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We perturbatively compute the Polyakov loop potential at high temperature with finite imaginary angular
velocity. This imaginary rotation does not violate the causality, and the thermodynamic limit is well
defined. We analytically show that the imaginary angular velocity induces the perturbatively confined
phase and serves as a new probe to confinement physics. We discuss a possible phase diagram that exhibits
adiabatic continuity from the perturbative confinement to the confined phase at low temperature. We also
mention subtlety in the analytical continuation from imaginary to real angular velocity by imposing a
causality bound.
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Introduction.—Confinement of quarks and gluons in
quantum chromodynamics (QCD) has been a long-standing
problem. There are traditional strategies to idealize the
problem. One can take special limits such as the strong-
coupling limit [1,2], the large-Nc limit [3], etc. to scrutinize
the confinement mechanism in a nonperturbative and yet
analytical way. Such deformations of the theory belong to a
category which we call the QCD-like theory approach.
Examples of QCD-like theories include holographic QCD
models [4–6] and a supersymmetric extension [7–10]. In
particular, an interesting idea of the “adiabatic continuity”
on a small circle [10–12] based on the Polyakov mecha-
nism [13] has been recognized.
Another stream of research toward the confinement

mechanism is the introduction of external parameters
corresponding to extreme environments such as the temper-
ature T, the density or the chemical potential μ, the
magnetic field B, and so on, which we call the extreme
QCD approach [14,15]. QCD at high temperature is
perturbatively tractable, and the loop calculation of the
confinement order parameter, i.e., the Polyakov loop, has
led to a deconfined phase [16–20] (for a review, see
Ref. [21]). Generally speaking, extreme environments
provide an energy scale greater than the QCD scale, so
that the perturbative calculation in favor of deconfinement
is justified. The perturbative analysis breaks down with
decreasing T=μ=B, and it is usually impossible to go into
the confinement regime. Nevertheless, one may perceive a
precursory tendency of a confinement phase transition (see

also Refs. [22,23] for approaches to enforce confinement to
come closer to the transition point). One could also employ
other external probes like the electric field E [24], the
isospin chemical potential μiso [25,26], the scalar curvature
R [27,28], the rotational angular velocity ω [29–36], and
their mixtures [37,38].
Since an extraordinary value of ω ∼ 1022 s−1 was

reported in the heavy-ion collision experiment [39], the
effect of as large ω as the QCD scale has been attracting
theoretical and experimental interests. Model calculations
implied similarity between the angular velocity and the
chemical potential [30], which was summarized in a form
of the QCD phase diagram on an ω-T plane [31]. The
lattice-QCD simulation suffers from the sign problem at
finite ω in the same way as the finite-μ case. However, the
lattice-QCD simulation with the analytical continuation
from the imaginary angular velocity ΩI to ω via ΩI ¼ −iω
is feasible because ΩI does not cause the sign problem
[29,34,35]. Here, we shall emphasize that such a system
with imaginary rotation ΩI is quite intriguing on its own.
With explicit calculations we show that the pure Yang-Mills
(YM) theory at sufficiently large ΩI goes through a
confinement phase transition even perturbatively.
One might also obtain the perturbatively confining phase

by adding finely tuned quark contents, such as a massless
adjoint Dirac fermion with imaginary chemical potential,
μI ¼ π. However, the present Letter is the very first report
of perturbative confinement from purely gluonic loops, to
the best of our knowledge. In the literature, confining
mechanisms that are essentially gluonic are all nonpertur-
bative. They hinge on either semiclassical contribution [10–
13], lattice regularization [1,2], electricity-magnetism dual-
ity [7–9], or dressed ghost and gluon propagators [40–43].
In contrast to these preceding works, surprisingly, we find
that purely gluonic confinement in ð3þ 1ÞD is possible
without invoking any nonperturbative machinery.
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Polyakov loop potential with imaginary rotation.—In the
pure YM theory, we perform the one-loop calculation to
find the Polyakov loop potential which is often called the
Gross-Pisarski-Yaffe-Weiss (GPY-W) potential [16–18].
Under imaginary rotation by ΩI [32], we find a system
of Euclidean cylindrical coordinates, i.e., xμ ¼ ðτ; θ; r; zÞ,
with the flat metric gμν ¼ diagf1; r2; 1; 1g and the follow-
ing boundary condition:

ðτ; θ; r; zÞ ∼ ðτ þ β; θ − Ω̃I; r; zÞ; ð1Þ

where β ¼ 1=T is inverse temperature and Ω̃I ≔ ΩI=T.
Clearly, Ω̃I and Ω̃I þ 2π describe the same geometry. In the
presence of the Polyakov loop background, ∂τ is replaced
by the covariant derivative Dτ as

Dτ ¼ ∂τ þ i
ϕ ·H
β

: ð2Þ

The g-valued vector H is an orthonormal basis of a Cartan
subalgebra of g, the Lie algebra of the gauge group. Thus
the Polyakov loop is labeled with a real vector ϕ. We take
homogeneous ϕ backgrounds because they are the classical
vacua even in the presence of ΩI.
To perform the one-loop integral, we need to diagonalize

the fluctuation operator. For ghosts, it is the scalar Laplacian,
−D2

s ¼ −D2
τ − r−1∂rðr∂rÞ − r−2∂2θ − ∂

2
z . We solve the eige-

nequation, −D2
sΦ ¼ λΦ, with the twisted boundary con-

dition (1) to find the spectrum. Since we are merely
interested in a potential of ϕ, we drop the eigenmodes that
commute with H. Then we find

Φn;m;k⃗;αðxÞ ¼
Eα
ffiffiffiffiffiffiffiffi

2πβ
p ei½ð2πn=βþΩImÞτþmθþkzz�Jmðk⊥rÞ: ð3Þ

Here, n;m ∈ Z, k⃗ ≔ ðk⊥; kzÞ ∈ Rþ × R andα’s are roots of
g. The eigenvalues are given by

λn;m;k⃗;α ¼
�

2πnþ ϕ · α
β

þ ΩIm

�

2

þ jk⃗j2: ð4Þ

We can generalize the above calculation to the covariant
vector fields, for which the Laplacian is a 4 × 4matrix given
by

−D2
v ¼

0

B

B

B

@

−D2
s 0 0 0

0 −rD2
sr−1 þ r−2 −2r−1∂θ 0

0 2r−3∂θ −D2
s þ r−2 0

0 0 0 −D2
s

1

C

C

C

A

:

ð5Þ

Its eigenvalues are the same as Eq. (4) but its eigenmodes
come with a degeneracy of four polarizations. The

unphysical (nontransverse) polarizations are simply replicas

of the scalar mode (3), i.e., ΞðiÞ
n;m;k⃗;α

ðxÞ ¼ Φn;m;k⃗;αðxÞξðiÞ,
where ξð1Þ ≔ ð1; 0; 0; 0ÞT and ξð2Þ ≔ ð0; 0; 0; 1ÞT . The loops
of these unphysical eigenmodes are canceled by the ghost
loop. The physical transverse eigenmodes have nontrivial
tensorial structurewithm shifted by the helicity of the vector
fields as

Ξð�Þ
n;m;k⃗;α

ðxÞ ¼ Eαξ
ð�Þ

2
ffiffiffiffiffiffi

πβ
p ei½ð2πn=βþΩImÞτþmθþkzz�Jm�1ðk⊥rÞ; ð6Þ

where ξð�Þ ≔ ð0; r;�i; 0ÞT .
After performing the Matsubara summation and drop-

ping the ultraviolet divergence independent of ϕ, we find
the following expression for the effective potential:

V ¼ T
4π2

X

α

X

m∈Z

Z

∞

0

k⊥dk⊥
Z

∞

−∞
dkz½J2m−1ðk⊥rÞ

þ J2mþ1ðk⊥rÞ�Re ln½1 − e−ðjk⃗j−iΩImÞ=Tþiϕ·α�: ð7Þ

Interestingly, we can analytically perform the summation
and integrals using the power series:

lnð1 − zÞ ¼ −
X

∞

l¼1

zl

l

which converges for jzj ≤ 1, z ≠ 1. We then obtain a simple
expression,

Vðϕ; Ω̃IÞ ¼ −
2T4

π2
X

α

X

∞

l¼1

cosðlϕ · αÞ cosðlΩ̃IÞ
fl2 þ 2r̃2½1 − cosðlΩ̃IÞ�g2

; ð8Þ

where we introduced dimensionless r̃ ≔ rT. At Ω̃I ¼
0 mod 2π, Eq. (8) loses its r dependence and recovers
the well-known GPY-W potential [16–18].
For a concrete reference, we shall focus on the rotation

center r̃ ¼ 0 in this Letter. However, we note that, at Ω̃I ¼
π mod 2π, the r-dependent potential in Eq. (8) results in
homogeneous ϕ vacua in the SU(2) case. We shall shortly
reveal that the most nontrivial physics exactly inhabits this
homogeneous region, so that we can extend our conclusion
to r̃ ≠ 0. At r̃ ¼ 0we can complete the l summation to find:

Vðϕ;Ω̃IÞjr̃¼0¼
π2T4

3

X

α

X

s¼�1

B4

��

ϕ ·αþsΩ̃I

2π

�

mod 1

�

: ð9Þ

Here B4ðxÞ ¼ x4 − 2x3 þ x2 − ð1=30Þ is the fourth
Bernoulli polynomial. Equation (9) has quite rich physical
contents despite its simple appearance.
Perturbative confinement phase transition.—We now

investigate the evolution of the Polyakov loop potential
with increasing Ω̃I . Let us start with the simplest SU(2)
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gauge group. Here we define ϕ ≔ ϕ · α for the only
positive root α. Modulo periodicities and the Weyl group,
ϕ runs in ½0; 2π� and the Z2 center symmetry acts
as ϕ → 2π − ϕ.
Figure 1 shows the evolution of the Polyakov loop

potential in terms of ϕ=2π with increasing Ω̃I at r̃ ¼ 0. The
solid curve in Fig. 1 for Ω̃I ¼ 0 reproduces the center
breaking GPY-W potential with minima located at ϕ ¼ 0
and 2π. The positive curvature around the minima then
corresponds to the Debye screening mass that stabilizes the
deconfined phase at high temperature [44]. We clearly see
that the curvature is suppressed as Ω̃I gets larger, and
eventually the sign of the curvature flips around Ω̃I ≃ π=2.
Then, the potential minima deviate from the deconfined
vacua and the confined vacuum at ϕ ¼ π is energetically
favored. We can visualize this phase transition by plotting
hLi, the expectation value of the fundamental Polyakov
loop L, as a function of Ω̃I as shown in Fig. 2. We see that
hLi starts to decrease from Ω̃I ¼ ð1 − 1=

ffiffiffi

3
p Þπ. The drop-

ping curve hits hLi ¼ 0 at Ω̃I ¼ π=
ffiffiffi

3
p

, indicating a
second-order confinement phase transition.
We can intuitively understand the confining force at

Ω̃I ¼ π from the twisted geometry (1). It assigns the

antiperiodic boundary condition to all odd-m transverse
modes Eq. (6). But these modes still obey bosonic statistics
such that their loops have no overall sign of −1. At r ¼ 0,
only the modes of m ¼ �1 contribute. Such antiperiodic
gluons reverse the one-loop potential just in analogy to
periodic gluinos.
We move on to the SU(3) case. The positive roots are

α1 ¼ ð1; 0Þ, α2 ¼ ð1=2; ffiffiffi

3
p

=2Þ, and α3 ¼ ð1=2;− ffiffiffi

3
p

=2Þ.
Accordingly, the order parameter has two components,
namely, ϕ ¼ ðϕ1;ϕ2Þ. Modulo periodicities and the Weyl
group, ϕ runs in a triangular region spanned by the vertices
(0,0), ð2π; 2π= ffiffiffi

3
p Þ, and ð2π;−2π= ffiffiffi

3
p Þ, as drawn in Fig. 3.

The points in this triangle bijectively represent conjugacy
classes of SU(3). The Z3 center symmetry acts on this
equilateral triangle as its rotational geometry symmetry.
We show the SU(3) potential height in the form of the

contour plot in Fig. 3. The lighter (darker) color indicates
the region of larger (smaller) potential values. The left-hand
figure in Fig. 3 presents the potential profile at Ω̃I ¼ 0. The
minima are located at (0,0) and its center symmetry images,
which signifies the spontaneous breaking of center sym-
metry. With increasing Ω̃I , these minima depart from the
conventional vacua as we observed in the SU(2) case. A
crucial difference of SU(3) from the SU(2) case is, as
shown in the middle of Fig. 3, the center symmetric point
ð4π=3; 0Þ is pushed down and eventually at Ω̃I ¼ π=2 we
see degeneracy between three shifted deconfined vacua and
the center symmetric point. The degeneracy indicates a
first-order phase transition, and the center symmetric
(confining) state is energetically favored for Ω̃I ¼ π, as
shown in the right-hand figure of Fig. 3. We can also
visualize this first-order nature by plotting hLi as shown in
Fig. 2. Clearly, we see a sudden jump of hLi at Ω̃I ¼ π=2.
This difference in the order of the phase transition between
SU(3) and SU(2) is consistent with the universality class
argument [45].
Our formulas hold for any semisimple Lie algebra. We

can show that, for any simply connected compact gauge
group with a nontrivial center, Eq. (9) at Ω̃I ¼ π always
favors a center symmetric vacuum. For example, Spin(5)
also exhibits a first-order confinement phase transition at
Ω̃I ¼ π=2. A more interesting case is G2 which has no
center symmetry. Consistently, we observed no phase

FIG. 1. Evolution of the Polyakov loop potential (made
dimensionless with T4) for Ω̃I ¼ 0; π=3; 2π=3; π in the color
SU(2) case at r̃ ¼ 0.

FIG. 2. The expectation value of the fundamental Polyakov
loop, normalized by the representation dimension, as a function
of Ω̃I for SU(2) (solid line) and SU(3) (dashed line) at r̃ ¼ 0.

FIG. 3. Polyakov loop potential for the SU(3) case. The light
(dark) color indicates the region of larger (smaller) potential
values.
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transition; the location of its potential minimum just moves
continuously as a function of Ω̃I .
Phase diagram and adiabatic continuity.—It is an

intriguing question whether, on the Ω̃I-T plane, the
perturbatively confined phase we found above is smoothly
connected to the conventional confined phase. Although
our loop calculations cannot constrain the low-T physics,
the Kugo-Ojima-Gribov-Zwanziger (KOGZ) mechanism
[40–42] still allows us to grasp some hints as follows.
The ghost contribution to the one-loop potential that

favors confinement is just negative of Eq. (7) with Jm�1

replaced by Jm. Around r ¼ 0, because only the m ¼ 0
component remains, this ghost contribution does not
depend on Ω̃I . At high T, perturbatively, this ghost
potential cancels out with the contribution from unphysi-
cally polarized gluons. At low T, the KOGZ mechanism
asserts that the ghost propagator is nonperturbatively
enhanced at infrared (nearly divergently) [43]. Therefore,
as the system is cooled down, the ghost makes the system
increasingly confining, uniformly for any Ω̃I.
Based on the arguments above, taking the SU(3) case, we

sketch a phase diagram as shown in Fig. 4. A remarkable
feature is the uniform confinement for all T around Ω̃I ¼ π.
Let us elaborate our speculated physics in this region. Like
the Debye mass in the deconfined phase, the string tension
σ in the confined phase is indicated by the curvature of the
effective potential around minima. Thus we have σ ∼ g2T2

at very high T. As we cool down the system, this
perturbative string tension decreases until it reaches
σ ∼ Λ2

YM, where ΛYM is the dynamical scale from con-
formal anomaly. At smaller temperature the system goes
into the nonperturbative confining region and the string
tension is kept about σ ∼ Λ2

YM.
In our speculated phase diagram in Fig. 4, our perturba-

tively confined phase around Ω̃I ¼ π is connected to the
conventional confined phase at Ω̃I ¼ 0 without a phase
transition. Then, by adiabatic continuity, we can study quite
a few features of the conventional confinement phase

transition even using loop calculations. For example, we
already predicted the scaling of the string tension, the order
of the phase transition, etc. It would be fascinating to
examine our conjectured phase diagram, as well as the
realization of adiabatic continuity, by feasible nonpertur-
bative methods such as the lattice numerical simulation.
Analytical continuation to real rotation.—We finally

apply our results to real rotation. It is customary in the
literature to study the real rotation effect by the analytical
continuation from ΩI to ω [34,35]. For example, once
TcðΩ̃IÞ is known, then TcðωÞ is inferred from the replace-
ment of Ω2

I ¼ −ω2. However, we explicate that such a
procedure might be problematic using our perturbative
expression.
For any complex Ω̃I outside the real axis, Eq. (7) yields

singularity at some ϕ. In fact, our derivation of Eq. (8) is
valid for real Ω̃I only. A nonzero ImΩI would drive the
Maclaurin series of lnð1 − zÞ out of its convergence radius.
If we naively perform the analytical continuation to Eq. (8),
we would also encounter the following problem. For r̃ > 0,
Eq. (8) is analytical everywhere except on the imaginary Ω̃I
axis. There, infinitely many poles are accumulated around
Ω̃I ¼ 0. As for r̃ ¼ 0, the poles are gone, but the infinite
summation just blows up for nonreal Ω̃I.
The physical origin of these singularities is clear. At

finite angular velocity ω, the long-wave modes with k⊥ ≲ ω
violate the causality so we should introduce an infrared
cutoff; i.e., rω must not exceed the unity. Let us set the
system size as r ≤ R with Rω ≤ 1. This discretizes the
momentum k⊥ such that k⊥R is a zero of the Bessel
functions. Here, we denote the κth zero of Jνðξ > 0Þ as ξν;κ.
The phase space integration in Eq. (7) is replaced as
follows:

Z

∞

0

k⊥dk⊥J2mðk⊥rÞfðk⊥Þ

→
X

∞

κ¼1

2

R2J2mþ1ðξm;κÞ
J2m

�

ξm;κr
R

�

f

�

ξm;κ

R

�

: ð10Þ

We have performed the numerical integration and summa-
tion of Eq. (7) for real ω with Eq. (10) substituted. We cut
off the sum over m, κ, and the kz integration by sufficiently
large numbers and confirm the convergence.
Figure 5 shows the evolution of the SU(2) Polyakov loop

potential with increasing ω at r̃ ¼ 0. We chose the para-
meters as R ¼ 10 GeV−1 (≃2 fm) and T ¼ 0.15 GeV. The
potential minima are located at ϕ ¼ 0 mod 2π for any ω, so
that the system stays in the deconfined phase. Yet, we can
quantify the effect of ω onto the vacuum stability by the
potential curvature around the minimum which represents
the Debye screening mass squared. As we see in Fig. 5, the
curvature increases with increasing ω, and this means that
rotation favors deconfinement. This behavior makes a
contrast to the results from Refs. [34,35], while the recent
lattice results from Ref. [46] support our conclusion. We

FIG. 4. Conjectured phase diagram on the Ω̃I-T plane around
the rotation axis, r̃ ¼ 0, for the SU(3) case. Solid curves represent
the phase transition.
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found that the Polyakov loop potential even around r ¼ 0 is
sensitive to the system size R and the boundary treatments.
We are now investigating the effects of boundary and axial
symmetry breaking on the lattice to clarify the validity
range of analytical continuation to real rotation.
Outlook.—An intriguing and immediate extension of our

Letter would be the lattice simulation to explore the whole
Ω̃I-T phase structure as conjectured in Fig. 4, comple-
mentary to preceding efforts [34,35] with a boundary
condition. Actually, we can have the lattice simulation at
our fingertips for Ω̃I ¼ π=2 and π by moving to the
Cartesian coordinates ðτ; x; y; zÞ, where the boundary con-
dition (1) reduces to ðτ; x; y; zÞ ∼ ðτ þ β; y;−x; zÞ at Ω̃I ¼
π=2 and ðτ; x; y; zÞ ∼ ðτ þ β;−x;−y; zÞ at Ω̃I ¼ π, respec-
tively. Therefore, for Ω̃I ¼ π=2 and π, we do not have to
deal with nontrivial geometry, but just take the square
lattice and the Cartesian spacetime only with a twisted
thermal boundary condition. Once we manage to know the
physics at Ω̃I ¼ π=2 and π for various temperatures, we can
justify our speculated scenario of adiabatic continuity in
Fig. 4. Another exciting extension is to include the
fundamental or adjoint quark contributions and to discuss
a relation to chiral symmetry.
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