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formly decelerated. If the container decelerates
smoothly with occasional glitches, it would be
suggestive that the metastable fluid mechanism
explained the pulsar behavior. We are currently
studying the feasibility of such experiments. It
is certainly appealing to hope one can make a
laboratory analog of a neutron star and hence
study some aspects of a system so completely
inaccessible to direct experiment.

I owe a debt of gratitude to the many people at
Berkeley who have shared their knowledge of
astrophysics with me. In particular I wish to
acknowledge helpful discussions with E. D. Com-
mins, R. Cowsik, D. D. Cudaback, and B. Price.
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The unconstrained dynamical degrees of freedom of the gravitational field are identi-
fied with the conformally invariant three-geometries of spacelike hypersurfaces. New
results concerning the action principle, . choice of canonical variables, and initial-value
equations strengthen this identification. One of the new canonical variables is shown to
play the role of "time" in the formalism.

An increasing amount of evidence shows that
the true dynamical degrees of freedom of the
gravitational field can be identified directly with
the conformally invariant geometry of three-di-
mensional spacelike hypersurfaces embedded in
space-time. It is the purpose of this paper to de-
scribe some of the new results that contribute to
this evidence. The picture of dynamics that
emerges is of the time-dependent geometry of
shape ("transverse modes" ) interacting with the
changing scale of space ("longitudinal mode").
At a moment when the three-geometry is maxi-
mal (p= 0), this interaction turns off and the dy-
namics becomes particularly amenable to analy-
sis, as described below. We begin by briefly re-
calling the conclusions which led to singling out
conformal three-geometry. Then new results
are described concerning the initial-value equa-

tions, choice of canonical variables, a canonical
"time" coordinate, and properties of the action
integral of general relativity. We conclude by
tying in a number of recent findings of other
workers.

It has long been known that general solutions of
the initial-value equations can be obtained when
the metric y, b of the initial spacelike hypersur-
face is specified only up to an initially unknown
conformal factor. ' ' This means that only the
conformal metric y„=—y

' 'y„ is freely specified,
inasmuch as it is invariant with respect to con-
formal transformations y„-cp'y„= y,t„with q(x)
arbitrary. The initially unknown conformal fac-
tor y(r) is found as part of the complete solution
of the initial-value equations. The coordinate-
independent concept behind the conformal metric
is the conformal geometry g„defined as the con-
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~'=- —2vbg" = 0,

X=-y-'f'(..."b- —.'.')-y'f'R = 0.

(2)

Consider these equations on a maximal hypersur-
face (m=0). Then Eqs. (2) are invariant with re-
spect to the substitutions C: y & p y &,

where p(x) is arbitrary. However, Eq. (3) is not
invariant. It assumes the form4

v 0+sM@ 7 8&@=0 (4)

which determines y. The quantity M =-y 'z„z"
is a non-negative function and p" is assumed to
satisfy 3('= 0. In an important recent paper, ' it
was shown by Choquet-Bruhat that solutions to
(4) exist and are unique on both closed and open
manifolds, appropriate boundary conditions being
assumed in the latter case. Here let us consider
closed three-manifolds, i.e., compact manifolds
without boundary. Then we can give a very sim-
ple proof of uniqueness' as follows: Suppose that
(2) and (3) are satisfied on a maximal hypersur-
face. If we make an infinitesimal C transforma-
t&on/ 5ygy = A.y, ~p

5F'"= —A. 7t'
y

then we find 5~'
= 0 and 57T = 0 for an arbitrary function A. (X' = 0).
But 5X=y'f'(2V'X —2XR) if K=0. There is no X

which can make 5%=0, for it would have to sa-
tisfy

(5)
From (3) and n =0 we know that R &0, which
means that there can be no solutions to (5) in the

formal equivalence class of diffeomorphically
equivalent Riemannian three-metrics. The geo-
metry g, concerns only local angles and direc-
tions, but not distances; it is dimensionless.

The question of the physical significance of the
conformal technique was recently answered. "
It was established that the three-dimensional con-
formal curvature tensor p" is symmetric, trace-
less, and covariantly transverse (Vbp" = 0). The

3 -weight form of this tens or is given by

pab — &/3(&efa bm+ &afb am)~g

where e' ' is the unit alternating tensor. The
above properties of p", together with the fact
that it is conformally invariant, show that con-
formally equivalent three-geometries give equiv-
alent pure spin 2 (i.e., transverse and traceless)
representations of the gravitational field. This
led to the identification of g, with the true un-
constrained degrees of freedom.

In terms of the standard ADM canonical vari-
ables, ' the initial-value equations have the form

present case, as is readily seen by multiplying
each side of (5) by x and integrating over the
three-space. The restriction to infinitesimal C
transformations is only for convenience; the
finite case gives the same result. Moreover,
these conclusions can be readily generalized in
two ways. Firstly, matter sources V',t'(x) can
be inserted on the right-hand sides of (2) and (3).'
Secondly, the decoupling of (2) and (3) that occurs
when z = 0 also occurs on any three-surface for
which the scalar T=——,'y ' 'p is independent of posi-
tion, i.e., for which BT/Bx'=0. ' This is because
if T= const, then (2) says that the trace-free part
of p'b is transverse. Hence, if y, b and a matter
distribution are specified arbitrarily, and if pab

satisfies (2), then the full Riemannian structure
of T= const surfaces (conformal geometry plus
scale factor) is uniquely determined.

The above results lead to the choice of T and
y„as the independent dynamical coordinates, '
since they are the quantities that define the field
configuration and are freely specifiable in the
initial-value problem. (Of course, one must re-
call that y'bby, b=0.) The variable conjugate to
T is just y' ', the elementary measure of volume,
i.e., of scale. Let us now point out a few of the
properties that lead to the identification of T as
"time. "

The main idea is that the rate of change of T
in timelike directions tends to be positive as a
consequence of the equations of motion. I et the
unit timelike normal field of the spacelike sur-
faces be denoted u "(x). With the recognition that
T= 3y p= —3u. ~, it can be shown from Ein-
stein's vacuum equations that"

where &„ denotes I ie differentiation along u,
v"" is the shear of the congruence u (x), and a"
is the four-acceleration a~=u. ,~u'. Vfe see that
for freely falling observers (a =0) &„T~ 0, i.e.,
T increases with respect to the local standard of
proper time. To make the properties of T, which
is essentially the volume Hubble parameter,
more evident, suppose that we choose a surface
on which T = const. Now set T = t (time coordin-
ate) and determine the orthogonal proper time
(Ndt) to the surface t+dt = const. It follows from
BT/St= 1 and a. ~~=lV 'V'N that the lapse function
N must satisfy in vacuum

(—&'+ cr v"'+ 3T')1V = const. —

In closed empty universes the quantity cr„,v"'+ 3T'
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is strictly positive so that N will exist and be
uniquely determined, except at a moment of time
symmetry when one must make a transformation
on a T of the type described below. Thus T de-
fines a definite slicing of space-time. The pres-
ence of matter does not essentially alter these
arguments.

'
The extrinsic scalar time has none of its es-

sential properties changed by transformations of
the type T'= T'(T), where BT'/BT&0, and is in-
dependent of position on T = const surfaces. More-
over, it continues to increase right through a
moment of maximum expansion of the universe
and its sign could be used to distinguish the ex-
pansion and contraction epochs. Kuchar has
pointed out the latter two aspects of extrinsic-
type time variables and has discussed some im-
plications concerning the quantization of gravity. "
The properties of the scalar extrinsic time T
contrast with those of intrinsic-type time vari-
ables such as Misner's" choice 0= ——,'lny' '. At
a moment of maximum expansion, Q stops its
forward flow and begins to run backward. More-
over, it is not a scalar and thus has utility only
in the presence of a definite choice of three-di-
mensional coordinates. However, one can show
that 4„Q= T, so that for homogeneous models
0 and T can define the same family of three-
spaces. The use of T as time does not depend,
though, on any assumptions of homogeneity, nor
does it restrict in any way the anisotropy.

In the ADM' approach to general relativity one
attempts to solve X=O for the "true" nonvanish-
ing Hamiltonian. With the choice of T as time,
the nonvanishing Hamiltonian density becomes the
scale factor y' ', so that the full Hamiltonian be-
comes equal to the volume of the universe. There-
fore, by solving (4) for the conformal factor cp

and satisfying the constraints, me are at the
same time finding the nonvanishing Hamiltonian
of general relativity.

The action principle of general relativity is
based on the invariant Lagrange density Z
= ~&(—g)'~'. lt can be decomposed relative to a
family of spacelike hypersurfaces with unit nor-
mal field u into the form'

(8)

where K„ is the extrinsic curvature and E=y"K„.
The first term is the standard Lagrangian of
geometrodynamics" and will be denoted gG. The
second term is a pure space-time divergence

which may be transformed in the action principle
to a boundary term. The boundary integral in-
volving a~ vanishes identically since a'n

~
= 0,

which shows that the dynamics of gravitation is
completely independent of the acceleration of
observers. " The boundary integral involving
Ku does not vanish but plays a fundamental role
in the present considerations. To see its mean-
ing, we write, in terms of ADM variables,

—28&(—g)'i'Ku ~= s, pN' —Bop, (9)

therefore, as an immediate consequence, ""
S, = f,„~d'x

If we choose the bounding spacelike hypersurfaces
as T, = const and T, = const and recall that p

zyl/2T, we obtain

SG-2(T, V, —T,V,), (13)

where V is the total volume. Since in the present
approach the total volume and total Hamiltonians
are equal, we have arrived at a simple expres-
sion for the action in terms of II and T. As we
indicated above, for T and the conformal geome-
try '8 given, the initial value equations deter-
mine the scale, i.e., H. Thus we arrive at the
conclusion that, as a functional, Sc = Sc['g, T].
We expect analogous conclusions to hold in any
quantized version of general relativity. Note
that the configuration space that one is led to by
the initial-value equations is not superspace (the
space of Riemannian three-geometries), but
"conformal superspace" [the space of which each
point is a conformal equivalence class of Rieman-
nian three-geometries] x[the real line] (i.e., the
time T).

We can now mention briefly two important re-
sults based on recent investigations of others
which strongly support the identification of con-
formal three-geometry and true gravitational
degrees of freedom.

First we point to Misner's quantization of the
"mix-master universe. "" The actual degrees of

where N'=@ "g» is the shift vector and s, = s/st.
The spatial divergence in (9) ean be discarded,
giving for the action integral

S= f„zd'x= f(~, -s,~)d'x=s, —f ~d'x, (10)

where Sc = fLcd'x. We may readily evaluate the
action S for dynamical paths, i.e., for solutions
of 4R„,=O. Since for these paths Z=O, we find

0= fyd'x= S, f~—d'x;
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freedom quantized by his procedure refer to the
anisot opy of space. Clearly, the most general
concept of spatial anisotropy is simply the con-
formal three-geometry. Of course, the mix-
master model is spatially homogeneous and our
considerations are by no means limited to that,
but in principle these approaches are in very
close accord.

Secondly, the work of Brill and Deser" on the
positivity of gravitational energy for asymptotical-
ly flat three-spaces is in consonance with the
present approach in its conclusions. Drill and
Deser showed that on a maximal hypersurface,
for first-order perturbations which obey the con-
straints, purely conformal variations of the
metric 5y„=Ay„have no effect on the total en-
ergy. Furthermore, if the conformal factor is
fixed at spatial infinity, it is unique'; thus there
exists no such X. Therefore, the gravitational
energy is associated only with the dynamics of
the conformal three-geometry. This energy is
implicitly defined by the expression 3C= 0. A

study of the solutions of this constraint is under
way and is expected to yield a definite answer on
the question of the positivity of the energy without
resort to perturbation techniques, which are sub-
ject to certain drawbacks. "

As a final remark, one can see from quite ele-
mentary and well known considerations that con-
formal space geometry is a concept well adapted
to the description of dynamical gravitational
fields. A weak, plane gravitational wave in the
lowest-order approximation only changes the
shape, not the volume, of a small cloud of test
particles through which it passes, i.e., it initial-
ly imparts a slight shearing motion to them. This
means that only the conforrnal geometry associat-
ed with the particles is initially affected. A rig-
orous geometrical expression of this idea is
given by the fact that the invariant rate of change
of the conformal metric is proportional to the
shear: +„y ~= 2y 0 ~.
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