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Abstract. We give a short introduction to classical Yang-Mills theory. Start-

ing from Abelian symmetries we motivate the transformation laws, the covari-

ant derivative and the gauge field from the requirement of local invariance.

The results are then generalized to non-Abelian symmetry groups. Finally we

give some examples of Yang-Mills theories which have been applied in physics.

1. Introduction

In 1954, Yang and Mills published a paper [1] on the isotopic SU(2) invariance
of the proton-neutron system. At the time the idea was not fully recognized since
it had some unsatisfying properties. In the late 1960s these problems were solved
when the full quantized field theory was developed and today quantum Yang-Mills
theory is one of the cornerstones of theoretical physics. However, the mathemat-
ical foundations remain unclear. For this reason, the Clay Mathematics institute
formulated the Millennium Prize problem [2]. A solution of this problem would
require a rigorous mathematical formulation of quantum Yang-Mills theory.
In this report, we will have a more modest approach and mainly discuss Yang-Mills
theory at the classical level. In section 2, we describe the transition from global to
local symmetry in the case of an Abelian phase transformation. In section 3, we
motivate the preceding arguments in the modern way, starting from fundamental
principles. In section 4, we extend the discussion to include non-Abelian symmetry
groups and discuss some special cases, some of which have been shown to be in
excellent agreement with experimental data 1. In the final section, we conclude the
report and discuss some possible generalizations.

2. Abelian symmetries

In this section, we introduce the physics of Abelian global symmetries and show
how the extension to a local symmetry enforce a certain structure on the La-
grangian. Suppose we have a theory (like QED) which is given by the following
Lagrangian2

(1) L = ψ̄(x)iγµ∂µψ −mψ̄(x)ψ(x).

This theory will be invariant under the following U(1) phase transformations

(2) ψ(x)→ eiαψ(x),

(3) ψ̄(x)→ ψ̄(x)e−iα.

1For example, the prediction from QED for the anomalous magnetic moment of the electron

agrees with the experimental results to an accuracy larger than one part in a million.
2Strictly speaking, this is a Lagrangian density.
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Now, we extend this symmetry to a local symmetry by letting α → α(x). Then,
the Lagrangian in Eq. (1) is no longer invariant, since we pick up a term ∼ ∂µα(x).
This can be taken care of by adding to the theory a gauge field Aµ as follows

(4) L = ψ̄iγµ(∂µ − ieAµ)ψ −mψ̄ψ,

where the gauge field transforms as

(5) Aµ → Aµ +
1

e
∂µα(x).

We denote the combination Dµ = ∂µ − ieAµ as the covariant derivative.
So what is the most general Lagrangian we can construct which is invariant under
the local U(1) transformations? First, we must rule out a mass term for the gauge
field, since that would violate gauge invariance. On the other hand, we can intro-
duce a kinetic energy term for Aµ, given by − 1

4F
2, where the field strength tensor

Fµν is

(6) Fµν = ∂µAν − ∂νAµ.

So far so good, but now one could ask the following question: If we want to con-
struct the most general Lagrangian consistent with the symmetries, why are there
not infinitely many possibilities? After all there are terms of arbitrary mass dimen-
sion, which still respect the symmetries.
However, these terms will not give renormalizable Lagrangians since operators of
dimension larger than four enforce coupling constants with negative mass dimen-
sion.3 Any theory with coupling constants of negative mass dimension is non-
renormalizable (for a proof of this statement, see for example chapter 10 of [6]).
Hence, if we require renormalizability, then we must rule out operators of higher
dimension. We could nevertheless still add to L the term εαβµνFαβFµν , which is
invariant under the U(1) symmetry and is renormalizable. However, this term,
however, is not invariant under parity so if we postulate parity invariance this term
must also be neglected. Thus, we have seen that the most general renormalizable
Lagrangian invariant under Eq. (2), Eq. (3) and parity is

(7) L = ψ̄iγµDµψ −mψ̄ψ −
1

4
FµνF

µν .

3. Gauge invariance and geometry

In the previous section, the transition from global to local symmetries was in-
troduced in a rather ad hoc fashion. The covariant derivative and the gauge field
were not motivated in any depth. In this section, we will see that these objects
follow from geometrical arguments. Once again we try to find the most general
renormalizable Lagrangian consistent with the U(1) symmetry and possibly some
other symmetry, like parity. We saw in the previous section that the difficulties
originated from the term containing derivatives of the fields. Maybe then there is

3Since the action is dimensionless it follows that L in d dimensions must have mass dimension
(mass)d. Thus, if we have a term gA, where g is a coupling constant and A is some operator,

it follows that if A has mass dimension larger than d, then the coupling constant is enforced to
have negative mass dimension. The mass dimensions of the various fields in d dimensions can be

deduced from the corresponding free Lagrangians. For example, in two dimensions this means

that we can have operators of the form φn for any integer n, since the scalar field φ for d = 2 has

mass dimension 1.
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xµ xµ + εnµU(xµ + εnµ, xµ)

Figure 1. Schematic picture of the comparator.

something fundamentally wrong with our notion of the derivative of the field. The
ordinary derivative of a Dirac field in the direction of the vector nµ is defined by

(8) nµ∂µψ = lim
ε→0

1

ε
(ψ(x+ εn)− ψ(x)) .

Clearly, this derivative has no sensible transformation law under the local U(1)
symmetry, since the fields have different transformation laws at different space-time
points. In order to obtain a sensible derivative, which transforms in the same way as
the field ψ, we introduce a scalar function U(x, y), which is known as a comparator

(see Fig. 1). We require that U(x, y) transforms as U(x, y) → eiα(x)U(x, y)e−iα(y)

and that is has the property that U(x, x) = 1. Now we can define the following
object

(9) nµDµψ = lim
ε→0

1

ε
[ψ(x+ εn)− U(x+ εn, x)ψ(x)] .

This object will have the same transformation law as ψ because of the way we have
defined the comparator.
We shall now write Eq. (9) in a more useful form by expanding in the small param-
eter ε, assuming that the comparator is a continuous function of x and y:

(10) U(x+ εn, x) = 1 + εnµ∂µU(x+ εn, x)|ε=0 +O(ε2).

We rewrite the second term as εnµ∂µU(x+ εn, x)|ε=0 = ieεnµAµ(x), where Aµ is a
new vector field. If we insert this expression in Eq. (9), then we find the following
well-known object

(11) Dµ = ∂µ − ieAµ.

This is of course nothing else but the covariant derivative, defined in section 2. As
we have already seen, it has the same transformation law as ψ, which motivates the
name covariant derivative. The vector field Aµ is in the language of differential
geometry known as a connection. The transformation law for Aµ follows from the
transformation of the comparator. We have that
(12)

U(x+εn, x)→ eiα(x+εn)U(x+εn, x)e−iα(x) = 1−ieεnµ
(

Aµ(x) +
1

e
∂µα(x)

)

+O(ε2).

From this follows that the gauge field transforms as

(13) Aµ → Aµ(x) +
1

e
∂µα(x).

In order to complete our construction of the Lagrangian, we need to introduce
a gauge invariant kinetic energy term for Aµ. This can be done by constructing
a small square of connected comparators. This composite object will be gauge
invariant and in infinitesimal form it will reveal that the gauge invariant quantity
containing the gauge field is the ordinary field strength tensor

(14) Fµν = ∂µAν − ∂νAµ.
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Thus, we have reproduced the results of the previous section, but we have moti-
vated it by fundamental principles. The covariant derivative, the existence of the
gauge field, and its transformation properties all followed from simple geometrical
arguments.

4. Non-Abelian generalizations

We shall now generalize the discussion from the previous sections to include non-
Abelian symmetry groups. To do this we start with a global SU(2) symmetry. In
fact this was the symmetry considered by Yang and Mills in their original work [1],
which was applied to the isospin symmetries of the proton and neutron.
More generally we have a doublet ψ = (ψ1(x), ψ2(x))

T , which transforms as

(15) ψ(x)→ exp

(

iθk
σk

2

)

ψ(x),

where σk are the Pauli σ-matrices. We now extend this symmetry to a local sym-
metry by letting θk → θk(x). This means that the fields transform according to

(16) ψ(x)→ V (x)ψ(x) = exp

(

iθk(x)
σk

2

)

ψ(x).

We now set out to construct the most general renormalizable Lagrangian invari-
ant under the local SU(2) symmetry transformations in Eq. (16). First we shall
determine the covariant derivative. We define it exactly as in Eq. (9) with the
difference that now the comparator has to be a 2 × 2 matrix, since ψ(x) is a two-
component object. The comparator has just as before the transformation property
that U(x, y)→ V (x)U(x, y)V (y)†, where U(x, x) = 1. By expanding the compara-
tor in ε we find

(17) U(x+ εn, x) = 1 + igεnµAk
µ

σk

2
+O(ε2),

where g is a constant, analogous to the electric charge. Thus, the covariant deriv-
ative becomes

(18) Dµ = ∂µ − igA
k
µ

σk

2
.

In contrast with the U(1) case we now have three gauge fields, one for each generator
of SU(2).
Next, we find the transformation law for the gauge fields. As in the Abelian case
this can be read off from the transformation of the comparator. Thus, we find

(19) Ak
µ

σk

2
→ Ak

µ

σk

2
+

1

g
(∂µθ

k)
σk

2
+ i[θk

σk

2
, Al

µ

σl

2
] + . . . .

The new feature here is the commutator, which vanish in the Abelian case.
Finally, the gauge invariant kinetic terms can be found in the same way as in the
Abelian case, paying proper attention to the non commutative properties of the
matrices. One then finds the field strength tensor

(20) F k
µν

σk

2
= ∂µA

k
ν

σk

2
− ∂νA

k
µ

σk

2
− ig[Ak

µ

σk

2
, Al

ν

σl

2
].

If we use that the σ-matrices satisfy [σ
k

2 ,
σl

2 ] = iεklm σm

2 , then we obtain

(21) F k
µν = ∂µA

k
ν − ∂νA

l
µ + gεklmAl

µA
m
ν .
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Note that this is not a gauge invariant quantity, but only gauge covariant. However,
it is easy to construct a gauge invariant term by using the properties of the trace.

Thus, a kinetic energy term for the gauge fields is given by tr[(F k
µν

σk

2 )2]. Then, we
have that the most general renormalizable Lagrangian invariant under the SU(2)
symmetry is

(22) L = ψ̄iγµDµψ −
1

4
(F k

µν)
2 −mψ̄ψ.

This is our first nontrivial example of a Yang-Mills theory.
The extension to other continuous symmetry groups is straightforward. Suppose
we have fields transforming according to an irreducible representation Ω of some
compact Lie group G, ψ(x) → Ω(g)ψ(x). Then one can use all of the arguments

above by simply replacing σk

2 → T a, where T a are the generators of G. In deriving
the transformation properties and the field strength tensor one has to use the
commutation rule for the generators

(23) [T a, T b] = ifabcT c,

where the numbers fabc are known as the structure constants. In this way, one finds
the following form for the covariant derviative

(24) Dµ = ∂µ − igA
a
µT

a.

The field strength tensor is given by

(25) F a
µν = ∂µA

a
ν − ∂νA

a
µ + gfabcAb

µA
c
ν

and the renormalizable Lagrangian will have the form

(26) L = ψ̄iγµDµψ −mψ̄ψ −
1

4
F a
µνF

aµν .

These theories have some general features. We have seen that all of them predict
the existence of gauge fields. The number of gauge fields equal the number of gen-
erators of the symmetry group. For example, in the case of SU(N) symmetry this
means that there will be N 2 − 1 gauge fields.
Let us now look at some examples of Yang-Mills theories to see how these theories
can be realized in Nature. All of them will have a Lagrangian of the form of Eq. (26)
although the expressions for the covariant derivative, the field strength tensor and
the transformation properties will depend on the properties of the underlying sym-
metry group. The first two examples we have already discussed.

4.1. Electrodynamics, G = U(1).

The Lagrangian will be invariant under the field transformations ψ → eiα(x)ψ

and Aµ → Aµ −
1
e
∂µα(x). There is only one generator and so there will only

be one gauge field Aµ, which is the photon. The covariant derivative is given by
Dµ = ∂µ − ieAµ. The field strength tensor is given by Fµν = ∂µAν − ∂νAµ, since
fabc = 0.

4.2. Isotopic gauge invariance, G = SU(2).

The fields are ψ = (p, n)T and the three gauge fields Ak
µ. The covariant deriv-

ative is Dµ = ∂µ − igAk
µ
σk

2 . The fields transform as ψ → exp
(

iθk(x)σ
k

2

)

ψ and
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Ak
µ → Ak

µ + 1
g
∂µθ

k + εklmAl
µθ

m. The field strength tensor is given by F k
µν =

∂µA
k
ν − ∂νA

k
µ + gεklmAl

µA
m
ν .

4.3. Chromodynamics, G = SU(3).

The fields are the quarks,
ψ = (ψred, ψgreen, ψblue)

T and eight gauge fields, the gluons. The quark fields
transform as ψ → exp( i2θ

aλa)ψ, where λa are the Gell-Mann matrices. The gluon

fields transform as Aa
µ → Aa

µ+
1
g
∂µθ

a+fabcAb
µθ

c. The covariant derivative is Dµ =

∂µ − ig
1
2λ

aAa
µ and the field strength tensor is F a

µν = ∂µA
a
ν − ∂νA

a
µ + gfabcAb

µA
c
ν .

There are several other interesting Yang-Mills theories. For example, it has been
suggested that the standard model, based on the group SU(3)×SU(2)×U(1), is a
subgroup of a larger simple group, such as SU(5). Theories of this kind, which at-
tempt to unify interactions are sometimes known as grand unified theories (GUTs).
Another possible GUT is based on the group SO(10). These theories are somewhat
speculative and direct measurements are not possible today since the unification
energies are too high. However, they often make indirect predictions, such as pro-
ton decay or the existence of magnetic monopoles. So far there has been no solid
experimental confirmation of GUTs.

5. Conclusions and outlook

We have seen how to construct theories invariant under local non-Abelian sym-
metries. However, in order to obtain a proper description of Nature we have to
quantize these theories. In the process one discovers many exotic features like
asymptotic freedom [3, 4] and ghost fields. The interested reader should consult
the references [5, 6, 7] which contain thorough discussions of these matters. As men-
tioned in the introduction, quantum Yang-Mills theory is the topic for one of the
Millenium Problems. A solution of this problem would require an existence proof
for Yang-Mills theory on R

4. This means that one should construct an axiomatic
formulation of Yang-Mills theory from where all essential physical properties follow.
This include for example a proof of the existence of an operator product expansion
and of quark confinement. The problem also requires that one proves the existence
of a mass gap.

To some extent, general features of Yang-Mills theories have already been seen
in computer simulations and simplified models such as lattice QCD. The problem
is to obtain a mathematical understanding of these properties.

There has been some progress in proving Yang-Mills theory on T
4, that is, on

the toroidal compactification of R
4. However, even if a proof is given for T

4, it is
not clear how to make the transition T

4 → R
4.
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