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The gauge-fixing constraint in a gauge field theory is crucial for understanding both 
short-distance and long-distance behavior of non-abelian gauge field theories. We define what we 
call "non-propagating" gauge conditions such as the unitary gauge and "approximately non- 
propagating" or renormalizable gauge conditions, and study their topological properties. By first 
fixing the non-abelian part of the gauge ambiguity we find that SU(N) gauge theories can be 
written in the form of abelian gauge theories with N -  1 fold multiplicity enriched with magnetic 
monopoles with certain magnetic charge combinations. Their electric charges are governed by the 
instanton angle 0. 

If 0 is continuously varied from 0 to 2~r and a confinement mode is assumed for some 0, then at 
least one phase-transition must occur. We speculate on the possibility of new phases: e.g., "oblique 
confinement," where 0-~ ~r, and explain some peculiar features of this mode. In principle there 
may be infinitely many such modes, all separated by phase transition boundaries. 

I. Introduction 

It is a long-standing problem how to devise a reliable method for computing 
physically observable quantities accurately in non-abelian gauge theories with strong 
interactions. One crucial step in solving this problem is to isolate the relevant 
dynamical variables at the critical distance scale (in quantum chromodynamics that 
is, of course, the hadronic mass scale). Approximation methods that are popular at 
present sometimes ignore some of these variables. In ordinary perturbation theory 
the compactness of the gauge group is not reflected, so that topologically non-trivial 
effects such as instantons are not seen. In the lattice gauge theories this compactness 
is observed, but instantons literally slip through the meshes. Theories based on 
instanton gasses in their turn do not admit magnetic vortices, which we know to be 
crucial for understanding confinement. We do not (yet?) have a remedy for this 
situation. We do propose to make a new start although so far our considerations are 
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qualitative; quantitative calculations are not carried out in this paper. Certainly our 
more distant aim is to set up a precise calculational procedure along the lines which 
we will explain. 

Our philosophy is that isolation of the physically relevant parameters is in 
principle extremely simple. All we have to do is to fix the gauge, but this gauge-fixing 
must be done in such a way that no spurious, unphysical waves can propagate in our 
system. That happens for instance in the Lorentz gauge 

O~,A, = O. (1.1) 

Such a gauge condition requires the solution of Laplace-like differential equations. 
t For infinitesimal fields A, the gauge transformation A(x) turning it into the Lorentz 

gauge must satisfy 

a~D~A = ~A~, (1.2) 

and the inverse of 0~D~ is a non-local operator. Indeed, this gauge is accompanied by 
a negative metric ghost particle [1,2] which further obscures the physical modes by 
the time we try to solve the theory's equations non-perturbatively. 

In sects. 2 and 3 we construct what we call "non-propagating" or "non- 
communicating" gauge conditions. An example is the familiar "unitary gauge" in 
Higgs-Kibble theories [2, 3]. They render the theory non-manifestly renormalizable, 
and therefore, at a later stage one should go over to the more promising "approxi- 
mately non-communicating" gauges, where all gauge artifacts that propagate, includ- 
ing the ghosts, have a finite mass. The danger, however, is that then one might 
introduce not only massive ghosts, but also more troublesome unphysical long- 
distance features: topological structures such as planes or strings that are unobserv- 
able: the phantom solitons. 

The strictly local, non-communicating gauges induce singularities in space-time. 
We make the important assertion that these singularities have a physical meaning; 
not their precise location, which might vary if one goes from one non-communicating 
gauge to another, but just their mere existence. We claim that they are the remaining 
physical dynamical variables besides the other physical fields. 

In the abelian Higgs theory our gauge singularities are string-like, and they are to 
be interpreted as magnetic vortex tubes which are well known to occur in this theory 
[4]. 

In a non-abelian theory the simplest thing to do is to fix first the "non-abelian 
part" of the gauge redundancy, reducing the gauge symmetry to that of the maximal 
abelian subgroup. Here we get singularities which are point-like in 3-space (or 
particle-like in 4-space). If the gauge group is SU(N), then our abelian subgroup 
becomes U(1) N 1, so we get an effective theory with N - 1 different kinds of electric 
charges. Many fields will have various combinations of these charges. We will then 
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observe that our point-like singularities also play a dynamical role in this system: 
they are magnetic monopoles with respect to U(1) N- 1. 

At this stage, then, our particle spectrum (not necessarily their interactions) is to 
some extent symmetric under the dual transformation electric ,--, magnetic. We still 
do not have the dynamics under control so we do not know what the masses and 
interactions are. But since Bose condensation among electrically charged particles is 
known to be possible (as it happens in all superconductors), we can now easily 
imagine that, instead, the magnetic charges Bose condensate. If that happens we 
have absolute quark confinement. 

The system of electrically and magnetically charged particles in an abelian gauge 
field, which we obtain in the non-communicating gauge, may be considered as 
"transient particles." They are the spectrum of particles propagating in a length/mass 
scale intermediate between the microscopic gauge theory and the macroscopic 
system of hadrons. 

We think that this way of understanding the confinement phenomenon is more 
precise than similar arguments given earlier [5,6], and holds the promise that 
qualitative calculation procedures may be deduced. 

In two previous publications [6] it was concluded that in a non-abelian gauge 
theory with a not too large gauge group essentially three phases are possible: the 
Higgs mode, the confinement mode, and a mode with long-range interactions, 
presumably of Coulomb type. However, it was tacitly assumed that instantons play 
no significant role. This is not always true, but those conclusions remain unaltered if 
we put the instanton angle 0 = 0. At other values of 0 a richer spectrum of 
possibilities emerges. Indeed, in sect. 10 we argue that in principle an infinity of 
different phases is possible. 

2. The gauge conditions in the abelian Higgs model 

The long-distance structure of the abelian Higgs model (superconductor) is well 
known. It is therefore fruitful to explain our arguments first for this case. 

Let the lagrangian be 

with 

£ = - ¼F~,F~, - Dj,q,*D~,q, - ½ (q,*q, -- F 2 )2, 

D~,~ = O~,q, + iqA~,q,. 

Here, q, is a complex field. A non-propagating gauge condition is 

Re(q,) = p > 0 ,  Im(q,) = 0 .  

(2.1) 

(2.2) 

(2.3) 
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It leads to well-known unitary Feynman rules, which are not manifestly renormaliz- 
able. In this gauge all components of A, correspond to observable fields: the massive 
vector field. And p corresponds to an observable scalar excitation: the Higgs particle 

[71. 
There is, however, another structure at the long-distance scale: the magnetic 

vortex line [4]. But this vortex can also readily be identified in this gauge. The gauge 
condition (2.3) becomes singular at those points in space-time where # happens to be 
zero. Since these points must satisfy two independent constraints on q,, 

Re(q,) = 0, Im(q,) = 0, (2.4) 

they will form a two-dimensional subspace of Minkowski space, or a string in 
3-space. 

The equations for the vector field A~ will be singular on this string but of course 
this singularity is an artifact of our gauge. What is not an artifact, however, is the 
fact that string-like objects are present: they are additional dynamical variables 
apart from the heavy particles which we had already; their topological structure 
reflects the topological nature of the system as a whole. 

Note that the gauge condition (2.3) is possible as soon as a charged scalar field is 
available, whether or not (q,)4:0. We then have the dynamical variables listed 
above. But of course, if we are in the Coulomb phase, (q,) -- 0, then the string-like 
"singularity" is ubiquitous in the vacuum, the string condenses to form long-range 
magnetic field lines and our gauge choice is then not very suitable anymore to 
describe the long-distance structure. 

For calculational purposes the unitary gauge (2.3) is not always practical because 
of its singular nature at small distances. The theory is not easy to be renormalized in 
this gauge. We now would like to preserve its good features at the long-distance scale 
but find a smoother condition at the microscopic scale: something in between the 
unitary gauge and the Lorentz gauge. Such gauges exist: non-physical features do 
propagate, but with a large mass-parameter so that they do little harm to the 
large-scale spectrum of dynamical variables. They have been used often [8]: 

arg(q,) + ,¢8,A~ = 0, (2.5) 

where ~ is a constant that we may choose and arg(q,) defined to lie between -~r and 
~r. Equivalently, one may add a gauge-fixing term to the lagrangian, for instance: 

8~= 2qF2t¢ lcos(arg(q,) + ~¢0,A,) (2.6) 

(we chose the cosine only to avoid the singularity at arg(q,)= -+~). The Faddeev- 
Popov ghost [1,2] happens to decouple: 

~ = -- 0~7"~  - q~7*~. (2.7) 
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In both cases we find, in addition to the physical particles, ghosts that propagate 
with a mass 

rngh= ( q/~ )l/2. (2.8) 

It is only in this simple model that they happen to decouple and the gauge (2.6) has 
the further convenience that the various ghosts do not mix. 

The limit K ~ 0 clearly reproduces the unitary, non-propagating gauge (2.3). But 
how do the singular strings emerge in this limit? The answer is: here they do not. 
The gauge (2.5) is the gauge where 

f d 4 x (  q_ l(arg q, )2 + xA 2 ) (2.9) 

has a local minimum. At a string singularity, A, would diverge as (distance)-1, and 
in a plane orthogonal to the string 

f (2.10) 

would diverge logarithmically. In the space of continuous, differentiable A, the 
integral (2.9) is finite and we would have to search for a minimum there first. 

Now consider a 3-dimensional space. Suppose we have a field configuration with 
zeros for q~, forming a string (of course this string has no ends). The gauge (2.3) then 
shows a singularity there. What happens then in the gauge (2.5) when • tends to 
zero? The answer is that the system forms a sheet, with the aforementioned string at 
its edge. The thickness of the sheet is determined by ~/K. The derivative in (2.5) 
prevents any singularities from developing. At either side of the sheet we have 

a r g q ~  O. (2.11) 

To solve the equations for the sheet we make the simplifying assumption that it is 
essentially flat compared to the distance scale set by (q/~)1/2, and in the region of 
space which it occupies we neglect variations in the physically observable fields. The 
problem is then essentially one-dimensional. In the Lorentz-gauge we would have 
arg@ -~ 0 and A~ -~ 0. In the gauge (2.5) we have 

arg q~ + 2~rn = A, 

A~= --q-10~A, (2.12) 

A - Kq-1O2A = 2rrn. (2.13) 
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Here the integer n is such that largff[ ~< ~r. The boundary condition is such that q~ 
makes a full rotation over 27r. The solution is a nice soliton: 

arg q~ = ir sgn(x ) e x p ( -  (q/K)'/2 Ixl }, (2.14) 

where x is a coordinate orthogonal to the sheet. 
The conclusion of this section is that the transition from a unitary, non-propagating 

gauge to a renormalizable gauge produces an important change in the set of 
dynamical variables. The unitary gauge shows clearly the physical objects: heavy 
vector particles, scalar particles and also strings. The renormalizable gauge produces 
not only ghosts but also phantom sheets. If x ~ 0 then the ghosts become infinitely 
heavy and the sheets infinitely thin. 

How could we re-obtain the most relevant part of the dynamical variables also in 
the renormalizable gauge? Suppose that we reintroduce the string singularities 
explicitly. Along those singularities the integral (2.9) would diverge, but we can in 
principle invent a subtraction procedure, recovering a finite part. Then we can ask 
for that particular configuration of the singularities that minimizes this finite part of 
the integral (2.9). The soliton (2.14) contributes a lot: 

27r2~l/Zq-3/2fd2x, (2.15) 

which diverges with the area. So large sheets will then automatically be avoided and 
be exchanged for strings. Thus also in renormalizable gauges the correct set of 
dynamical variables can be obtained. 

A quantitative treatment of the theory would now require a study of the 
continuum theory in the renormalizable gauge with some isolated string-like singu- 
larities. We will not pursue such programs any further but it is clear that in principle 
all long-distance phenomena would be taken in account correctly. The more im- 
portant point we wish to make is that the same can be done for non-abelian gauge 
theories and that such a program again assures us of the correct dynamical 
long-distance variables. 

In the non-abelian case however it is best to follow such a procedure in two steps. 
First we fix the non-abelian part of the gauge. The dynamical variables thus 
obtained are the "transient variables." Then afterwards one can treat the abelian 
part, which is much more conventional. 

As a matter of fact we will show that during the first part of this procedure, which 
is the most crucial one, we can avoid the bothersome string singularities. The real 
singularities, then, are just point-like and won't be wiped out in the more regular 
renormalizable gauges. 
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3. The abelian projection in the non-abelian gauge theory 

In the non-abelian theory, whether or not spontaneously broken, we again search 
first for a non-propagating gauge condition. Clearly, the Lorentz gauge 

0~,A~, = 0, (3.1) 

propagates massless spurious modes and is therefore unsuitable. One must use some 
tensor, X, that transforms covariantly under a gauge transformation f~: 

X' = a x a - '  (3.2) 

Since scalar fields or field combinations transforming as a fundamental representa- 
tion of the gauge group are often not present we concentrate on the case that X is in 
the adjoint representation. For instance 

X = G~,,G~,,, (3.3a) 

X =  G~,DZG.~, (3.3b) 

or  

X - -  GI2 , (3.3c) 

where G,~ is the covariant curl in matrix notation: 

= - (3.4) 

Choice (3.3a) only makes sense if the gauge group is larger than SU(2), and there are 
perhaps other possibilities as we shall see. 

How does X determine the gauge? The eigenvalues of X are gauge invariant. 
Therefore, the best we can do is search the gauge in which X is diagonal: 

X =  

0 AN 

(3.5) 

Just as in the abelian model, this gauge condition produces singularities. Here, the 
singularities occur when two or more eigenvalues coincide. The nature of these 
singularities now depends on the gauge group. 

If the gauge group is an orthogonal group SO(N) then at non-singular points (3.5) 
fixes the gauge completely, and the singular points, with two coinciding eigenvalues, 
form strings in 3-space. These represent Nielsen-Olesen vortices [4] and the re- 
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mainder of the discussion would be very similar to that of sect. 2. Only, if no 
spontaneous breakdown takes place, 

( X ) =  ?~I, (3.6) 

then these strings will fill the vacuum, and further discussion of that situation will be 
hard. It is precisely these string-like singularities which we would like to avoid, since 
field theories for strings are hard and unconventional. We shall not elaborate further 
on the question how to find a non-propagating gauge condition with only point-like 
singularities for SO(N). 

If the gauge group is SU(N) the gauge (3.5) is particularly interesting. At generic 
points where the )~i do not coincide, the gauge is not determined completely, since 
any diagonal gauge rotation ~2, 

ei~ 

elgin 

= 0, (3.7) 

leaves X invariant if X looks like (3.5) and transforms according to (3.2). In fact, the 
subgroup of ~ satisfying (3.7) is the largest abelian subgroup, 

U ( 1 )  N-1 , (3 .8)  

so within this gauge our system is an N -  1 fold abelian gauge-invariant theory. We 
will call this group for simplicity: the "electromagnetic" group. The diagonal 
components of a matrix are "neutral," and off-diagonal components of a matrix 
carry two different "electric" charges. 

However, our system has something else besides electromagnetic gauge fields and 
electric charges. In this gauge there are also singularities, namely if two eigenvalues ?~ 
of X coincide. This time it is easy to establish that such exceptional points occur only 
if three conditions are met, and so they form isolated points in 3-space, not strings. 
For instance in SU(2) the conditions that the hermitian matrix 

X =  a o + a~o~ + a2o 2 + a3o 3 (3.9) 

(where o h are the Pauli matrices) has two coinciding eigenvalues are 

al-~ a2 ~ a3-~O; (3.10) 

clearly three conditions, fixing the three space coordinates of such points. But also 
for all other values of N the condition that two eigenvalues of an hermitian N × N 
matrix coincide forms three constraints. The singularities, therefore, are always 
point-like. It appears that gauge conditions with only point-like singularities are only 
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Fig. 1. In a plane orthogonal to the string singularity in gauge (3.12) the axis of the invariant U(I) 
rotation in isospin space can rotate as indicated here. 

possible if the largest abelian subgroup of the gauge group is left unbroken. We call 
this the abelian projection. 

Note that if the gauge group is SU(2) then the choice (3.3a) for X is not allowed: 
G~G~ automatically has coinciding eigenvalues. If we use vector notation, 

a l l y  
- -  ] a , , - , a  

-7~- t~;,, (3.11) 

where ~.a are the Pauli matrices, then one could be tempted to use 

0 1 - -  0 2 - -  G;~G~ - O;~G;~ - 0 (3.12) 

as a gauge condition that leaves a U(1) invariance. However, a b G~vG~, is a real 
symmetric matrix, and the locus of points with two coinciding eigenvalues is 
string-like. In the vicinity of such a string the axis of the invariant U(1) group may 
rotate as pictured in fig. 1. Because of this disease we prefer an X transforming as 
(3.2), and of the form (3.3b), or (3.3c) if the gauge group is SU(2). 

4. The nature of the singularities 

The gauge in which X is diagonal, see e.g. (3.5), can be further restricted by 
choosing 

~kl ~> ~ 2 " ' "  > ~  N . (4.1) 

The only singularities occur if two consecutive eigenvalues coincide: 

~j ~ ~j+ 1 -= ~, for certain j .  (4.2) 

Let us consider the direct vicinity of such a point. We ignore all other rows and 
columns of X except t he j t h  a n d j  + 1st. Prior to complete diagonalization the matrix 
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X =  

Dl 0 t 
I 
I 

)k "-~ e 3 el - -  ie2 I 

e I + ie  2 ~k - -  e 3 I 

0 I 

0 

0 = ~ + ekOk, 

D2 

(4.3) 

using a short-hand notation. Since all other eigenvalues differ from k we could safely 
take D 1 and D 2 to be diagonal, e k are small. With respect to that SU(2) subgroup of 
our gauge group that involves only the j th  a n d j  + 1st components of a fundamental 
representation, the fields ek(X ) behave in all respects as an isovector. 

Our singularity occurs at x 0, where 

e(x0) = 0 ,  (4.4) 

and our gauge condition corresponds to rotating e such that 

E 3 ~ O  , El ~--~- E2 ~ 0 ,  (4.5) 

leaving invariance with respect to rotations around the 3-axis. It is now well known 
that in this gauge the zero-point of e at x 0 behaves as a magnetic charge with respect 
to the remaining U(1) rotations [9]. This magnetic charge h is such that if the U(1) 
charges of a doublet 

are defined to be +-½g, then 

hg = 4~r. (4.6) 

For labeling these charges it is convenient momentarily to replace SU(N) by 
U(N), whose largest abelian subgroup is 

U(1) N, (4.7) 

being the group of rotations 

eiWl 

(4.8) 

e i ~  
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The U(1) invariant subgroup of rotations ~01 = ~o 2 . . . . .  ~o N --- ~0 can then easily be 
split off afterwards. 

Let us then label magnetic charges as a vector (h I . . . .  hN). We choose units such 
that the i th component of a fundamental representation (~kl .... , ~Pi .... , ~PN) has 

(0 . . . . .  0, ~g,0 . . . . .  0) with the ½g at the ith position. Then our singular- electric charge 1 

ity has magnetic charge 

hj = -h i+ I = 4~r/g, 

h i = O, fo r j  ~ i =~j + 1. (4.9) 

Thus we see that our singularities come in N -  1 different varieties, all carrying two 
consecutive and opposite magnetic charges. "Monopoles" with non-consecutive 
opposite charges can only be obtained as "bound states" of these fundamental 
monopole singularities. 

We conclude in this section that the non-abelian SU(N)  gauge theory is topologi- 
cally such that it can be cast into a U(1) u-1 abelian gauge theory, which, however, 
will feature not only electrically charged particles but also magnetic monopoles with 
magnetic charges given by (4.9). However, the gauge used in this mapping renders 
the theory non-manifestly renormalizable. In the next section we introduce a 
smoother gauge condition. 

4. The approximately non-propagating gauge 

It is easy to write down a renormalizable gauge condition that reduces SU(N)  to 
U ( 1 ) N - t  If we represent the vector fields by herrnitian matrices At(x  ) then we may 
define 

ch (5.1) A t = A o + A t • 

Here A~ h is the matrix A t with all diagonal elements replaced by zero. The suffix ch 
stands for "charged" with respect to the abelian U ( 1 )  N -  1 rotations. We write A ° for 
the diagonal elements of A t only. A renormalizable gauge condition would be 

0 ch- -  - o ,  (5.2) 

where 

D°=O~, - ig[A  O, ]. (5.3) 

One easily verifies that this leaves the subgroup U(1) N- 1 invariant. But, as in sect. 1, 
we argue that in this gauge massless ghosts propagate, which we wish to avoid. 
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An intermediate gauge could be the non-abelian equivalent of (2.5): 

XCh-- ,[oOA;h, xo]----0, (5.4) 

which corresponds to (5.2) at small distances and (3.5) at large distance scales. If we 
take a patch of space-time where all eigenvalues of X differ from each other, then all 
propagators there have non-physical parts at a mass value 

m = O ( g / K )  [/2, (5.5) 

which is also the mass of the Faddeev-Popov ghosts, g is the coupling constant. By 
adjusting ~ we can choose this mass to be anything we like. The special choice of eq. 
(5.4) ensures that this mass does not depend on the vacuum values of X. 

Unfortunately, even at small distances (or equivalently at large ~) the gauge 
condition (5.4) is hard to implement. Perturbation expansion must be refined 
considerably. Further study of this will be necessary, and perhaps one has to choose 
even more refined gauge-fixing procedures. But let us study this one a bit more first. 

A slightly modified version of (5.4) can be obtained from an extremum principle. 
Let us define a hermitian matrix Y having only non-diagonal elements, and 

[ Y, X°  l = iXCh. (5.6) 

In matrix notation, if the diagonal elements of X ° are given by Xi, then 

Yij = i X i j ( X j  - X i ) - "  ifi:/=J' (5.7) 

= 0, if i = j .  

Under an infinitesimal gauge transformation given by a matrix A ~h (while A ° = 0), 
this transforms as 

y , =  y - A  ch + O(ACh, y ) ,  (5.8) 

where, as always, the suffix ch stands for removing the diagonal components. If we 
replace (5.4) by 

y + .  rtO Ach ~ J.lt~ ~ + O ( y 2 )  = 0 ,  (5.9) 

then that is obtained by minimizing 

(5.10) 

under gauge transformations. 
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6. Phantom strings or singularities? 

For any non-vanishing value of r one would not expect monopole-like singulari- 
ties such as the ones discussed in sect. 4. However, the integral (5.10) has to be finite. 
At a monopole singularity itself, Y and A~ h diverge only as l / r ,  so that there the 
integral does converge. Therefore, the system might be unstable against the forma- 
tion of singularities, as we will see. 

Let us assume that two adjacent eigenvalues, ~j and ~j+~, coincide at two points 
A and B, and that the non-propagating gauge (3.5) would produce a monopole at A 
and one with opposite magnetic charges at B. If these singularities are to be avoided 
in the more regular gauge (5.9) then X ch cannot be chosen to vanish everywhere. The 
configuration with minimal value for W [eq. (5.10)] would therefore show a structure 
extending from A to B with non-vanishing Y and A~ h. This structure, which would 
clearly be a gauge artifact, will be called "phantom string". 

However, it so happens that here the string-like phantom soliton is unstable 
against collapse. One reason is that in our gauge, the integral W, eq. (5.10), gets an 
infinite contribution where two diagonal elements (not two eigenvahies) of X 
coincide. Another is that the field variable here is just the gauge transformation ~2, a 
scalar field, and such solitons are usually unstable in two dimensions. This fact 
constitutes a practical, not fundamental, difference with the abelian case, as de- 
scribed in sect. 2, where the new phantom was stable. It just happens to be true, and 
it is very convenient. The approximately non-propagating gauge (5.9) will automati- 
cally produce monopole-like singularities. And, furthermore, outside those singulari- 
ties two diagonal elements of X are never allowed to be equal. This enables us to 
order them: 

~1 > ~ 2 "  " " >~kN, (6.1) 

everywhere except at the singularities. 

7. A renormalizable gauge: phantom surfaces 

Even though the gauge (5.4) tends to the Lorentz gauge at small distances, one 
may expect that it is tedious to be implemented in an ordinary perturbation 
expansion for the small distance phenomena. The reason is that the quantity Y in 
(5.8) is singular. A gauge condition which is guaranteed to be safe in this respect is 
the one obtained by extremizing not the function W of eq. (5.10), but instead 

w~=fd4xTr(g-l(x~h)2+K(a;h)2). 
One then obtains the gauge condition: 

(7.1) 

[ x c h ,  X o ] • 0 ch ( 7 . 2 )  - -  KID/,'A, = O .  



468 G. 't Hooft / Topology of the gauge condition 

The reason why we did not take this gauge from the start is that now the ghost 
mass is much less predictable. In perturbation expansion it is zero for all K. In any 
background with non-vanishing X the masses of ghosts with charges i and j are 

m ~ =  O[  ( g / K  ) ' / a l X  , -  Xjl], (7.3) 

where ~i are the eigenvalues of X. These ghosts therefore look much more trouble- 
some but still, in the limit K ~ 0 the non-propagating gauge should be reached. 

Again, this gauge is unstable against the formation of monopole singularities, so 
that phantom string-fike solitons do not emerge, but another phantom can be 
produced in principle: phantom sheets. This is because now the eigenvalues ~i of X ° 
cannot be kept ordered. We get various regions of space-time where their order will 
be different. These regions will be separated by domain walls, much like Bloch walls 
in a ferromagnet. Let us take a closer look at these walls. 

Again we take X to be in the representation (4.3), neglecting all but two rows and 
columns: 

X = )~ + a k % .  (7.3) 

We are far from any singular points, so 

lal = a e a 0 .  (7.4) 

We take ~ to be small with respect to the scale in which the physical fields vary. 
Then we are close to a pure gauge transformation of the approximately constant 
field configuration 

t x ;  = x + a t o.  (7.5) 

This configuration is transformed by a gauge transformation f~(x) such that at 

x 3 >> 0 we have 

X =~ ~ X ' ~  -1 = 7k + a~303 , 

.4~, =- ig - l ~ a , f ~  - i = O, (7.6) 

and at x 3 << 0 we have 

X = ~ - a~303; A t = O. (7.7) 

f~ must be of the form 

= exp(Roo I ), 
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where ~o depends on x3, and 

W 2 ~ f d 4 x  (g-- 1 ((~"2X'~"~- l)ch)2 -- g-2K ((~OV~-I)ch) 2 } 

-2 2 = 2 f d 4 x ( a 2 g - l s i n 2 2 ~ + g  r (~ ,o~)) .  (7.8) 

This is the lagrangian for a sine-Gordon equation, and the boundary conditions (7.6) 
and (7.7) are those of the sine-Gordon soliton. The contribution of the sheet to W 2 
is: 

W 2 = 4alct/2g-3/2fd2x, (7.9) 

where the integral is over the sheet. The thickness of the sheet is of order 

a - l x l / 2 g - 1 / 2 = O ( m ~ h l ) .  (7.10) 

We may safely assume that the phantom sheets contribute to W E by an amount 
proportional to their area. Since they have no natural boundary they only come in 
the form of bubbles, and minimizing W 2 will correspond to minimizing the total area 
of these bubbles, which will therefore never grow to substantial sizes. So, in the bulk 
of space-time, with only small exceptional regions, we may assume that the ~i are 
ordered in the same way as in the previous gauges, see (4.1) and (6.1). Monopole 
singularities will occur in this gauge as much as in the previous gauges. Because of 
the above their magnetic charges will be consecutive [in the sense of sect. 4, eq. (4.9)] 
in the "regular" regions of space-time, but non-consecutive charges might show up 
occasionally, inside a bubble. We see that although gauges of the type (7.2) might be 
easier to handle in perturbation theory, they give rise to a more complicated 
topology. 

We conclude from sects. 3-7 that perhaps the most crucial physical dynamical 
variables that govern the strong-interaction region of a non-abelian theory may be 
obtained by first fixing the non-abelian part of the gauge symmetry. We get an 
abelian theory with magnetic monopoles. Their magnetic charges [in the case of 
SU(N)] are given by eq. (4.9). The short-range, non-electromagnetic interactions 
between the electrically charged particles and the monopoles are likely to be 
computable by ordinary perturbative techniques. If so, then perhaps one may be 
able to determine which of the corresponding fields develops non-vanishing vacuum 
expectation values, and thereby prove or disprove the phenomenon of confinement 
in various models. The remaining sections are devoted to the role instantons play in 
our set of transient dynamical variables. 
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8. The 0 vacuum 

Dirac [10] observed that the equations of motion of an electrically charged particle 
with charge q in the vicinity of a magnetic monopole field with source strength h can 
only be quantized in a rotationally invariant way if 

hq = 21rn, (8.1) 

where n is an integer. 
Now we are dealing with a multiple abelian theory, with gauge group U(1) N. 

Furthermore, our monopoles might also carry electric charge. Let us consider then 
two different kinds of particles, 1 and 2, with magnetic charges h~ l) and h~ 2), and 
electric charges q!O and q}2), where the index i refers to the particular U(1) group. 
Dirac's condition (8.1) corresponds to quantizing the Lorentz force acting between 
these particles, so in the more general case it reads 

N 

E (hll)q~ 2) -- q~l)h~ 2) ) =- 2~n. (8.2) 
i = 1  

We will sometimes refer to this equation in words: "the particles (1) and (2) have a 
Dirac unit n with respect to each other." Since the overall U(1) rotations are of no 
concern to us we make the restriction 

Eh~ = Eq, = 0 .  (8.3) 
i i 

Clearly this restriction merely determines a notational convention, useful for describ- 
ing the U(1) s -  1 abelian subgroup of SU(N). 

If two particles satisfy (8.2) and (8.3) then a third, with charges 

h~ 3) = klh~ 1) + k2h~ 2), 

q~3) : klq~i,) + k2q~2), (8.4) 

where k~ and k 2 are integers, satisfies the correct quantization conditions with 
respect to both others. Therefore, the most general spectrum of particles satisfying 
(8.2) and (8.3) is obtained by first finding a basis of 2 ( N -  1) particles with charges 
h~ A) and q~A); A --- 1 ... . .  2N - 2. All allowed sets of charges are then 

2 N - - 2  2 N - - 2  

h i = ~ kAh~ A), q , =  ~ kAq} A). (8.5) 
A = I  A = I  

They form a 2 N -  2 dimensional lattice. 
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Maxwell's equations are invariant under the rotations 

h i ~ hicos¢i + qisinep i, 

qi ~ - h i s i n e p i  + q i c o s ¢ i  • (8.6) 

Therefore, for N -  1 of the 2 N -  2 basis elements we can rotate away the magnetic 
charge: 

h~ A) = 0, for A = 1 .. . . .  N - 1. (8.7) 

For the electrically charged gluons in our system we find a basis 

q}A) = ½gSff -- ½g8 A +1 for A ---- 1 . . . . .  N - -  1. (8.8) 

The magnetic monopoles have magnetic charges according to eq. (4.9): 

h~ A) = --6i4~r - A + I - N _ _  --6i4 ~r -A +2--N, 
g g 

for A = N ... . .  2 N -  2. 

Note that "quarks" may be considered to have only electric charges: 

g (8.10) qi = l g6iio 2 N  ' 

where the last term is an overall U(1) charge, added in order to comply with (8.3). 
We see immediately that N quarks, or a quark and an antiquark are needed to 
obtain something that fits in the lattice spanned by the gluons. Also, the quarks 
would saturate Dirac's condition, the gluons alone do not. 

Coming back to the magnetically charged particles, we have not yet specified their 
electric charges: q}A) for A = N .. . . .  2N - 2. Any set of values would be consistent 
with Dirac's condition (8.2). It was Witten [11] who first observed that monopoles 
may indeed carry fractional electric charges when generated by a non-abelian gauge 
theory: 

q [ A ) =  Og 2 h~A), A = N  . . . . .  2 N - 2 ,  (8.11) 
16~ 2 

where 0 is the instanton-angle. 
A simplified explanation of eq. (8.11), in a notation adapted to o u r  U(1) N 1 

theory, goes as follows. If we decide not to tamper with the boundary conditions 
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then the lagrangian in euclidean space for a 0 vacuum is 

• 2 ~= __±~a~a Olg a ~a a a 

= - ½  TrG~vG~, + Oig----~-2 Tr G,,4,, + TraJ~.  (8.12) 
16~r 2 

where " - G,, -~e,v~aG~a. The last term is an auxiliary source term that vanishes in the 
pure gauge theory. We assume that at some distance from the monopole singularity 
only the abelian parts survive: 

1 Oig 2 " ), 
(8.13) 

where the index i refers to the ith U(1) group. Some rather unconventional factors of 
2 are due to our transition towards the diagonal part of the group. In the gauge 

h 4 i  = 0 ,  (8.14) 

this reads 

~ :  --  (O.rAi)  - b  i + - - O r A i  .b  i + A  i , 
4~r 2 

where "r is euclidean time and if B~ = curl A~, then b~ is B i with its string singularity 
removed. For the transition towards Minkowski space we replace 3,A by iOtA = i,4, 
so that 

~=~(.42-bz-Og---~2.4..bi+Ai.J~).4~r2 , (8.16) 

The Euler-Lagrange equations are 

Therefore 

l ) i  = /~i - Og-2 b" ( 8 . 1 7 a )  
87/. 2 t, 

/ J , = - c u r l ( b / +  8~r20g--~2.4), +½J~. (8.17b) 

divD i -- ldivJi -- - ½tS,. (8.18) 
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The conserved quantity divD~ + ½O~ must be chosen to be zero for the physical sector 
of Hilbert space. If no electric charge is present, then 

divDi = 0 

The hamiltonian is 

(8.19) 

+ b2i - Ji "Ai ) .  (8.20) 

The electric field, as would be measured experimentally, is 

E i :  ½(Di q- 8-~g2bi) : lAi.  (8.21) 

Pure magnetic monopoles must satisfy (8.19), and due to (8.17a) the field D i has no 
string singularity for stationary monopoles. Therefore, for stationary monopoles Di 
vanishes, and they carry along with them an electric field 

E , -  Og--~Z-b (8.22) 
16~r2 i, 

corresponding to an electric charge as given in (8.11). This result appears to be 
non-periodic in 0 but that is not so. The result at 0 -- 2~r may be seen as a bound 
state of a monopole and a gluon. It will be important to note that the monopole and 
the gluon in this bound state have a relative Dirac quantum of two units, regardless 
the value of N. If this quantum would have been odd then this bound state of two 
bosons would have been a fermion [12] and we could not possibly have exact 
periodicity in 0 with period 2~r. 

The phenomenon of a metamorphosis of a pure magnetic flux into a magnetic flux 
plus an electric flux when 0 runs from 0 to 2~r has been derived in a different setting 
in ref. [13]. 

Eqs. (8.7)-(8.9) and (8.11) define the basis of our lattice of existing electromag- 
netic charge combinations. 

9. A phase transition in 0 

From the previous sections we obtain the following picture of the transient 
dynamical variables for a non-abelian gauge theory: there will be a multiple set of 
abelian Maxwell fields (if the original gauge group was SU(N),  their multiplicity is 
N - 1, to be indicated with an index i = 1 .. . . .  N with a restriction on the sum of all 
charges). There will be a number of electrically charged and magnetically charged 
particles, whose charges can be plotted as a charge-lattice of 2N - 2 dimensions. The 
SU(2) lattice is sketched in fig. 2. Apart from the obvious abelian interaction these 
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Fig. 2. The electric-magnetic charge lattice for the SU(2) case. q = electric charge, h = magnetic charge. 
b/a ~- 0/2 ~. Dotted lines I, II, and III indicate Bose condensation in various phases. 

particles may exert short-range non-gauge interactions due to particle exchange at 
small distances. The choice of the axes in this lattice is to some extent arbitrary 
because the Maxwell equations are invariant under orthogonal rotations in the h-q 
plane. 

For the behavior of the theory at long-distance scales there are now three natural 
possibilities already often discussed in the literature: if one of the purely electrically 
charged objects is a Lorentz scalar it can develop a non-vanishing vacuum expecta- 
tion value and we have the "Higgs mode." If the field of a magnetic monopole 
develops a non-vanishing vacuum expectation value we have permanent quark 
confinement ("confinement mode"). If all particles in the lattice get an ordinary 
positive mass-squared then we keep the physical particles as indicated in the lattice 
("Coulomb mode"). The system cannot continuously enter one such mode from 
another. There must be sharp phase transition boundaries. 

All phases can now be characterized by designating those points on the charge 
lattice that develop vacuum expectation values. The relative Dirac quantum for all 
pairs of these points must vanish. For the SU(2) case (fig. 2) that implies that they 
all must lie on a straight line through the origin. In the general case they can span at 
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most an N -  1 dimensional linear subspace, F. All particles whose charges lie in this 
subspace only show short-range interactions. Their gauge fields are screened by the 
Higgs mechanism. All particles that have a non-vanishing Dirac unit with respect to 
one of the points on this subspace F behave like monopoles in a superconductor: 
they are endpoints of a string that binds them to opposite charges. 

Clearly then, the phase of the system is characterized by this linear subspace 
spanned by at most N -  1 points on the lattice. (The pure Coulomb mode corre- 
sponds to only choosing the origin). Phase transitions correspond to discrete jumps 
replacing one linear subspace by another. 

Suppose we had a confinement mode, corresponding to the dotted line I in fig. 2. 
If 0 runs from 0 to rr this dotted line becomes more tilted. At 8 = ~r the other line, 
line II, corresponds to the parity image of I, and at 0 ~ 27r that new space, line II, 
merges again with the vertical axis. Clearly a phase transition is needed at least for 
one value of 0 (0=~r) ,  or several values. This was derived by different but 
equivalent methods in ref. [14]. 

10. Oblique confinement 

If 0 - ~ then neither I nor II (see fig. 2) are good candidates for the direction in 
which a vacuum expectation value develops. The monopole particles that have to 
move collectively then carry large electric charges. But the monopoles corresponding 
to I and II carry opposite electric charges. Perhaps they form a tight bound state 
(III) which in turn "condenses" (develops a vacuum expectation value). That would 
be a fourth mode, to be referred to as "oblique confinement." We will now argue 
that quarks in this mode will not be confined in the usual sense. 

A quark or antiquark (indicated by crosses in fig. 2) may pick up at not much cost 
a monopole to form a bound state (cross in circle). One of these bound states is on 
line III and can therefore escape as a free particle, carrying the quark's flavor 
quantum numbers. However, something else happens that is worth one's attention. 
According to a strict and well known rule of quantum mechanics, the bound states 
of two particles is a boson or fermion depending on whether the constituents were 
bosons or fermions. What is not so well known, however, is that if two particles have 
an odd relative Dirac quantum then the rule is opposite from the usual one [12]: two 
bosons make a fermion; a boson and a fermion make a boson, etc. The orbital 
motion will show half-odd integer spin, so the spin-statistics theorem remains valid. 
Thus, if the quark was a fermion and the monopole a boson, then the freely moving 
particle (® on line III in fig. 2) is a boson: the quark escapes, but had to flip its spin 
and statistics properties. 

This observation enables one to construct an unusual model with fermionic gauge 
particles but without supersymmetry. We start with SU(3) and instanton angle O -~ ~r. 
There are no fermions. Assume that a fundamental scalar triplet field develops a 
vacuum expectation value, bringing the local symmetry down to SU(2). Assume that 
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this SU(2) condenses in an oblique confinement mode. Four of the five heavy SU(3) 
gauge bosons form a complex SU(2) doublet. They are not confined, but escape 
disguised as fermions. 

We do not know if it is possible to make light or massless fermions this way. This 
would require a chiral symmetry of which the original model showed no trace. Of 
course, chiral fermions in the original theory would wipe out any 0 dependence. We 
argued in a previous publication that the discontinuity in 0 must then probably be 
replaced by a spontaneous breakdown of the chiral symmetry among the fermions 
[14]. 

Of course oblique confinement can also be visualized in gauge theories with larger 
gauge groups. In SU(3) an oblique confinement mode that liberates the quarks 
occurs if a bound state of three monopoles and a gluon condenses. Table 1 lists the 
magnetic and electric charges of the various building blocks, and those of the 
condensing states. We see that if 0 =2~r then 3S = Q and the electric charges of the 
condensed particles vanishes so then this mode might occur. The last blocks in the 
table show which quark-monopole bound states become liberated, having charges 
that are linear combinations of those of the condensed states. 

When Dirac's quantum for these bound states is worked out we find it to be even. 
Therefore the SU(3) quarks do not change from fermions into bosons or vice versa 
when liberated. 

TABLE l 
Oblique confinement in SU(3) 

hi h2 h3 ql q2 q3 

G I  

gluons: 0 

G2 

Q - Q  0 

0 O - Q  

monopoles: 
Mj R - R  0 S - S  0 

M 2 0 R - R  0 S - S  

2 1 I - ~ Q  61 ~Q - 3 Q  

- ~ Q  ~Q - ~ Q  quarks: 62 0 J 2 1 
I 1 2 

63 - g Q  - 3 Q  3Q 

condensed M3GI 3R - 3R 0 3S -- Q Q - 3S 0 
states M23(ff2 0 3R - 3 R  0 3 S -  Q Q -  3S 

liberated ~t2)~t261 - 2 R  R R 2Q _ 2S S - ½Q S - IQ 
S i 2 1 quarks MzMI62 R --2R R - ~Q 5Q - 2S S - 3Q 

M,M~k3 R R - -2R S -- ½Q S _ I~Q 2Q _ 2S 

Q=½g, R = 4 u / g ,  S=Og/4u .  
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We stress that the phenomena described in this section will not occur in ordinary 
QCD where 0 is observed to be very close to zero. 

One can imagine a model in which the liberated quarks themselves, being bosons, 
develop vacuum expectation values. They could even be responsible in the first place 
for a system to condense into an oblique confinement mode. This observation will 
perhaps allow us to construct unusual models for interactions of elementary particles 
at extremely short distance. Is the presently popular Higgs particle a fermion- 
monopole bound state? We leave such questions for the future. 

II. Conclusions 

Non-abelian gauge theories can be cast in the form of abelian gauge theories with 
magnetic monopoles. We can distinguish "elementary" monopoles from bound 
monopole pairs. The elementary ones are those that arise as single singularities when 
the non-abelian part of the gauge is fixed by a non-propagating gauge condition. For 
SU(N) for instance there are only N -  1 species, each carrying two opposite and 
consecutive U(1) charges according to (4.9). The others, such as those with two 
non-consecutive opposite charges, are bound states composed of elementary ones. 
Not only the abelian electromagnetic interactions but also the non-gauge interac- 
tions between these objects should be precisely determined by the microscopic 
theory. However, it may be that smoother gauge conditions are necessary such as 
(7.2) in which case both the ghost spectrum and the monopole spectrum become 
more complicated. 

Whether or not this approach may lead to useful quantitative computation 
procedures remains to be seen. Abelian gauge theories with monopoles may be more 
transparent than non-abelian theories-they are still strongly interacting systems 
defying any conventional perturbative treatment. An advantage of our construction 
is that the dual transformation electric-magnetic now seems to be basically straight- 
forward. However, since the fundamental gluons have spin one and the monopoles 
spin zero, and, moreover, since the monopoles come in fewer varieties than the 
gluons, the theory is as yet far from being self-dual. 

One should also not underestimate a difficulty exposed by the instanton angle 0. 
If 0 runs from zero to 2~r the monopole changes into a monopole-gluon bound state. 
How then can we ever distinguish "pure" monopoles from monopole-gluon bound 
states? Such a distinction must be made on a rather arbitrary basis. 

A byproduct of our considerations is the categorization of monopoles in the 
maximal abelian subgroup. This enabled us to enumerate the various possible phases 
in a gauge theory. Once 0 is allowed to have non-trivial values the number of 
possible phases is much larger than realized before: they are defined by the choice of 
the linear subspace in the electric-magnetic charge lattice spanned by the condensed 
particles. Most of these "oblique confinement" modes are probably extremely 
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difficult to realize in any conceivable model, but in principle they are possible. And 
all these modes will be separated by sharp phase transitions. 

The author thanks A. Bais for explaining to him the nature of the phase transition 
in 0 and P. van Baal for correcting an error in an original version of this paper. 
Further he had fruitful discussions with S. Gupta, C.P. Korthals Altes, S. Mandels- 
tam, A.V. Manohar, I. Singer and N. Snyderman. 
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