hole evaporation and local GUT-scale physics together satisfy the

Sakharov conditions [9] and may provide a natural mechanism for generating the observed

baryon asymmetry of the universe. Alternatively, it is possible to envisage generating a net

lepton number L at lower energies and subsequently producing the baryon asymmetry via

B − L conservation [10, 11, 12].

In this paper we reconsider direct baryogenesis or baryogenesis via leptogenesis from the

evaporation of primordial black holes. Under the assumption that black holes dominate the

energy density of the universe by the time they evaporate, we present a simple derivation of

the resultant asymmetry that is insensitive to the cosmological model. Hence, we can apply

our results both to inflation [13] and ekpyrotic/cyclic models [14, 15]. We find that the

baryon asymmetry is independent of the initial black hole number density, but does depend

sensitively on the nature of the CP and B or L-violating interactions. We also consider the

possibility that black hole evaporation stops due to quantum gravity effects when the mass

reaches the Planck scale and the black holes form massive relics that act as dark matter.

The cosmological consequences of Planck-mass black hole relics have been studied previously

by MacGibbon [16], Carr et al. [17] and Barrow et al. [18]. Here we discuss the combined

constraints if black holes form relics and also account for baryogenesis.

What processes in the early universe could have generated primordial black holes? Pri-

mordial black hole formation from big bang inhomogeneities was first discussed by Carr and

Hawking [19]. However, if inflation removes all pre-existing inhomogeneities, any cosmologi-

cally interesting black hole density has to be created after inflation. A number of mechanisms
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have been proposed for generating post-inflationary primordial black holes. Carr [20] dis-

cussed black hole formation if the spectrum of density fluctuations generated during inflation

is very blue (spectral index ns > 1). If the primordial power spectrum is nearly-scale invari-

ant and doesn’t have significant running, then this mechanism is now tightly constrained

by CMB measurements [3]. Primordial black hole production has also been proposed in

the context of hybrid inflation. Garcia-Bellido et al. [21] showed that density perturbations

in hybrid inflation models can reach a large enough magnitude to produce black holes for

wave numbers of order the horizon scale during the transition between the two inflationary

stages. The mass and number density of black holes produced in these models is highly

model-dependent, including large regimes which are cosmologically disastrous or insignifi-

cant. Hsu [22] studied the formation of black holes in models of extended or hyperextended

inflation (see [23]). These models contain two sources of fluctuations – the usual nearly

scale-invariant scalar field fluctuations and also inhomogeneities created by the collision of

bubbles [24] produced during the last few e-foldings. Barrow et al. [7] provided an analytical

treatment of GUT baryogenesis from these black holes.

In this paper we present a model-independent derivation of the baryon asymmetry gener-

ated by primordial black holes that can be applied in both inflationary and ekpyrotic/cyclic

models. In the cyclic scenario black holes may form when branes collide. Since the reheat

temperature in ekpyrotic/cyclic models is generally modest, it is important to have a re-

liable baryogenesis mechanism operating at temperatures well below the GUT-scale. We

show that black hole baryogenesis provides a mechanism that is effectively independent of

the reheat temperature of the universe. The potential challenge is that the ekpyrotic/cyclic

model parameters must also satisfy a number of other conditions in order to resolve the

horizon, flatness and monopole problems and to obtain an acceptable spectrum of density

perturbations [25]. However, here we show that black hole baryogenesis is compatible with

all current constraints for a wide range of parameters.

In both inflationary and ekpyrotic/cyclic models, precise calculations of the initial black

hole density are either difficult or highly dependent on model parameters. One of the im-

portant features of the scenario we are considering is that the baryon and possible remnant

densities are insensitive to the initial black hole density provided the black holes dominate the

universe by the time they decay. Reliable predictions for the baryon asymmetry can there-

fore be made even in the absence of an exact calculation of primordial black hole production.

The outline of the paper is as follows. In section 2, we examine black hole baryogenesis.

After considering Hawking emission from a single black hole, we compute the baryon number

generated by an ensemble of black holes. We explore the parameter space of CP and B-

violating interactions that reproduce observations. Section 3 applies our results to black hole

baryogenesis in the ekpyrotic/cyclic model. In section 4 we briefly discuss the cosmological
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implications if Planck mass remnants form as the final stage of black hole evaporation. We

summarize our conclusions in section 5.

We use natural units, ~ = c = kB ≡ 1, throughout, and define 8πG = 1/m2
Pl ≡ 1.

For numerical estimates we use the reduced Planck mass mPl ≈ 1018 GeV and Planck time

tPl = 1/mPl ≈ 5 × 10−44 sec.

2 Black Hole Baryogenesis

We begin by giving a brief review of baryogenesis during Hawking evaporation [26] of a single

black hole (BH). Then we consider an ensemble of black holes and compute the resulting

baryon asymmetry.

The horizon temperature of an uncharged, non-rotating Schwarzschild black hole is

TBH =
1

MBH
. (1)

Its rate of evaporation is given by [27],1

dMBH

dt
≈ − π2

120
g∗ABHT 4

BH = − π

480

g∗
M2

BH

, (2)

where ABH = 4πR2
BH is the surface area of the black hole event horizon, MBH(t) is the

instantaneous black hole mass and g∗ ∼ 100 is the effective number of relativistic degrees of

freedom of particle species radiated at temperature TBH. Integrating equation (2) gives

MBH(t) = M0

(

1 − t

τ

)1/3

, (3)

where the black hole lifetime is

τ =
160

π

1

g∗
M3

0 , (4)

for a black hole with initial mass M0. The Gibbons-Hawking temperature (1) implies the

differential mass decrease

dMBH = − 1

T 2
BH

dTBH ≡ −dE , (5)

where dE is the energy emitted by the black hole when its mass decreases from MBH to

MBH + dMBH. Since the radiated particles have mean energy 3TBH, the differential number

of particles emitted is

dN =
dE

3TBH

=
1

3

1

T 3
BH

dTBH . (6)

1Note that Barrow et al. [7] use an approximate equation for the mass loss of a black hole which under-

estimates the true rate by a factor of 105. This leads to an overestimation of the final baryon asymmetry by

a factor of 100.
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Integrating equation (6) beginning from the initial black hole temperature T0 ≡ TBH(M0) =

1/M0 we find the total number of particles emitted by a single black hole of initial mass M0

N =

∫ ∞

T0

dN(T ) =
M2

0

6
. (7)

Baryogenesis can occur through the emission of a particle species X with mass MX , whose

subsequent decay violates baryon number conservation. If the initial black hole mass is small

enough, T0 = 1/M0 > MX , the fraction of X particles emitted is given by the equipartition

factor

fX ∼ gX

g∗
, (8)

where gX denotes the number of degrees of freedom of particle X. The total number of

B-violating particles is

NX = fXN if M0 <
1

MX

. (9)

Significant X-emission requires TBH ≥ MX . Very massive black holes are initially not hot

enough to emit X particles (T0 < MX), and baryon production during the initial stages of

evaporation is exponentially suppressed. In this case, the lower limit (T0) in the integral in

equation (7) should be replaced by TBH = MX , and equation (9) becomes

NX = fX

∫ ∞

TX=MX

dN(T ) = fX

(

1/MX

M0

)2
M2

0

6
if M0 >

1

MX

. (10)

Hence, we have

NX = κfXN , (11)

where

κ ≡
{

1 if M0 < 1/MX

(M0MX)−2 if M0 > 1/MX
. (12)

B-violating X-decays may still lead to a baryon symmetric universe if the corresponding

anti-particle processes occur at the same rate, i.e. baryon asymmetry requires CP violation.

If the CP violating parameter is

γ ≡
∑

i

Bi
Γ(X → fi) − Γ(X̄ → f̄i)

Γtot
, (13)

where Bi is the baryon number of the final state fi, then the excess baryon number generated

by the evaporation of a single black hole is

γNX = γκfXN . (14)
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Next, we consider the baryon asymmetry generated by an ensemble of small black holes.

Imagine a dilute gas of primordial black holes, formed through some mechanism that we

leave unspecified for the purpose of this general discussion. Depending on the details of

the cosmological model, the universe may also contain a background of radiation and other

contributions to the total energy density. As we shall see, the resulting baryon asymmetry is

independent of these details provided that the black holes survive long enough to dominate

the universe by the time they evaporate.

In some of the cosmological models of interest, including the extended inflation and

ekpyrotic/cyclic models, black holes are produced with a narrow distribution of masses set

by the horizon size at the time of formation. Consequently, we assume for simplicity an

initial distribution in which all black holes have the same mass M0. (It is straightforward to

generalize our results to a broader distribution.) Equation (2) shows that the most energy

is transfered as the mass of the black hole becomes small during the final stages of the

evaporation process. This and the fact that tformation ≪ τ (where τ is the mean black hole

lifetime) allows us to treat the evaporation as if all particles were produced at a single

instant, tevap ≈ τ . Approximating equation (3) by a step-function, MBH(t) ≈ M0Θ(τ − t),

and assuming that black holes dominate the universe at the time they decay, we find

ρevap = ρBH(t−evap) ≈ nevap
BH M0 , (15)

where nevap
BH ≡ nBH(tevap) is the black hole number density at tevap. If the black holes dominate

at evaporation then the total entropy and baryon density of the universe is determined by the

black hole evaporation products. All black hole energy density is transformed into radiation

at tevap. Hence, we have

ρBH(t−evap) = ργ(t
+
evap) . (16)

The radiated particles equilibrate with the surroundings and the temperature of the universe

is defined via ρevap
γ ∼ T 4

evap. Using equations (15) and (16) we have

nevap
BH M0 =

π2

30
g∗T

4
evap . (17)

The Hubble parameter at evaporation (black hole domination) is given approximately by

Hevap ≈ 2

3

1

tevap
, (18)

where tevap is the FRW time. The last approximation is valid provided that tevap ≫
tBH−domination. Using the black hole lifetime (4) and H2

evap = ρevap/3 in combination with

equation (15) gives

H2
evap =

4

9

( π

160

)2 g2
∗

M6
0

=
1

3
nevap

BH M0 . (19)
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Solving equation (19) for the black hole number density at evaporation we get

nevap
BH =

25

48
π2 ·

( g∗
100

)2

· 1

M7
0

. (20)

Note that the black hole number density at evaporation is independent of both the number

density at formation and the cosmological model. This is a direct consequence of the as-

sumption that the black holes come to dominate the universe at some point in the evolution.

It means that the cosmological conditions at evaporation that determine both the entropy

and the baryon number are characterized by a single parameter, M0.

From equation (17) we then obtain the evaporation temperature

Tevap =

(

5

32

)1/4

·
( g∗

100

)1/4

· 1

M
3/2
0

. (21)

In order to reproduce the success of standard big-bang cosmology, we require the universe to

be radiation dominated at nucleosynthesis. The black holes therefore must have evaporated

by that time, which leads to the following BBN constraint

Tevap > TBBN ∼ 10−22 . (22)

As a limit on the initial black hole mass, this gives

M0 < 4 × 1014
( g∗

100

)1/6

. (23)

Using equation (14) for the net baryon number created by a single black hole, the number

density of baryons at the time of evaporation is

nB ≡ nB(tevap) = γκfXNnevap
BH . (24)

We define the effective entropy radiated by a single black hole as

σ ≡ s

nevap
BH

, (25)

where the entropy density generated by a gas of black holes is

s ≡ s(tevap) =
2π2

45
g∗T

3
evap . (26)

Combining (24) and (26), the baryon-to-entropy ratio is

B =
nB

s
=

γκfXN

σ
. (27)
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Equations (26), (20) and (21) give the entropy produced per black hole

σ =
4

3

M0

Tevap
=

4

3

(

32

5

)1/4
( g∗

100

)−1/4

· M5/2
0 . (28)

This shows that the effective entropy radiated by a single black hole is a factor of
√

M0

larger than the initial Bekenstein-Hawking entropy of the black hole, S =
√

π
2
ABH ∼ M2

0 .

Substituting N = M2
0 /6 and σ(M0) into (27), we finally get our master expression for the

baryon number of the universe

B ≈
[

0.1
( g∗

100

)1/4

fX

]

· γ

M
1/2
0

κ . (29)

The parameters g∗, γ, fX , and MX are set by microphysics, whereas M0 is determined by the

cosmological model. Using fX ∼ 1/g∗ the first factor in (29) is C(g∗) ≡ 10−3
(

g∗
100

)−3/4
. Note

that B is independent of the initial black hole number density. This illustrates that the final

baryon asymmetry is insensitive to the initial conditions as long as evaporation occurs after

the black holes dominate. The final baryon asymmetry (29) displays a simple dependence

on the free parameters M0, γ and MX . B scales linearly with γ, the net baryon number

created by each black hole. For small initial black hole masses, M0 < 1/MX , κ = 1 and

B is simply proportional to the ratio γ/M
1/2
0 . Increasing M0 therefore suppresses baryon

production. Very large initial masses, M0 > 1/MX , lead to a further suppression from the

factor κ = 1/(M0MX)2 < 1.

Figure 1 is a plot of [B=10−10]–contours in the γ–MX plane for three different fixed values

of the initial black hole mass M0. For MX < 1/M0 (immediate emission of X particles)

γ = B
C
M

1/2
0 = const, independent of MX , giving a horizontal section. For more massive X

particles, MX > 1/M0, baryogenesis is suppressed and γ has to be increased to compensate

that suppression. This explains the rise of the contours for large MX . The transition between

these two regimes occurs at MX = 1/M0. Each contour corresponds to combinations of the

three parameters γ, MX and M0 that reproduce the observed baryon asymmetry, B ≈ 10−10.

The region below the contours corresponds to parameter combinations that are unacceptable

because they underproduce baryons, B < 10−10. This is the forbidden region. The region

above the contours overproduces baryons, B > 10−10. We call this the allowed region.

Overproduction is allowed since we can imagine non-adiabatic processes after the black holes

evaporate that create extra entropy and dilute the abundance to the correct value. We see

that there is a wide range of allowed parameters. We also notice that increasing M0 decreases

the allowed region. Small masses, therefore, seem to be preferable, although consistency with

the assumption that the black holes live long enough to dominate the universe at evaporation

has to be tested separately. This can only be done once the cosmological setup is specified.
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Figure 1: [B=10−10]–contours in the γ–MX plane for three different values of the initial black

hole mass M0 (cf. equation (29)). γ determines the amount of CP violation, while MX is the

mass of the B-violating particle X. The contours correspond to parameter combinations that

produce B ≈ 10−10. Regions below the contours lead to a baryon number that is too small

to be consistent with observations (B < 10−10). Regions above the contours overproduce

baryons (B > 10−10). Since entropy production at a later stage of evolution may dilute B,

this region is viewed as a cosmologically acceptable region. The dotted line corresponds to

the leptogenesis model of [28] which predicts γ = 102MX . The dashed line defines the region

of parameter space which, in principle, allows black holes to simultaneously be the source of

baryons and dark matter (see section 4). Note that this requires very large CP violation for

small MX .

Thus far, we treated γ and MX as independent free parameters. We now show how this

plot can be used to explore a given particle physics model of baryogenesis that relates γ and

MX . For example, we consider the leptogenesis model in [28] that relates the CP violation

parameter γ to MX :

γ = 102MX . (30)

Using the above analysis we can easily evaluate the feasibility of this black hole leptogenesis

scenario. The dotted line in Figure 1 corresponds to equation (30). For small M0 there

is a finite range of γ(MX) in the region that allows sufficient baryogenesis. In Figure 1

this is illustrated for M0 = 104. The dotted line crosses the [B = 10−10]–contour at two

points. These points correspond to combinations of γ(MX) and M0 values that reproduce
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observations precisely. In between these two points there is a finite line segment where

baryons are overproduced, which is also allowed assuming some modest dilution later. For

this particular black hole leptogenesis model to be feasible, we conclude that

M0 < 106 ; (31)

otherwise, the dotted line will lie completely in the forbidden region and baryons are under-

produced for all choices of parameters.

3 Black Hole Baryogenesis in the

Ekpyrotic/Cyclic Models

Our derivation of black hole baryogenesis is insensitive to the cosmological model provided

that the black holes dominate the energy density of the universe at the time of evaporation.

An interesting application is to the recently proposed ekpyrotic/cyclic models [14, 15]. Ac-

cording to the ekpyrotic model the hot big bang is caused by the collision of two 3-branes

bounding an extra spatial dimension [14]. In the cyclic scenario this may repeat itself peri-

odically, leading to a periodic sequence of big bangs and big crunches. The model is designed

to resolve the cosmological horizon, flatness and monopole problems and generate a nearly

scale-invariant spectrum of density perturbations without invoking a period of high-energy

inflation [13]. The ekpyrotic/cyclic model may also provide a natural setting for black hole

baryogenesis. The ekpyrotic mechanism is designed to smooth the universe on superhorizon

scales before the bounce occurs. At present, a bounce is not proven to occur, but, assuming

it does, it is reasonable to suppose that instabilities develop within the horizon and produce

black holes on subhorizon scales. In this section we consider whether black hole baryogene-

sis is compatible with the constraints on ekpyrotic/cyclic models that are already known [25].

According to the cyclic model, the universe is dominated by the brane kinetic energy

immediately after the bounce. In the effective 4D theory, the separation between the branes

is described by a scalar field φ and the brane kinetic energy is characterized by the scalar

field kinetic energy 1
2
φ̇2 ∝ a(t)−6. A generic potential for φ is shown in Figure 2. Region

I corresponds to the present epoch, which is characterized by dark energy domination and

accelerated expansion. Scale-invariant density perturbations are created during a phase of

slow contraction (region II). Chaotic behavior in the big crunch is suppressed by the expo-

nential form of the potential (w ≫ 1, see [29]) and fluctuations are linear until t
(−)
end. However,

short-wavelength fluctuations become highly non-linear after t
(−)
end (region III). The distance

between the branes becomes small and quantum gravity corrections become important. Clas-

sical general relativity is insufficient to describe the further evolution. It is known, however,
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L O C A L  I N S T A B I L I T I E S

BLACK HOLE FORMATION

H AW K I N G  E VA P O R AT I O N

B A RY O G E N E S I S

BOUNCE

RD    BBN     MD    CMB

V0

V end

t end
(-)

t = 0

t end
(+)

t evap

today

w → 1+

w >> 1

w ≈ -1

t bht r 

R D M D

Figure 2: Black hole baryogenesis in the ekpyrotic/cyclic universe. The scalar field φ pa-

rameterizes the distance between the branes. V (φ) is a generic potential for φ. Region I

corresponds to the observed dark energy domination today. A scale-invariant spectrum of

perturbations is generated in region II. Perturbations are stabilized until t
(−)
end, after which

local instabilities develop and form black holes. The size of these black holes is limited by

the horizon size at t
(−)
end. The cosmological implications of these black hole for the post-big

bang evolution of the universe are studied in this paper.

that the effective gravitational constant becomes large when the branes collide and particle

collisions reach large energies. The horizon at time t sets the maximal distance a signal sent

at time t can travel prior to the bounce. We therefore assume that the instabilities that

develop in the big crunch are limited by causality to small scales, the maximum scale being

the horizon at t
(−)
end (the time when perturbative control is lost). This sets the maximum

black hole mass, but we don’t call it a black hole before the bounce, since the cosmologi-
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cal horizon shrinks to become smaller than the Schwarzschild horizon. The horizon grows

after the bounce to encompass the instability at about t
(+)
end (see Figure 2). We define black

hole formation as the time tf after the bounce when H−1(tf ) = H−1
end ≡ H−1(t

(−)
end), i.e., the

horizon becomes comparable to the Schwarzschild radius. The near symmetry of the time

evolution of the scalar field (H(t
(−)
end) ≈ H(t

(+)
end)) then allows us to use the horizon at t

(−)
end as

a scale for the black hole formed at tf ≈ t
(+)
end.

BH

RD

BHD

RD

log  

log(a)tevaptbhtrt f

D

Figure 3: In the cyclic model, the universe changes from scalar field dominated (φD) when

the black holes form (at t = tf ≈ t
(+)
end), to radiation dominated (RD) at tr, to black hole

dominated (BHD) at tbh, and back to radiation dominated at tevap.

Here we focus on the evolution after the bounce. Assuming the collision produces signif-

icant amounts of radiation and black holes, the various densities evolve according to Figure

3. The case we study in detail below (and that is illustrated in Fig. 3) assumes for simplicity

that the initial radiation density produced at the collision overtakes the scalar field kinetic

energy before the black holes. This is equivalent to assuming that the energy density in black

holes at radiation–scalar field equality (tr) is less than the energy density in radiation. We

later reformulate this as a constraint on the number of black holes per horizon at the time of

formation. Since radiation dilutes more quickly than the pressureless gas of black holes, the

black holes will eventually come to dominate the universe (t > tbh). As we have shown, the

baryon asymmetry resulting from their evaporation is then independent of the initial black

hole number density, but depends sensitively on the nature of the CP and B or L-violating

interactions. The initial radiation energy density redshifts away in the subsequent black hole

dominated phase and plays no significant role afterwards. Black holes dominate for a finite

time until they decay at tevap. Evaporation occurs before nucleosynthesis (tevap < tBBN), so

standard cosmology is recovered after that time.

The previous discussion suggests that the bounce produces both a small amount of radia-
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tion from the non-adiabatic collision of the branes and a gas of primordial black holes. Once

the radiation or black hole dominated epochs begin, the scalar field kinetic energy is rapidly

damped and the field comes to halt. In order to cycle, radiation or black hole domination

should not begin until φ has had time to go from −∞, past V = − |Vend|, across the potential

well and back up the potential to the plateau where V = O(V0) (see Fig. 2). Otherwise the

scalar field would get trapped in the minimum at Vend and the universe would be anti-de

Sitter space. Khoury et al. [25] showed that this leads to the following cycling constraint on

the radiation energy density (or temperature) at scalar kinetic energy-radiation equality (tr)

ρr ∼ T 4
r ≤ Vend

(

V0

Vend

)

√
6ε

, (32)

where ε is the fast-roll parameter defined in ekpyrotic cosmology [15]. Under the assumption

that radiation from the collision dominates before the black holes, we have

ρr
BH < ρr

γ ∼ ρr . (33)

This can be re-expressed as a condition at the time of black hole formation. The black hole

number density at radiation–scalar field equality is related to the density at formation via

nr
BH = nf

BH

(

af

ar

)3

= nf
BH

Hr

Hf
, (34)

where we used H2 ∝ a−6 during domination of scalar field kinetic energy (tf ≈ t
(+)
end → tr).

Assuming that the initial black hole mass is equal to the horizon mass at formation, M0 ∼
ρfH

−3
f ∼ H−1

f , and using H2
r ∼ T 4

r gives

nr
BH = nf

BHM0T
2
r . (35)

Defining the number of black holes per horizon at formation as

NBH ≡ nf
BHM3

0 , (36)

we find

nr
BH = NBH · T 2

r

M2
0

. (37)

Imposing the cycling constraint in the form ρr
BH ∼ nr

BHM0 < ρr
γ ∼ T 4

r , we obtain

NBH < M0T
2
r , (38)

where Tr obeys the cycling condition (32). Black hole baryogenesis works for larger NBH, but

then black holes dominate before the collisional radiation and a separate analysis is needed.
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We also impose the constraint that the black holes survive long enough to eventually

dominate the universe. This is required for the results of section 2 to be applicable. We

denote quantities evaluated at radiation–black hole equality by (bh). The condition that the

black holes survive long enough to dominate the universe is τ > tbh, or in terms of the scale

factor of the universe

aevap > abh . (39)

At radiation–black hole equality we have, ρBH(tbh) ≡ ργ(tbh) , or

nr
BHM0

(

ar

abh

)3

≡ T 4
r

(

ar

abh

)4

. (40)

From (40) and (37) we obtain
ar

abh

=
NBH

M0T 2
r

. (41)

This confirms that the cycling condition (38) is equivalent to abh > ar. Using ar/abh = Tbh/Tr

we get the temperature of the universe at radiation–black hole equality

Tbh =
NBH

M0Tr
. (42)

During black hole domination (tbh → tevap) we have

(

aevap

abh

)3

=
H2

bh

H2
evap

=
T 4

bh

1/τ 2
= M6

0

N4
BH

M4
0 T 4

r

. (43)

Notice that Hevap is related to the lifetime of the black holes. The condition that the black

holes survive long enough to dominate the universe, aevap > abh, translates into Hevap < Hbh,

or

NBH >
Tr

M
1/2
0

. (44)

This gives a lower limit on the initial black hole mass

M0 >
T 2

r

N2
BH

, (45)

where Tr is bounded by the cycling condition. Tr is determined by the initial ratio of

scalar kinetic energy and radiation density, with larger Tr corresponding to more radiation

produced at the bounce. Keeping everything else fixed, while increasing Tr, increases the

time to radiation–black hole equality. As (45) shows, the black holes then have to be more

massive, in order to survive long enough to dominate. NBH is related to the number of

black holes at formation. For a large number of primordial black holes, radiation-black hole

equality occurs earlier. Hence, increasing NBH while keeping Tr (or the initial amount of

13



radiation) fixed, decreases the time to radiation–black hole equality. The constraint on M0

therefore weakens.

Combining the cycling (38) and survival (44) conditions gives

Tr

M
1/2
0

< NBH < M0T
2
r , (46)

where

Tr ≤ V
1/4
end

(

V0

Vend

)

√
3ε/8

. (47)

Hence, cycling and survival can simultaneously be achieved only if the following consistency

constraint is satisfied

M0 > T−2/3
r . (48)

As discussed earlier, the maximal initial black hole mass is set by the horizon mass at the

end of the ekpyrotic phase:

M0 ≤ MHor(t
(−)
end) ∼ ρ(t

(−)
end) |Hend|−3 ∼ |Hend|−1 . (49)

In [25] it was shown that the horizon at tend is

|Hend|−1 ∼ (2εVend)
−1/2 . (50)

This gives the following relation between M0, ε, and Vend

M0 ≤ (2εVend)
−1/2 . (51)

Hence, we have related the initial mass of black holes to the depth of the ekpyrotic potential.

Figure 4 (adapted from [25]) illustrates the region of parameter space for which the cyclic

model satisfies all known cosmological constraints. The outer triangular region in the Vend–Tr

plane encloses the range of parameters that satisfy the BBN, cycling and gravitational wave

background constraints studied in [25]. For the purpose of illustration, assuming that the

black hole masses saturate the bound (51), i.e. M0 = (2εVend)
−1/2, we consider the constraint

set by black hole baryogenesis. We impose an upper bound on CP violation, γ < 10−1. From

the analysis presented in section 2 (γmin ≈ 10−7M
1/2
0 ) this implies M0 < 1012. Using the

relation between M0 and Vend we get the baryogenesis limit

V
1/4
end > (2ε)−1/4 10−6 ≈ 10−6 = 1012 GeV , (52)

for ε ∼ 10−2. In addition, we can re-express the consistency condition (48)

V
1/4
end < (2ε)−1/4 T 1/3

r . (53)
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Figure 4: Constraints on the cyclic model with (grey triangle) and without (outer triangle)

black hole baryogenesis: The outer triangular region (reproduced from [25]) shows the range

of V
1/4
end and the reheat temperature Tr, over which the cyclic model satisfies all known

cosmological constraints, with fixed ε = 10−2. Relating the initial black hole mass M0 to the

horizon mass at the end of the ekpyrotic phase leads to an estimate of M0 in terms of the

depth of the ekpyrotic potential Vend: M0 ∼ V
−1/2
end . The black hole baryogenesis analysis of

section 2 is only applicable if M0 > T
−2/3
r , or V

1/4
end < T

1/3
r . This is labeled the consistency

constraint. Imposing an upper bound on the CP violation parameter γ < 10−1 and using

γmin ≈ 10−7M
1/2
0 from section 2 gives the baryogenesis limit: M0 < 1012 or V

1/4
end > 1012

GeV. The grey region corresponds to parameter combinations for which primordial black

hole baryogenesis is viable and consistent with known constraints on the cyclic model.

Equations (52) and (53) together with the constraints from [25] define the grey region in

Figure 4. This corresponds to the region of parameter space for which the black hole baryo-

genesis mechanism of section 2 is viable. We point out that regions outside the grey area are

not strictly disallowed, but correspond to regions of parameter space that either require a

separate analysis or where insufficient information is available to assess the viability of black

hole baryogenesis. The consistency constraint is not a real physical constraint, but merely

the limit of applicability of our analysis. In that sense the shaded area may be viewed as

a minimal allowed region. Finally, the allowed region should be interpreted in combination

with the generic results of section 2 (Figure 1). These imply that large M0 (small Vend)
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may require unconventional particle physics to give the large value of γ required to obtain

B = 10−10. Successful black hole baryogenesis is therefore more physically plausible in this

sense towards the left (increasing Vend/decreasing M0) of the allowed region.

4 Black Hole Remnants as Dark Matter?

Hawking’s semi-classical treatment of black hole evaporation breaks down as the mass of the

black hole approaches the Planck mass and quantum gravitational effects become large. A

complete theory of quantum gravity seems necessary to decide on the final state of black

hole evaporation. So far we have assumed that the black holes evaporate completely and

the final black hole temperature tends to infinity. We now extend the discussion to include

the possibility that the black holes cease evaporating when the mass is of the order the

Planck scale due to quantum gravity effects and form stable Planck mass relics. Whether

this concept is plausible or not is beyond the scope of this paper (but see [35]). Here we

simply consider whether such remnants, if they form, could account for the dark matter.

If Ωi is the ratio of the density of component i to the critical density, then dark matter–

radiation equality occurs when ΩDM

Ωγ
=

ΩDM,0

Ωγ,0

a
a0

≡ 1, and the temperature at equality is

TDM=γ =
ΩDM,0

Ωγ,0
T0 , (54)

where T0 is the CMB temperature today. From black hole evaporation, the densities of

radiation and relics are

ρevap
rel = nevap

BH Mrel , (55)

ρevap
γ = nevap

BH M0 . (56)

Note that in (55) we assume for simplicity that the initial mass spectrum has a very narrow

range about M0 and can therefore be approximated by a δ-function.

Equations (55) and (56) imply relic–radiation equality at
ρevap

rel

ρevap
γ

arel=γ

aevap
≡ 1, with corresponding

temperature

Trel=γ =
Mrel

M0
Tevap . (57)

If the black hole relics are the dark matter, then

Trel=γ = TDM=γ , (58)

or, from equations (54) and (57),

ΩDM,0

Ωγ,0
=

Mrel

M0

Tevap

T0
. (59)
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Substituting Tevap from equation (21) gives

ΩDM,0

Ωγ,0
=

Mrel

T0

(

5

32

)1/4
( g∗

100

)1/4 1

M
5/2
0

. (60)

Assuming Mrel ∼ 1, g∗ ∼ 100, and the WMAP results [3],
ΩDM,0

Ωγ,0
≈ 104 and T0 = 2.7 K ∼

10−31, we obtain

(M0)DM ∼ 1011 . (61)

Black hole relics can be the dark matter if the characteristic initial black hole mass has

this virtually unique value. If M0 < 1011 then Ωrel > ΩDM, and relics are overproduced

compared to what observations allow. Hence, if stable black hole relics are the final stage

of Hawking evaporation then their initial mass must be greater than (M0)DM = 1011, an

important constraint on black hole baryogenesis.
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Figure 5: Constraints on the ekpyrotic/cyclic model: Same as Figure 4, but with relic dark

matter limit included. The grey region is the new allowed region.

It is interesting to consider whether the black holes could simultaneously be the source

of dark matter and baryon asymmetry. For a generic black hole baryogenesis scenario this

is easily analyzed by reconsidering Figure 1. The dashed line in Fig. 1 is the limit on γ–MX

for M0 = 1011. The region above the dashed line in principle allows primordial black holes

to be the source of both the baryon asymmetry and the dark matter of the universe. Note,
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however, that this requires a CP violation parameter of γ > 10−2 for MX < 1/M0 = 10−11.

Typical particle physics models of CP violation do not predict such large values for γ, which

suggests that black hole baryogenesis and relic dark matter can’t be realized simultaneously.

Incorporating the analysis of black hole relics into our constraints on black hole baryogenesis

in the cyclic model leads to Figure 5. Only the parameter space corresponding to large black

hole masses and large γ is now allowed. We emphasize that it seems very hard to conceive

a realistic particle physics model of CP violation in this regime.

5 Discussion

Hawking evaporation of primordial black holes provides an interesting mechanism for gen-

erating the baryon asymmetry of the universe. In this paper we presented a discussion of

primordial black hole baryogenesis that is insensitive to the background cosmology and in-

vestigated the parameter space for which the theory reproduces observations. A gas of small

primordial black holes may be produced on subhorizon scales in the ekpyrotic/cyclic models.

Applying our model-independent results for black hole baryogenesis to the ekpyrotic/cyclic

model we showed that, for a large range of model parameters consistent with all other known

constraints, these black holes could easily account for the observed baryon asymmetry.

We comment briefly on the potential problem that any baryon excess generated prior to

the electroweak era may be erased due sphaleron transitions [10]. The simplest possibility

of avoiding sphaleron washout is to require that the black holes survive until after the

electroweak phase transition, i.e. the reheat temperature is less than the electroweak scale,

Tevap < TEW ∼ 10−16. This would imply a lower limit on the initial black hole mass,

M0 > 4 × 1010
(

g∗
100

)1/6
. This also forces us to a regime where γ is very large. Because

this corresponds to a relatively small range of parameters, we have considered instead the

alternative of preserving the baryon asymmetry produced during black hole evaporation via

B − L conservation [12]. This opens up a much wider and more physically plausible range

of masses and couplings.

Assessing the final state of black hole evaporation requires a better understanding of

quantum gravity. If black holes evaporate completely, then their final temperatures become

arbitrarily large. One might therefore worry about monopole production during the final

stages of black hole evaporation. This was studied in [31, 32, 33], which conclude that

this process is exponentially suppressed by semi-classical effects. We also investigated the

possibility that black holes form stable Planck mass relics that could act as dark matter.

We found that this would be very constraining for black hole baryogenesis. To avoid relic

overproduction requires large initial black hole masses M0 ≥ 6 × 1010. This, however,

suppresses the final baryon asymmetry. Successful black hole baryogenesis therefore requires
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relatively large CP violation γ for very small MX ∼ 1/M0. In principle, it remains conceivable

to achieve simultaneously successful baryogenesis and a black hole relic abundance equal to

the observed dark matter density, but only if CP violation parameter is much larger than

most particle physics models predict. The more likely possibility according to our calculations

is that relic production and black hole baryogenesis are incompatible. Either black holes are

responsible for baryogenesis, or they form stable relics which could be the dark matter.
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Note added: After completion of this paper, we received a preprint by Alexander and

Mészáros [36] who considered similar issues but based their analysis on a different black hole

baryogenesis mechanism, first proposed by Nagatani [37]. Nagatani considered generating

the observed net baryon asymmetry through electroweak baryogenesis, in which a black hole

with Hawking temperature above the electroweak scale creates a nearly static domain wall

around itself through which a hot plasma flows; then, sphaleron processes within the domain

wall generate the baryon asymmetry. Alexander and Mészáros present the optimistic view

that this mechanism can produce the observed baryon asymmetry and simultaneously the

observed dark matter density (assuming Planck mass black hole relics). However, Nagatani

finds that the baryon asymmetry is suppressed by a factor of α5
W , where αW is the electroweak

coupling, and the observed asymmetry can only be obtained if CP violation is maximal, O(1),

within the domain wall. This conclusion is similar to the case of the GUT baryogenesis

mechanism we consider, and so does not change our qualitative interpretation that the

observed baryon asymmetry and dark matter density are difficult to obtain simultaneously

by the black hole evaporation mechanism.
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