
EXCITATION FUNCTION OF C''(P, Pn) O'' REACTION

must then consider either the absolute value of the
C"(p,pl) cross section or that of the AP7(p, 3prs) cross
section (or both) to be in error. We have rather arbi-
trarily chosen to base our data on the 10.8-mb value
for the AP'(p, 3prs) cross section at 420 Mev.

Figure 1 shows that the cross section of the
C"(p,pcs) C" reaction is a fairly insensitive function of
the energy of the incident proton in the energy range
studied here. Since similar results were found for the
production of Na", Na", and F" from aluminum and
for Be~ formation from carbon, 6 it appears to be gen-
erally true that the probability of ejecting a small
number of nucleons from a small nucleus remains sub-
stantially constant over a range of bombarding energies
from a few hundred Mev to at least 3 Bev. This implies
that the probability that the incident particle leaves
behind a relatively small amount of energy (&100 Mev)
in the ieitia/ interaction with the nucleus is relatively
constant over the wide energy range studied. However
within this energy range meson production increases
very markedly with energy and becomes a probable
process. If the nucleus is large these mesons would have
a good chance of being reabsorbed in the nucleus in
which they were produced. This would result in a shift
of the maximum in the total energy deposition spectrum
to higher values, and reactions in which only a small

'Hudis, Wolfgang, and Friedlander (unpublished).
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Fro. 1. Excitation function of the C"(p,pn)C" reaction.

number of particles are ejected would become less
likely. Such an eGect has been observed in our studies
on heavier nuclei. ' However, in a small nucleus reab-
sorption of mesons would be a much less important
mode of depositing excitation energy because of their
greater escape probability. Thus it becomes plausible
that while the increasing dominance of meson processes
decreases the cross sections for relatively simple reac-
tions in heavy target nuclei, the cross sections for similar
reactions of light nuclei remain almost unchanged.

The help of the Cosmot. ron operating staff is grate-
fully acknowledged.
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It is pointed out that the usual principle of invariance under isotopic spin rotation is not consistant with
the concept of localized fields. The possibility is explored of having invariance under local isotopic spin
rotations. This leads to formulating a principle of isotopic gauge invariance and the existence of a b Geld
which has the same relation to the isotopic spin that the electromagnetic Geld has to the electric charge. The
b Geld satisGes nonlinear differential equations. The quanta of the b field are particles with spin unity,
isotopic spin unity, and electric charge +e or zero.

INTRODUCTION

I
'HE conservation of isotopic spin is a much dis-

cussed concept in recent years. Historically an
isotopic spin parameter was first. introduced by Heisen-
berg' in 1932 to describe the two charge states (namely
neutron and. proton) of a nucleon. The idea that the
neutron and proton correspond to two states of the
same particle was suggested at that time by the fact
that their masses are nearly equal, and that the light

*Work performed under the auspices of the U. S. Atomic
Energy Commission.

t On leave of absence from the Institute for Advanced Study,
Princeton, New Jersey.

' W. Heisenberg, Z. Physik 77, 1 (1932).

stable even nuclei contain equal numbers of them. Then
in 1937 Breit, Condon, and Present pointed out the
approximate equality of p —p and e—p interactions in
the 'S state. ' It seemed natural to assume that this
equality holds also in the other states available to both
the N —p and p —p systems. Under such an assumption
one arrives at the concept of a total isotopic spin' which
is conserved in nucleon-nucleon interactions. Experi-

'Breit, Condon, and Present, Phys. Rev. 50, 825 (1936). J.
Schwinger pointed out that the small diAerence may be attributed
to magnetic interactions /Phys. Rev. 78, 135 (1950)).

~ The total isotopic spin T was Grst introduced by E. Wigner,
Phys. Rev. 51, 106 (1937); B. Cassen and E. U. Condon, Phys.
Rev. 50, 846 (1936).
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ments in recent years' on the energy levels of light nuclei
strongly suggest that this assumption is indeed correct,
An implication of this is that all strong interactions
such as the pion-nucleon interaction, must also satisfy
the same conservation law. This and the knowledge that
there are three charge states of the pion, and that pions
can be coupled to the nucleon 6eld singly, lead to the
conclusion that pions have isotopic spin unity. A direct
verification of this conclusion was found in the experi-
ment of Hildebrand' which compares the diGerential
cross section of the process e+p~'+d with that of
the previously measured process p+~++d.

The conservation of isotopic spin is identical with the
requirement of invariance of all interactions under
isotopic spin rotation. This means that when electro-
magnetic interactions can be neglected, as we shall here-
after assume to be the case, the orientation of the
isotopic spin is of no physical signi6cance. The diGer-
entiation between a neutron and a proton is then a
purely arbitrary process. As usually conceived, however,
this arbitrariness is subject to the following limitation:
once one chooses what to call a proton, what a neutron,
at one space-time point, one is then not free to make any
choices at other space-time points.

It seems that this is not consistent with the localized
field concept that underlies the usual physical theories.
In the present paper we wish to explore the possibility
of requiring all interactions to be invariant under
irldependerit rotations of the isotopic spin at all space-
time points, so that the relative orientation of the iso-
topic spin at two space-time points becomes a physic-
ally meaningless quantity (the electromagnetic field
being neglected).

We wish to point out that an entirely similar situation
arises with respect to the ordinary gauge invariance of a
charged field which is described by a complex wave
function P. A change of gauge' means a change of phase
factor P +f', f'= (expi—n)g, a change that is devoid of
any physical consequences. Since f may depend on
x, y, s, and t, the relative phase factor of P at two differ-
ent space-time points is therefore completely arbitrary.
In other. words, the arbitrariness in choosing the phase
factor is local in character.

Ke deGne isofoPic gauge as an arbitrary way of choos-
ing the orientation of the isotopic spin axes at all space-
time points, in analogy with the electromagnetic gauge
which represents an arbitrary way of choosing the com-
plex phase factor of a charged field at all space-time
points. We then propose that all physical processes
(not involving the electromagnetic Geld) be invariant
under an isotopic gauge transformation, P~f', P'= S Q,
where S represents a space-time dependent isotopic
spin rotation.

To preserve invariance one notices that in electro-

4T. Lauritsen, Ann. Rev. Nuclear Sci. 1, 67 (1952); D. R.
Inglis, Revs. Modern Phys. 25, 390 (1953).

~ R. H. Hildebrand, Phys. Rev. 89, 1090 (1953).
'%. Pauli, Revs. Modern Phys. 13, 203 (1941).

dynamics it is necessary to counteract the variation of o.

with x, y, s, and t by introducing the electromagnetic
field A„which changes under a gauge transformation as

In an entirely similar manner we introduce a 8 6eld in
the case of the isotopic gauge transformation to counter-
act the dependence of S on x, y, s, and t. It will be seen
that this natural generalization allows for very little
arbitrariness. The 6eld equations satis6ed by the twelve
independent components of the 8 6eld, which we shall
call the b Geld, and their interaction with any field
having an isotopic spin are essentially fixed, in much the
same way that the free electromagnetic field and its
interaction with charged 6elds are essentially deter-
mined by the requirement of gauge invariance.

In the following two sections we put down the
mathematical formulation of the idea of isotopic gauge
invariance discussed above. We then proceed to the
quantization of the field equations for the b field. In the
last section the properties of the quanta of the b field
are discussed.

where S is a 2)&2 unitary matrix with determinant
unity. In accordance with the discussion in the pre-
vious section, we require, in analogy with the electro-
magnetic case, that all derivatives of P appear in the
following combination:

B„are 2)(2 matrices such that for p= 1, 2, and 3, 8„is
Hermitian and 84 is anti-Hermitian. Invariance re-
quires that

S(Bp seBp )P = (Bp seBp)$ (2)

Combining (1) and (2), we obtain the isotopic gauge
transformation on 8„:

i BS
B '=S 'BP+S'-

Bxp

The last term is similar to the gradiant term in the
gauge transformation of electromagnetic potentials.
In analogy to the procedure of obtaining gauge in-
variant 6eld strengths in the electromagnetic case, we

~ We use the conventions k=c=1, and @4=it. Bold-face type
refers to vectors in isotopic space, not in space-time.

ISOTOPIC GAUGE TRANSFORMATION

Let P be a two-component wave function describing
a field with isotopic spin —,. Under an isotopic gauge
transformation it transforms by
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dehne now
88II, 88p

F„„= — +i e(B„B„B„—B„).
~&v &p

One easily shows from (3) that

Ii„„'=5'Ii„,S

B„=2b„T. (6)

(Bold-face letters denote three-component vectors in
isotopic space. ) To relate the b„'s corresponding to
different representations 5 we now consider the product
representation S=5& )5&b). The 8 field for the combina-
tion transforms, according to (3), 'by

under an isotopic gauge transformation. f Other simple
functions of B than (4) do not lead to such a simple
transformation property.

The above lines of thought can be applied to any
field P with arbitrary isotopic spin. One need only use
other representations 5 of rotations in three-dimensional
space. It is reasonable to assume that di6erent fields
with the same total isotopic spin, hence belonging to the
same representation S, interact with the same matrix
field B„.(This is analogous to the fact that the electro-
magnetic field interacts in the same way with any
charged particle, regardless of the nature of the particle.
If different fields interact with different and independent
8 fields, there would be more conservation laws than
simply the conservation of total isotopic spin. ) To find
a more explicit form for the 8 helds and to relate the
8„'s corresponding to different representations 5, we
proceed as follows.

Equation (3) is valid for any S and its corresponding
B„.Now the matrix 5 '85/eix„appearing in (3) is a
linear combination of the isotopic spin "angular mo-
mentum" matrices T' (i = 1, 2, 3) corresponding to the
isotopic spin of the lt field we are considering. So B„
itself must also contain a linear combination of the
matrices T'. But any part of 8„in addition to this, B„,
say, is a scalar or tensor combination of the T's, and
must transform by the homogeneous part of (3),
B„'=S 'B„S.Such a field is extraneous; it was allowed
by the very general form we assumed for the 8 field, but
is irrelevant to the question of isotopic gauge. Thus the
relevant part of the 8 field is of the form

where
P„,=2f„. I,

rib„ ib„t
f„„= — ——2eb„Xb,.

~&v ~&p,

f„. transforms like a vector under an isotopic gauge
transformation. Obviously the same f„„ interact with
all fields P irrespective of the representation 5 that it
belongs to.

The corresponding transformation of b„ is cumber-
some. One need, however, study only the infinitesimal
isotopic gauge transformations,

5=1—2iT ebb.
Then

1
b„'=b„+2b„XR)+— 5to.

6 BXp,

FIELD EQUATIONS

To write down the field equations for the b field we
clearly only want to use isotopic gauge invariant
quantities. In analogy with the electromagnetic case we
therefore write down the following Lagrangian density

But the sum of 8„& ' and 8„&b), the 8 fields correspond-
ing to 5& ' and 5'b), transforms in exactly the same way,
so that

B —B (~l+B (bl

(plus possible terms which transform homogeneously,
and hence are irrelevant and will not be included).
Decomposing 5& '5( ) into irreducible representations,
we see that the twelve-component field b„ in Eq. (6) is
the same for all representations.

To obtain the interaction between any field P of
arbitrary isotopic spin with the h field one therefore
simply replaces the gradiant of P by

(Bs 2$ehp ' T)lP,

where T' (i = 1, 2, 3), as defined above, are the isotopic
spin "angular momentum" matrices for the field lt.

We remark that the nine components of b„, ii = 1, 2, 3
are real and the three of b4 are pure imaginary. The
isotopic-gauge covariant held quantities F„, are ex-
pressible in terms of h„:

Since the inclusion of a held with isotopic spin 2 is
illustrative, and does not complicate matters very much,
we shall use the following total Lagrangian density:

B I [5(bl ] 1[5(el ]——1BS( a)5(b)

i BS& ) i 85&b'
[5(N)]—i + [5'(b)7 i—

cjXp BSp «f„, f„. Py„(8„—i e~ b. „)P—m~ —(11)— .

One obtains from this the following equations of motion:f. ÃoEe added As proof.—It may appear that B„could be intro-
duced as an auxiliary quantity to accomplish invariance, but need
not be regarded as a field variable by itself. It is to be emphasized
that such a procedure violates the principle of invariance. Every
quantity that is not a pure numeral (like 2, or 3l, or any definite
representation of the y matrices) should be regarded as a dynam-
ical variable, and should be varied in the Lagrangian to yield an
equation of motion. Thus the quantities B„must be regarded as
independent Gelds.

(12)

8 Repeated indices are summed over, except where explicitly
stated otherwise. Latin indices are summed from 1 to 3, Gree& ones
from 1 to 4.
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where
Jy= st

yacc
p.

The divergence of J„does not vanish. Instead it can
easily be shown from (13) that QUANTIZATION

This is the analog of the equation B'a/Bx„s=0 that
(13) must be satisfied by the gauge transformation A„'

=2„+e '(Bn/Bx„) of the electromagnetic field.

BJ„/Bx„=—2eb„XJ„.

If we define, however,

3„=J„+2eb„Xf„„,

then (12) leads to the equation of continuity,

To quantize, it is not convenient to use the isotopic
gauge invariant Lagrangian density (11).This is quite
similar to the corresponding situation in electrodyna-
mics and we adopt the customary procedure of using a
Lagrangian density which is not obviously gauge in-
variant:

(16) 1 Bb„Bb„Bb„
+2e(b„XI „)

2 ()Sv ~Sv &v

Bg„/Bx„=0.

—e'(b, Xb,)'+J„b„—P(y„B„+m)f. (19)

Q&, & s and Q4 are respectively the isotopic spin current
density and isotopic spin density of the system. The
equation of continuity guarantees that the total iso-
topic spin

T= 34d x
The equations of motion that result from this Lagran-
gian density can be easily shown to imply that

is independent of time and independent of a Lorentz
transformation. It is important to notice that 3„, like

b„, does not transform exactly like vectors under isotopic where
space rotations. But the total isotopic spin)

82 8
a+2eb„X a=0,8$„8x„

a = Bb„/Bx„.

T= —
J

~Bf4;
d s)

is the integral of the divergence of f4;, which transforms
like a true vector under isotopic spin space rotations.
Hence, under a general isotopic gauge transformation,
if S—+Se on an infinitely large sphere, T would transform
like an isotopic spin vector.

Equation (15) shows that the isotopic spin arises both
from the spin-rs field (J„) and from the b„ field itself.
Inasmuch as the isotopic spin is the source of the b
field, this fact makes the field equations for the b field
nonlinear, even in the absence of the spin--, 6eld. This is
diferent. from the case of the electromagnetic field,
which is itself chargeless, and consequently satisfies
linear equations in the absence of a charged 6eld.

The Hamiltonian derived from (11) is easily demon-
strated to be positive definite in the absence of the field
of isotopic spin —,. The demonstration is completely
identical with the similar one in electrodynamics.

We must complete the set of equations of motion (12)
and (13) by the supplementary condition,

Bb„/Bx„=0, (17)

which serves to eliminate the scalar part of the field in
b„. This clearly imposes a condition on the possible
isotopic gauge transformations. That is, the indnitesi-
mal isotopic gauge transformation S=1—i~ 8u must
satisfy the following condition:

8 1 8
2b„X — Res+- les=0.

Qsp 6 8$p

one obtains the equal-time commutation rule

Lb„'(x), rr. (x')],=,.= —b,,b„,b'(~-~'), (20)

where b„', i = 1, 2, 3, are the three components of b„.The
relativistic invariance of these commutation rules
follows from the general proof for canonical methods of
quantization given by Heisenberg and Pauli. '

The Hamiltonian derived from (19) is identical with
the one from (11), in virtue of the supplementary
condition. Its density is

H= IIs+II;„t,

1 Bb„Bb„
&o= ——',H„H„+- . +it (y, B,+m)y,

2 Bing Bxg

H~„——2e(b;Xb ) II,—2e(b„Xb;) (Bb„/Bx;)

+e'(b;Xb.)'—J„b„.

(21)

The quantized form of the supplementary condition
is the same as in quantum electrodynamics.

s W. Heisenberg and W. Pauli, Z. Physik 56, 1 (1929).

Thus if, consistent with (17), we put on one space-like
surface a= 0 together with Ba/Bt = 0, it follows that a = 0
at all times. Using this supplementary condition one can
easily prove that the field equations resulting from the
Lagrangian densities (19) and (11) are identical.

One can follow the canonical method of quantization
with the Lagrangian density (19).Defining

rr„= —Bb„/Bx4+ 2e (b„Xb4),
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Fn. 1. Elementary vertices for
b 6elds and nucleon 6elds. Dotted
lines refer to b 6eld, solid lines with
arrow refer to nucleon 6eld.
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Ke next come to the question of the mass of the
b quantum, to which we do not have a satisfactory
answer. One may argue that without a nucleon field the
Lagrangian would contain no quantity of the dimension
of a mass, and that therefore the mass of the b quantum
in such a case is zero. This argument is however subject
to the criticism that, like all field theories, the b field is
beset with divergences, and dimensional arguments are
not satisfactory.

One may of course try to apply to the b field the
methods for handling infinities developed for quantum
electrodynamics. Dyson's approach" is best suited for
the present case. One 6rst transforms into the inter-
action representation in which the state vector 4'

"See M. Gell-Mann, Phys. Rev. 92, 833 (1953)."F.J. Dyson, Phys. Rev. 75, 486, 1736 (1949).

PROPERTIES OF THE b QUANTA

The quanta of the b field clearly have spin unity and
isotopic spin unity. %e know their electric charge too
because all the interactions that we proposed must
satisfy the law of conservation of electric charge, which
is exact. The two states of the nucleon, namely proton
and neutron, di8er by charge unity. Since they can
transform into each other through the emission or ab-
sorption of a b quantum, the latter must have three
charge states with charges &e and 0. Any measurement
of electric charges of course involves the electro-
magnetic 6eld, which necessarily introduces a prefer-
ential direction in isotopic space at all space-time points.
Choosing the isotopic gauge such that this preferential
direction is along the s axis in isotopic space, one sees
that for the nucleons

Q=electric charge=e(-,'+e 'T'),

and for the b quanta
Q= (e/e)2 *.

The interaction (7) then fixes the electric charge up to
an additive constant for all fields with any isotopic
spin:

Q= e(s 'T*+E)— (22)

The constants E for two charge conjugate fields must be
equal but have opposite signs. "

Fzc. 2. Primitive
divergences.

I
c

satis6es
i&%/Bl =H;„,@,

where H;„» was defined in Eq. (21).The matrix elements
of the scattering matrix are then formulated in terms
of contributions from Feynman diagrams. These
diagrams have three elementary types of vertices
illustrated in Fig. 1, instead of only one type as in
quantum electrodynamics. The "primitive divergences"
are still 6nite in number and are listed in Fig. 2. Of
these, the one labeled u is the one that eGects the propa-
gation function of the b quantum, and whose singularity
determines the mass of the b quantum. In electro-
dynamics, by the requirement of electric charge con-
servation, " it is argued that the mass of the photon
vanishes. Corresponding arguments in the b field case
do not exist" even though the conservation of isotopic
spin still holds. We have therefore not been able to
conclude anything about the mass of the b quantum.

A conclusion about the mass of the b quantum is of
course very important in deciding whether the proposal
of the existence of the b field is consistent with experi-
mental information. For example, it is inconsistent with
present experiments to have their mass less than that of
the pions, because among other reasons they would then
be created abundantly at high energies and the charged
ones should live long enough to be seen. If they have a
mass greater than that of the pions, on the other hand,
they would have a short lifetime (say, less than 10 "
sec) for decay into pions and photons and would so far
have escaped detection.

"J.Schwinger, Phys. Rev. 76, 790 (1949).
"In electrodynamics one can formally prove' that G&„k„=0,

where G„„ is defined by Schwinger's Eq. (A12). (G„„A„ is the
current generated through virtual processes by the arbitrary
external field A, .) No corresponding proof has been found for the
present case. This is due to the fact that in electrodynamics the
conservation of charge is a consequence of the equation of motion
of the electron 6eld alone, quite independently of the electro-
magnetic 6eld itself. In the present case the b 6eld carries an iso-
topic spin and destroys such general conservation laws.


