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Gravitational Degrees of Freedom and the Initial-Value Problem
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It is shown that for every spacelike three-geometry there ezists a symmetric tensor
that is (1) defined locally using only the three-metric and its derivatives, (2) conformally
invariant, (3) traceless, and (4) covariantly divergence free ("transverse"). As a re-
sult, the arbitrarily specifiable (unconstrained) initial-value data in the Einstein initial-
valoe problexn for gx'avity cBQ be coxnp1etely characterized by R paix' of syIIlxoetric»
transver se, tx'ac81888 tensox'8.

One knoms in electx'omagnetism what initial in-
formation to specify freely, thereby to determine
the future behavior of the field. To aequi. re the
SRDle pomel of RDRlysls RDd understanding lD the
dynamics of gravitation is an important RDd ac-
tively pursued issue. The px'eseDt %'ox'k shoms
that it is physicaQy natural and simple to specify,
not the initial thx'ee-geometry itself, but a cer-
tain conformal tensor that determines the three-
geometry up to a position-dependent scale factor.

Conformally invariant properties of space-time
structure have proved to be of great impoxtance
in studies of gravitational x'adiation and in othex
fundamental problems. Conformal mappings of
spacel ke three-geometries have been employed
as part of techniques for construction of initial-
value data for gravity. " Homevex, these confor-
mal transfox'mations y, ~ -y, ~

= q~y, ~ of the three-
dimensional metric y„have not seemed to pos-
sess great physical signifi. cance, px'esumably be-
cause of the absence in spatial geometry of any
structure like the null cones of space-time. Pex-
haps for this reason conformally invariant chax-
acterization of three-geometry has not been mi'de-

ly studied in a physical context. Yet these prop-
ex'ties tux'D out, to be fundaIQental ln connectioD
with the Einstein initial-value problem fox gravi-

It is mell known that the %eyl conformal curva-
ture tensor vanishes identically fox three-dimen-
sional spaces. This vanishing is equivalent to
the fact that, , in three dimensions, the Riemann
curvatux'e tensor 8'&«and the Ricci tensox' R~
-=R'„„Rre related by

+ —'R(5,y,~-6~y„).

Howevel, thel e 18 R conforDlally lnvRrlant tensox'

mhich in three dimensions plays a xole analogous
to that of the Acyl tensox' in highex dimensions.

This tensor is defined bys

Robe +cReb +5Rac + +(1 ac+0R ysb+eR) ~

where V, indicates covariant differentiation. It
can be shown that R three-geometry is conformal-
ly flat if and only if B,~,=O. The folloming i.den-
tities reduce to five the number of independent
components of R„,:

~e~c+~eco= 0»

&e~c+&caa+& ~ce= 0.

The significance of this tensor is more readily
perceived if me Write it in the algebraically
equivalent fOrm

where c'" is the completely Rntisymmetric ten-
sor density of weight +I, with e"'=+1. However,
P'~ is not conformally invariant owing to the rais-
ing of an index of R,~, in the definition (4). If we
set y =-det(y, ~), then clearly P"—=y' 'P" is in con-
formally invaris, nt form. Thus P' defines a con-
formal equivalence class of three-metrics and
vanishes if and only if the thxee-space is confor-
mally flat, just as does the Weyl conformal cur-
vature tensor of higher dimensional spaces.

Further properties of P" can now be detailed.
It is symmetxic in its indices because of the con-
txacted Bianchi. identity V, G', =-0, where G~,:—8 @

—g 6@R is the three-dlxQeIlsloDRI, Elnsteln
tensor. It is traceless, y„p"=0, because of the
final identity of equations (3). Finally, it is not
difficult to show that P" is transverse, &,P"

0. Inasmuch as -P'~ involves third derivatives
of the metric, one might not suspect it to ha, ve
the transverse propex ty. However, this proper-
ty follows as a consequence of the Ricci identity'
and the equivalence in three-space of the Ri.e-
mann and Ricci tensors (I). For every three-
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geometry, therefore, there is a symmetric
transverse traceless tensor (TT tensor) P"
which ean easily be written in conformally invari-
ant form p". We can think of p"-=pT'T as giving
a "pure spin-two" representation of intrinsic ge-
ometry. Conformally equivalent three-geome-
tries have equivalent spI'n-tu/o representations.

Now we turn to consideration of the Einstein
initial-value equations, which in standard canoni-
cal variables have the form '

Therefore, 77&~z is the same for an entire confor-
mal equivalence class of metrics. Our strategy
now is to pick the conformal factor so as to satis-
fy the Hamiltonian constraint (6), assuming that
&Ty ls g1ven.

Let us begin with (6) written in terms of barred
variables and the ~5-weight momentum. Mapping
this equation under C and using the mell-known
transformation law for scalar curvature,

R=p 8-8+ V cp,

~eh 0

-I/O(+ I/ab &&2) ~1/2' 0

(5)

(6)

we find that y must satisfy the Lichnerowicz'
equation

The scalar eurvata. x'e of y, ~ is 8, and &'~ is a
symmetric tensor density of weight unity with
trace r. In the Hamiltonian form of Einstein's
theory &" is the momentum density of the field,
conjugate to y,~. Geometrically, m~ describes
the bending of the spacelike slice as it is embed-
ded in space-time ("extrinsic curvature"). That
these equations contain implicitly all the dynam-
ics of gravity has been spelled out by a number
of workers in recent years. ' This is the primary
motivation fox a continuing search for deeper un-
derstanding of the px oblem of initi. al conditions.

The momentum constraints (5) are first-order
lineax' partial diffex'ential equations for the r',
if the y,~ are assumed given as is usually done
and as we do here. The chief difficulty comes
from the Hamiitonian constraint (6) which is qua-
dratic in the &" and is coupled to the momentum
constraints. It was probably for the former rea-
son that I iehnerowiez and others" used eonfor-
mal transformations on y„ to convert (6) into a
partial diffex'ential equation and put the problem
into a more convenient mathematical form.

Here~ also~ a confox"mal tx'ansformation peg
= p /gal 1s pex'fo1D1ed on a given metric pg@. But~
at the same time, it is essential fox what follows
to map in addition the momentum according to
the rule ~"= y '~". For, supposing we have ob-
tained the transverse and txaceless momenta VT'~~

relative to a metric y,~, then &'~ will have the
TT property relative to the metric y„ for arbi-
trary y(x). The "traceless"' requirement on II'~

is added to (5) and (6) here because it is needed
in order that r" be transverse with respect to
y,„as is easily seen by writing out V~&". In
other words, the TT property is preserved by
the above mapping C. Furthermore, it is clear
that the momentum density of weight ~5 defined
by' r"=-y'~'m'~ transforms with zexo eonformal
weight under the mapping, that is, 0 p7" -7"

V ++~M+ -~5i'g =0,

where V' =-y'~V, V~ is the Laplacian operator and

3 ~ "7/6 eb cl'Yac&~~ TT~ TT

All the coefficients are known in this elliptic
equation for y. Therefore, we may regard the
Hamiltonian constraint as determining the confor-
mal factor of the metric, with &7'~q unconstrained.
The transformation C effectively decouples the
construction of TT momenta from the Hamilton-
ian constraint.

The requirement that &'~ be traeeless is often
regarded as a coordinate or slicing condition, '
that is, the three-geometry is to be embedded
into space-time "maximally. " As such, no addi-
tional physical constraints are thereby imposed.
Moreovex, Deser' has shown that &T'T can be eo-
variantly constructed without the imposition of
coordinate conditions. He obtains the TT part of
any symmetric tensor' in a manner analogous to
the way one obtains covax'iantly the transverse
part of an arbitrary vector field.

If one does not have transverse traceless mo-
lllellta the collsil'Rlllts (5) Rnd (6) remain coupled
in regard to construction of momenta. ' However,
it is still true that the conformally invariant
three-geometry can be arbitrarily specified and
is independent of all constraints. ThI's indepen-
dence receives physical significance through the
fact that all conformally equivalent three-geom-
etries give the same spin-tu/o representation of
the gravitational field. This interpretation is ex-
act and vabd regardless of the connectedness of
the three-space and its topological properties in
the large. Moreover, when the traceless momen-
tum condition is achieved, the complete set of un-
constrained initial data of pure gravitational
fields may be specified by two TT tensors, one
purely intrinsic to the three-geometry and the
other extrinsic. Each of these contains in gener-
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al two arbitrary functions of the thxee spatial co-
oxdinates, just as xequired for a field with two
independent states of po1arization.

The present work leads one to wxite the Ein-
stein initial-value equations in "Maxwell form, "
analogous to V 5=0 V. K=0.

V P"=0 v s"=0

61ving any metric y, ~ and constructing fxom it
according to 'the prescription

Pob ~ as/V [y1/3(ft 5 1 5

bent)

] (9)

guarantees that the left-hand equations in (8) will
be satisfied, just as setting B=VXA, fox' arbi-
trary A, insures that V.B =O. Just as 8 depends
only on the transverse part of A, P" depends
only on the conformally invariant part of the met-
ric. Both P" and 7" are invariant with respect
to the mapping C, just as both B and E axe gauge
invax'iant. Gauge invariance in electrodynamics
and 0 invariance in geometrodynamics are there-
fore formally similar in several respects as re-
gards the initial value equations. The Hamiltoni-

an constraint was not explicitly written down in

(8), because in this view it only serves to de-
termine the conformal factor jp, to which the
fields P" and w" are insensitive. However, if
one wishes to know the final (conformally trans-
formed) metric, one has to take the solution cp of
the Hamiltonian constraint explicitly into account.
Thexe is no analog of this latter process 1n elec-
trodynamics, of course. In Maxwell's theory,
the gauge can only be determined by supplementa-
x'y cond1tlons. It ls not determined by any of the
field equations.

This method of characterization of gravitation-
al degrees of freedom based on the initial-value
problem suggests a number of further investiga-

tions which depend in part on detailed understand-
ing of Deser's covariant decomposition of sym-
metric tensors. The connection of F" and s T'T

on spacelike hypersurfaces to the results ob-
tai.ned by analysis of gx'avitational fields on null
hypersux'faces shouM be spelled out. The dynami-
cal equations of gravity should be written in a
fox'm suitable to the present viewpoint. These
and related issues are being actively investigated
and will be reported in detail elsewhere.

I wish to thank D. Brill, 8. Deser, A. Quale,
and J. Wheeler for helpful remarks. I especially
thank K. Kuchax' for many valuable discussions.

'k%ork supported in part by the National Science Foun-
dation Grant No. GP7669 and by the U. S. Air Force
Office of Scientific Research Grant No. AF49(638) 1545.

A. Lichnerowicz, J. Math P.ure Appl. 23, 3V (1944).
These techniques are reviewed by Y. Bruhat in t"raeita-
tion: An Introduction to CNn"ent Research, edited by
L. Witten (V/iley, New York, 1962).

The case of momentarily static geometry was treat-
ed using conformal mappings by D. Brill, Ann. Phys.
(New York) V, 466 (1959).

L. P. Eisenhart, Riemgsnias Geometry (Princeton
U. Press, Princeton, ¹ Z. , 1926). That the tensor

R~~ is useful in connection with finding transverse
traceless perturbations of the Inetric was mentioned in

Gravitation: An Intmdhetion to Current Research,
edited by L. Vfitten (Vfiley, New York, 1962). I thank

S. Desex for this reference.
4P. A. M. Dirac, Proc. Boy. Soc., Ser. A 246, 333

(1958).
Arnowitt, Deser, and Misner, Ref. 3.

~See, for example, B. DeWitt, Phys. Rev. 160, 1113
(196V) .

P. A. M. Dirac, - Phys. Rev. 114, 924 (1959).
S. Deser, Ann. Inst. Henri Poincare V, 149 (196V).
This method is used also by D. Brill, "Isolated Solu-

tions in General Relativity, " to be published; D. Brill
and S. Deser, Ann. Phys. (New York) 56, 584 (1968).


