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Based on Wheeler’s conjecture that the quantum fluctuations of the metric create 
a multiple connected foam-like structure of the vacuum with a structure constant of 
II* = (hC/c”)‘i* w 1O-33 cm and large virtual energy densities of the order c”/GL*” Q 
1O115 erg/cm3 and that elementary particles are exciton-like weak coherent perturbations 
in the violent vacuum physics, a mode1 theory is constructed in which real turbulent 
fluctuations are superimposed on the average metric with the fluctuating metric satisfying 
the free space Einstein equations. 

A stationary turbulent field of “mixing length” L* represents the vacuum fluctua- 
tions, long-range coherent fluctuations the exciton-like particles. Averaging gives the 
Einstein equations for the average metric which because of the nonlinear terms contains 
a vacuum term associated with the small-scale fluctuations and a term associated with 
the coherent part which is interpreted as the energy momentum tensor. Estimate of the 
leading terms in the energy momentum tensor gives for the size L of the excitons the 
relation L - L*2/3Rk’3 with the average universal curvature radius R,. For 
R0 - 10mz8 cm, L is of the correct order of magnitude lo-l3 cm. Further relations 
between microscopic and cosmologic quantities are derived which appear to be 
Eddington’s relations. The vacuum terms give a modification of Einstein’s equations 
which act as mass production terms and are proportional to the average curvature 
with an estimated rate of 1O-4L g/cm3 sec. Possible consequences due to time dependence 
of R are briefly discussed. 

INTRODUCTION 

In a series of articles and books J. A. Wheeler has investigated the “issue of the 
final state of matter” catalyzed to the endpoint of nuclear evolution [l-3]. 
Assuming that Einstein’s theory of general relativity is relevant to the inner 
structure of physics, Wheeler has focused attention on the fact that many typical 
solutions of the equations of general relativity in time develop singularities with 
infinite curvature. 
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In recent years the works of Penrose [4], Hawking [5], and Geroch [6] have 
proven that Wheeler’s earlier conjecture is true, that under quite general assump- 
tions all solutions in general relativity eventually develop singularities of infinite 
curvature. 

We are today far from an understanding by what trick nature might prevent 
these singularities from actually occurring. However, led by past experience one 
is inclined to believe that nature never really evolves into a singularity. And so 
we are looking for new avenues, for some extension of existing physical theories 
which would do for the collapse problem what the uncertainty principle did for 
atomic physics, viz., overriding the classical prediction that the orbiting electron 
would radiate and spiral into the nucleus terminating all physics in a singularity. 

There is, however, no observational basis which could guide us in inventing 
such theories. Objects in which gravitational collapse might play a role, the 
quasars, are still not understood. But in his analysis of the gravitational coliapse 
problem Wheeler has shown [3] that the assumption of baryon annihilation in the 
final evolutionary states of a collapsing object is inescapable. This leads to the 
conjecture that the behavior of matter in very intense gravitational fields and the 
nature of elementary particles might be intimately connected. A crude model 
theory of this connection would be expected to link gravitation and elementary 
particles in such a way that it gives some connection between the typical particle 
size and mass and gravitational quantities and offers a possibility of escape from 
the collapse problem. 

In his quantum geometrodynamics, Wheeler has pointed the direction in which 
one might look for a solution of these problems [1,2, 71. The existence of a 
fundamental length which can be produced from the light velocity c, the Planck 
constant fi, and the gravitational constant G, the Planck length 

L* = (fiG/~~)l/~ = 1.6 x 1O-33 cm (1) 

suggests that this length might play the dominant role at very intense curvatures 
and might govern a quantum theory of strong gravitational fields. Indeed this 
length determines the principal uncertainty of any length measurement. L,* is the 
smallest length one could measure without having the probing photon itself 
distort the space curvature significantly [7, 81. Wheeler has shown [4] that, based 
on Feynman’s pathintegral method of quantum theory, the length L* is expected 
to govern the vacuum fluctuation of the gravitational field functions &k . They 
would undergo quantum Auctuations of the order 

&7 -L*/L. (2) 

This means that, considering a spatial region of dimension L, those virtual histories 
of field evolution contribute most to the propagation function in Feynman’s 



QUANTUM FLUCTUATION OF GRAVITATION 633 

pathintegral for which Sg - L*/L. Over the range L the potentials have fluctuations 
6g around the local average value. Over regions of the order L* these fluctuations 
would be as large as the potentials. Using the geometric interpretation of gravi- 
tation, we find these fluctuations to be violent fluctuations of the geometry over 
regions of the order L* which would create a virtual multiple connected foamlike 
structure of space [l, 2,7]. 

The virtual vacuum fluctuation of the metric of magnitude 6g - L*/L would 
have corresponding fluctuations of the field strength 6r - Sg/L - L*/L” and of 
the curvatures 

6R w SglL2 - L”lL3. (3) 

The enormous fluctuation of the curvature over distances of the order L” would 
correspond to a virtual creation and annihilation of masses of the order 
m* - c2L*/G w 10-j g which corresponds to an energy-density in the vacuum 
fluctuation of 

SW = m*c2jL*3 := 10115 erg/cm3 (4) 

with a life-time of these virtual states of 6t - fi/m*c’ w 1O-43 set according to 
the uncertainty principle. On account of these enormous numbers Wheeler has 
conjectured [l, 2,7, IO] that elementary particles with an energy density of 
1O35 erg/cm3 over a region of L w lo-l3 cm represent only a minor long-range 
perturbation on the background of the violent vacuum physics and that he has 
spoken of elementary particles as geometrodynamic excitons, a fantastically weak 
coherent perturbation in the pattern of the intense vacuum fluctuation. Wheeler 
has used the picture of the ocean seen by an aviator. From very high above the 
ocean looks perfectly flat. From a somewhat closer distance larger coherent 
patterns are visible, and from very close the small-scale ripples, breaking of wave- 
crests, and formation of multiple connected surfaces become discernable [ 1, 21. 

Recently Wheeler [lo], Gerlach [II], and Dewitt [12] have begun, in the theory 
of superspace, to investigate the nature of these geometry fluctuations and the 
structure of superspace, in which the points are representatives of possible 3-geo- 
metries and in which the propagation of constructively interfering probability 
waves form a localized wave packet the path of which marks the evolutionary 
trajectory of the corresponding classical 3-geometry in much the same way as 
the propagation of a localized solution of Schrodinger’s equation marks the path 
of the classical electron. 

The hope is that eventually particles can be described as quantum states of 
excitation of the geometry in terms of probability amplitudes which are functionals 
of possible 3-geometries, different functionals for different states with different 
numbers of particles, and that the typical behavior of probability amplitudes will 
“spread” the final state of gravitational collapse and avoid the singularity. 

It is unlikely that this “ultimate” theory could be formulated and solutions be 
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found in short order. In this situation it could be interesting to see whether, by 
incorporating the quantum fluctuations through some ad hoc hypothesis into the 
classical theory, it is possible to produce a modified theory which does offer a 
connection between gravitation and particles and possible ways of avoiding the 
collapse problem. Such a hypothetical model will be made here and some of its 
consequences will be explored. 

What if we take Wheeler’s vision more literally? What if we forego a correct 
quantum geometrodynamic description of the virutal metric fluctuation at this 
point and try a model theory in which we take the fluctuations as real random 
fluctuations which satisfy the classical equation of motion, i.e., Einstein’s equation, 
just as the turbulent fluid motion satisfies Navier-Stokes equation. The local value 
of the metric quantities g,, would then be some average value gay on which is 
superimposed a turbulent random field tUy, the average of which is zero. The 
quantum nature of these turbulent fluctuations would be included by postulating 
the distribution of these fluctuations to be stationary, homogeneous and isotropic 
and have, as characteristic “mixing length,” the Planck length L*. Particles or 
excitons in this picture would be described by a contribution to the random field 
which has a correlation length L which is long compared with L* and is inhomo- 
geneous. 

In Section I, the assumptions of this model are discussed and the postulates are 
listed. The autocorrelations of the postulated vacuum fluctuations of characteristic 
length L* introduce additional vacuum terms into the Einstein equations for the 
average metric. The contribution from the long-range correlations are interpreted 
as the energy momentum tensor. In Section II it is shown that the additional 
vacuum terms imply nonconservation of energy momentum at large curvatures. 
The approximate field equation for the excitons is given. In Section III an order 
of magnitude estimate of the leading terms in the energy momentum tensor is 
made. Together with the average curvature of the universe this leads to an estimate 
of the characteristic size L of the excitons which turns out to be of the right order 
of lO-3 cm. Other relations which link cosmological and exciton quantities follow 
automatically. These relations are identical to the Eddington relations involving 
the large dimensionless number 10 40. In Section IV some cosmological conse- 
quences of this model, the effects of a possible time dependence of the exciton 
quantities and the model’s connection with Mach’s principle are briefly discussed. 

I. THE MODEL 

The basic assumption is that the quantum fluctuation of the metric can be 
incorporated and that it makes its appearance in the classical Einsteinian theory 
as real random fluctuation of the metric field. This is strictly a hypothetical model, 
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precipitated by “Wheeler’s vision.” There is no analog to this in classical field 
theory. Superposition of a random field in a linear theory does not produce any 
extra terms in the averaged field equation. Only in nonlinear theories does the 
introduction of turbulence lead to new terms in the equation of motion like the 
Reynolds stresses in the Navier-Stokes equation of hydromechanics. But we do 
not know in what sense such “Reynolds stresses” might produce some semi- 
classical approximation to the correct quantum field theory. It is interesting. 
however, to note that supersposition of a random field on the action function of 
classical mechanics does produce the correct field theory for the action function 
from which the Schrodinger equation is obtained. 

The classical Hamilton-Jacobi equation for the action function S(r, t), i.e., 

-2sjat = (CS)2/2m + U(r) (5) 

could be interpreted in analogy to fluid dynamics as the equation of motion for 
a turbulent fluid 

s = S” -k s, . (61 

where S, is the average field an S, a random field with zero average. Inserting S 
into the Hamilton-Jacobi equation and taking time averages (which makes terms 
that are linear in the random field cancel out) one obtains 

-aS,/2t = (VLQ2/2rn + U(r) $- (VS#/2m. (7) 

In this equation of motion the last term would be the analog to the Reynolds 
stresses in the Navier-Stokes equations for turbulent flow. If one postulates that 
the random field is stationary and that the higher order autocorrelations are small __- 
then one can show that the first nonzero term in an expansion for (VS12) would 
be 2pV2S,, where p is a small constant. This gives as the modified Hamilton-Jacobi 
equation 

cSS,/c?t = (V.!Q2/2m f U(r) + (P/m) V”S, (8) 

which is identical with the equation for the action function which one obtains 
from Schrbdinger equation with 

$(r, t) = expKi/fi) S(r, t>l, (9) 

where jl is taken to be 

p = -i/i/2. (10) 

The corresponding procedure for the Einsteinian theory would be to super- 
impose a random contribution on the Hamilton-Jacobi function in the Einstein- 
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Hamilton-Jacobi equation of general relativity [lo, Ill, solve the turbulence 
problem under suitable assumptions of stationarity, homogeneity, and neglect 
of higher moments, and to find the “Reynolds stresses” in terms of the average 
action function. Repetition of Gerlachs derivation [ll] of the classical field 
equations from the now modified Hamilton-Jacobi equation together with the 
principle of constructive interference would lead to modified field equations. The 
connection * = exp[(i/fi) S] would lead from the modified Hamilton-Jacobi 
equation to the Schrijdinger equation of the problem. 

If it can be established that the connection between the turbulent action field 
and quantum theory is meaningful, then this might be a way of finding the right 
Schrodinger equation of geometrodynamics. 

Instead of embarking on this ambitious program we consider that the action 
is a functional of the metric field functions and that a fluctuation of the action 
has corresponding fluctuations of the field functions. Introducing “Reynolds 
stresses” due to the fluctuation of the field functions in the nonlinear terms of the 
Einsteinian field equation will give a different modification of the theory from 
that one would obtain from the above-mentioned amendment of the Einstein- 
Hamilton-Jacobi equation. But since the validity of this amendment is not clear 
one could be satisfied with the less complicated model. The additional terms in 
this model do originate in the nonlinear terms of the field equations and, therefore, 
express the geometrodynamic idea that it is through quantum fluctuations of 
intense self-interacting gravitational fields and the manifestation of small fractions 
of this self-energy that particles derive their existence. 

The model rests on the following assumptions and postulates: 

(a) All physics is described by the metric field 

gw = &Y + L 3 

where t,,,, is a random variable field in space and time and gUy is an average field 
which may be slowly variable. The average of the random field is zero: 

(t,J = (0 V)-4 f t&)(-g)‘l” d4x = 0. (11) 

(b) The random field is assumed to have a spectral distribution which 
allows one to decompose it into two parts: 

(12) 

The part fuy is to be associated with the vacuum fluctuations. It is postulated 
to be a stationary, homogeneous, isotropic random field of normal distribution 
with <f,,J = 0. 
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The correlation length is taken to be of the order L* and the amplitude is taken 
to be of the order of glly . 

The field yUV also has zero average but it is of long correlation length and is 
nonhomogeneous. It is zero for the vacuum and, when nonzero represents the 
excitons in terms of the correlation functions \:~J.x) ~p~(,(x’);> and higher order 
correlations. 

The amplitude of ypLIy is taken to be very small compared to g,, and& . 

(c) The function F,Jx) is taken to represent a measure for the probability 
to find matter at point x. 

(d) The total field g,, = gUy + fUy + y,,” satisfies the free space Einsteinian 
equation 

Euy = R,, - +g,,R = 0. (13) 

This is an expression of our assumption that matter is not some foreign agent 
in the arena of geometry but certain coherent wrinkles in the randomly A uctuating 
geometry. 

The Ricci tensor R,, and the scalar R are functions of the metric field g,, and 
decompose into contributions from the average field g,,, , the fast vacuum fluctua- 
tionsf,, and the long-range perturbations yUV of these. 

The gravitational field strengths which are represented by the Christoffel symbols 
also appear as superposition of an average field and a random field: 

In what follows we wish to maintain the geometric point of view of gravitation 
for the average metric. But we propose to consider the random field as a tensor 
field superimposed on the average geometry. Any Riemannian geometry which is 
characterized by g,, can be expressed as a field over another Riemannian geometry 
characterized by guy 1131. Both are understood to be expressed in the same coordi- 
nate system with 

gu”glfh = g&P” = 6,“. (1% 

For the geometric objects in the two spaces, i.e., the tensors of interest, the Ricci 
tensor R,, and the scalar R, one finds 

R,, = k, + 6R,,. , 

R = i? i- 6R. 

The variations can be expressed in covariant form 

(16) 
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Here the semicolon represents covariant differentiation, and the subscript ;; means 
covariant differentiation with respect to the average metric, i.e., when written out, 
the additional terms contain the Christoffel symbols of the average metric. In the 
case of flat average metric these covariant differentiations reduce to ordinary 
differentiation. The parentheses ( ) and brackets [ 1, as usual, mean symmetrization 
and antisymmetrization, resp., in the enclosed indices. The b& are the differences 
of the two affine connections and can be shown to be tensors 

b,“, = &‘“{tqy;, + t,,a;s - t,,;c>. (19) 

The Einstein tensors for the two geometries are 

and 

and one has 

Euv = R,w - ig,,R (20) 

- - - 
Ew = R,, - i&,R, (21) 

E,., = J%, + SE,, (22) 

6E,,, = 6R,, - +g,,,6R - &J?. (23) 

The vanishing of the Einstein tensor Euy therefore gives 

Euv = +g,,6R - &t,,i? - 6R,, . (24) 

The rhs represents a random source function in the Einsteinian equation for the 
average metric. Because of the nonlinear terms, an average of this function does 
not disappear but can act as the effective energy-momentum tensor 

In the absence of matter, all vUy would be zero and 6R,, and SR in (23) would 
be the functions as defined in (17) and (18) with tuy replaced by f,, which we will 
indicate by fSR,, and faR. For pure vacuum we would have then 

8.v = t<(& +f,v) fM - f8R,,). 

The fsR,, and f2iR also contain nonlinear terms, the averages of which do not 
vanish. The requirement of homogeneity and isotropy restrict the number of 
nonzero terms as such requirements restrict the number of nonzero correlation 
functions in the turbulence theory (see Hinze [14]). Further restriction is obtained 
by the requirement of normal distribution for the random fields which, in the 
turbulence theory, causes all odd-order moments to be zero and allows the higher 
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even-order moments to be expressed in terms of second-order moments. After 
taking the average the rhs represents a vacuum term in the average geometry 

h((guY +fJ fSR - fSR,,; -G ,‘VUL,‘.. (37) 

We will write Einstein’s Eq. (24) now in the form 

E,, -= (vu”:: + ; Y,“: , (28) 

where 
(Y,,v) = ($g,JR + 6R,, - V,$. (29) 

YSy collects all the terms which contain the matter field qUy and may be interpreted 
as the effective energy-momentum tensor multiplied with %rG/c3 

where 

is the mass density. 

(30) 

(31) 

IT. CONSERVATION OF ENERGY-MOMENTUM AND FIELD EQUATION OF MATTER 

The Bianchi identity says that 

E;;y = 0, (32) 

where ;v is the covariant differentiation with respect to the metric g,, . With respect 
to the metric g,, , we have 

E:;$ = 0. (33) 

Therefore, we find that 

g”YE,, - jy(( vu,; - <Y,J) = 0 (34) 
and 

W((V,“> - Wu,i>l;, = 0. (35) 

It appears therefore that in this conjecture the effective energy-momentum would 
not always be conserved. The term (g”“( VL(J);~ acts as a source term which depends 
on the curvature of the average metric through the Christoffel symbols in the 
covariant derivative 

W<Vw~):, = -& W”<VU”>) + cxi?YVU”>> - ClM”<K”>). (36) 

The derivatives of (VU,) are zero because of our assumption of homogeneity of 
the vacuum field. The Christoffel symbols measure the gravitational field strenght 
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and are proportional to 1 /curvature radius. We would expect, therefore, significant 
contributions from the source term in the phases of large curvature; i.e., in the 
contracted phase of the closed universe and in the final phase of the collapse of a 
stellar object. 

It is conceivable that the source term at large curvatures could prevent the 
solutions of Einstein’s equations from becoming singular. The global theorems 
on the singularities by Penrose, Hawking and Geroch [6-81 depend on a strong 
form of the principle of the conservation of energy-momentum. 

It is interesting to note that a quantum theory of gravitation leads to observable 
vacuum terms as Dewitt has shown [12]. In this covariant quantum theory of 
gravity he has estimated the vacuum-to-vacuum amplitudes. The contributions 
which originate in the vacuum polarization which the background geometry 
induces give rise to unobservable renormalizations as well as physically real 
radiative corrections. The observable corrections appear as corrections to Einstein’s 
equations. Hill [15] has investigated the effect of such correction on the collapse 
of a Friedmann universe and has found that such term may prevent the occurrence 
of the singularity. 

Parker has shown recently that the generalization of quantum field theory of 
massive spin-0 particles to an expanding Friedmann universe gives pair creation; 
and Sex1 and Urbantke have shown that the time-dependent gravitational field 
stemming from the expansion of the universe will give rise to pair production, 
which is significant during the first lO-2o set of the universal expansion [16]. 

It appears then that our model theory contains qualitative features which are 
obtained in theories more firmly based on conventional theories. 

In the limit of negligible source strength; i.e., in a flat average metric, effective 
energy-momentum is conserved. The conservation equations 

GWTJ);, = 0 

would be the field equations for matter. These are differential equations for the 
correlation function (cJJ~‘&“) and higher order moments. Starting from these 
equations a hierarchy of equations could be derived in the fashion of the turbulence 
theory of fluids. The solutions of these equations would have to represent the 
nature of the possible excitons which can be described by these field equations. 
They would have to describe the lifetimes and the decays into other excitons. 
They would have to explain why some excitons are apparently stable and they 
would have to describe the interactions of these excitons. 

One might envision a formulation of excitons similar to the theory of elementary 
domains which in recent years was developed by the Yukawa School. The corre- 
lation functions here would play a role similar to that of the multilocal fields 
there [17]. 
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III. ORDER OF MAGNITUDE ESTIMATES 

The explicit form of the effective matter tensor Y,,. is involved. All terms are 
of the form r+~f”(a~)Q(af> with 1 < n < 4, 0 & m .< 3, 0 < q :< 2, 0 < Y << 2. 
In order to estimate the average effective energy-momentum we make use of the 
difference of frequencies from which the major contributions to the fieldsf and v 
come as postulated in (b). 

The fields f have a frequency spectrum centering around Qn, - c/L* which is 
very large compared to oP - c/L, the characteristic frequency for the q-fields, 
and 

Because of Qf 3 w, , and because of the assumed stationarity of the ,f-fluctuations 
we may perform the averages by averaging the functions H and F separately, i.e., 

(HF)--(H>(F). (38) 

We will now use the following orders of magnitude: 

(1) [F] - F, the amplitude of g, is to be found in connection with other 
significant quantities in the theory. 

(2) The extension of the excitons is taken to be characterized by the length L 
which is to be found and which characterizes the inhomogeneity of the long-wave 
correlation y: 

[%I - Y/L. (39) 

(3) The rapid vacuum fluctuations f are taken to have amplitudes comparable 
to the average metric: 

[fl - 1. (40) 

(4) The characteristic length of these vacuum fluctuations is taken to be L*: 

Pfl - l/L”. (41) 

Collecting all terms in Y and forming the average according to the above-given 
rule and considering that terms which are linear in f or v cancel when averaged, 
one finds as the leading term: 

<Y\ - lqyafaf:, - gj~*2. (42) 

We can now relate the amplitude 9, the sizes L and L* by an argument similar 
to the one used by Rosen [I 81. We note that (Y) is also proportional to the average 
deviation of the curvature <6R) from the average curvature a,,” : 
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The local variation of the curvature due to the presence of matter described by 
the field v brings about a variation of the action, 

SS - (c3/G) j- (6R) d4x. (44) 

The integral is to be extended over the four volume characterized by the particle 
size L. The lower level excitons will be associated with a change of action from 
the vacuum value of the order fi. So we have 

f? - (c~/G)(~~~/L*~) L4 

or 

9 - (L”/L)Z. (45) 

The component Y,, of the effective energy-momentum tensor at the location of 
the exciton would be of the order Gp,/c2 with pn the density of nuclear matter. 

The cosmological mass density pG is the nuclear mass density multiplied by the 
probability to have an exciton at the location around X. This probability is, 
according to our postulate (C), proportional to the amplitude y: 

(G/c2) PC - (G/c21 PIP (46) 

Most cosmological models based on Einstein’s theory relate the scale parameter 
of the metric or the universal radius R, with the mass density: 

-2 
(‘7~~) PC - &, . (47) 

The present mass density or the corresponding universal radius must be considered 
as fact, reflecting a sort of initial condition which is to be entered into the theory. 

We have, therefore, 

R,2 - (G/c21 pnv - O’-) P) - q31L”2, (4% 

or, because of (45), 

and 
ROIL* - (L/L*)3 (49) 

R,IL - (L/L*)2 - q+. (50) 

If one takes for R, the frequently quoted value of R, RS 102* cm and 
L* = 1O-33 cm, then one finds 

L/L* !a 1020, L m IO-l3 cm , (51) 
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and (50) becomes 

R,,/L - q-1 -(L/L*)2 N 10"" = Nli". (52) 

This is one of Eddington’s relations [19]. The large number N = lo*” in 
Eddington’s book represents the number of particles in the universe. Some of the 
other Eddington relations follow. The characteristic nuclear density becomes 

(W2)pn - (cplL*J2 - (L*)-2 N-l, (53) 

and with G/c” = 0.7 x 102* g-l cm one obtains pn - 4 x 1014 g cm-3. 
The mass of a typical exciton would be 

m n - L3Pn w (C2/G) L*N-V4 N (c2/G) LN-11” - /?/CL w 0.3 X 1o-24 g. (54) 

This is Eq. (40.7) in Eddington’s book. 
The total mass in the universe would be given by M - number of possible 

sites L3 Y mass of exciton x probability that site is occupied 

M -(Ro3/L3) x m, x q~ - Nm,. (55) 

We can also find the mass M directly from 

M - peRoR> (56) 

and from Eqs. (47), (49), and (54), which give 

M - (c2/G)Ro = (hjc)(c3/Gfi)R, = (fi/~)(L*)-~ L*N314 = Nm,. (57) 

These are the Eqs. (5.3) and (5.41) in Eddington’s book. 
We wish to emphasize that Eddington’s relations are here arrived at by consider- 

ations which are quite different from Eddington’s approach. Eddington arrives 
at these relations from consideration of the usual Bernoulli fluctuation of physical 
origin, in a large number N of particles. The original distribution function of the 
fluctuation has a standard deviation D which puts a scale to all physics. The 
combination of the original fluctuation D and the uncertainty in the volume 
occupied by the N particles and the subsequent uncertainty gE in distance measure- 
ment which is (TV - N-1/2 (according to Eddington!) makes the metric of space 
appear like that of a spherical space of radius R. = 010~ which leads to u = R,N-l12. 
The scale parameter LT is identified by Eddington with the range of the nuclear 
force field, i.e., with the size of the hadrons. Here we have arrived at these relations 
from a dynamical model. 
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IV. DISCUSSION OF SOME CONSEQUENCES OF THE MODEL 

The relations (45) and (48) express the connection of the submicroscopic length 
L* with the universal radius R, which produces a length L characteristic of 
elementary particle sizes. These relations would indicate that q~ should be positive 
definite. However, the functions v were introduced as random functions with zero 
average and long-range correlation. What about this apparent contradiction ? 
The particle-like excitons in this model would be solutions of the field Eqs. (37) 
in the form of two-point correlation functions (~,&) Q,(x’)). These two-point 
functions should decrease toward zero for distances (X - x’) of the order of the 
exciton size, but there is no a @ori reason that this must be a monotonic decrease 
and not some kind of oscillation. We have associated I$ with mass density because 
the leading term in the expression which was interpreted as energy-momentum 
tensor is proportional to v2. We have postulated v(x) to be representative of the 
probability to find an exciton around x. Whether such association can be consis- 
tently made must remain open at this point. The association of field functions 
with probability is a quantum mechanical concept. The model theory is a kind 
of semiclassical theory. The underlying quantum field theory for the creation and 
annihilation operators which would be related to the v is not known. This model 
theory is probably not even the semiclassical limit of a “true” quantum geometro- 
dynamics (cf., Section I.) In this model, then, we will assume that in a “true” 
theory the association can be consistently made, and in the relations (45) and (48) 
we will interpret y to mean something positive. 

The appearance of the universal radius R, and the dependence of the exciton 
size and mass on this radius raises the question of a possible time dependence of 
the fundamental particles. One possibility is to interpret R, as the radius of the 
universe at the phase of maximum expansion: an “initial value datum,” but also 
a constant. Another possibility is to identify the length R, with the present average 
curvature of the universe. In this case the existence of the Hubble effect would 
force one to accept time dependence of the fundamental quantities in this model. 

The excitons in this model are expected to derive from the field Eq. (37). The 
only length that appears explicitly in these equations by postulating the stationarity 
of the submicroscopic vacuum fluctuation is the length L*. The radius R, which 
must enter in order to produce a length L - lo-l3 cm could enter in two ways: 
either through the average metric gUy and the Christoffel symbols fzv which appear 
explicitly in the field equations or through boundary and initial conditions. 

If the exciton properties were determined by the average metric, then they would 
have to be functions of the location because of the varying curvature in the vicinity 
of big masses. According to Eqs. (54) and (49) the exciton masses would be 
proportional to & It3 With R, interpreted as the local curvature radius, a drastic . 
difference of the exciton masses at the surface of the sun and the earth would 
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result. Our exciton theory would then have to explain why such difference can 
not be observed or why it is canceled by other changes also due to the change of 
local curvature. 

If R, determines the present properties of the excitons as a boundary condition 
representing the radius of a closed universe, then one would expect the exciton 
properties to be time-dependent together with R, . If one assumes for R, the time 
dependence of a cosmological model with zero cosmological constant and accelera- 
tion parameter q,, = l/2, then the Eqs. (49) (50) (54) and (55) give L cc taig: 

y w  N-112 c t-V; m ?I cc t-2/g; M cc t2i3; pe c/c tr4j3. The time variability of the 
total exciton number N and the total mass M of the universe correspond to a mass 
production rate of 10-46g/cm3 set which is similar to the rate in the C-field theory 
of Hoyle and Narlikar [20]. 

The time dependence of the exciton mass would imply a time dependence of 
the stellar masses and, therefore, of the stellar luminosities. Estimates show that 
the luminosity for a main sequence star would depend on time like 3’ - t -3 
which is much weaker than the t-’ dependence in theories with variable gravitation 
constant. Corrections of the evolutionary age of astrophysical objects due to the 
time dependence of the masses are similar to those given by Dicke [21] on the 
basis of the Brans-Dicke cosmology. 

A way to circumvent the possibility that the masses become time-dependent 
would be to interpret R, as the mass constant in the Friedmann equation for the 
evolution of a closed universe: 

g2/R2 + l/R2 = R,/R3. 

The value R, is the radius of maximum expansion and is equal to the Schwarzschild 
radius of the total universal mass. The question then is: How is this universal 
initial condition imprinted on the excitons ? It is quite clear that here the conjec- 
tured model is far from the status of a theory. But it seems that this model contains 
an element of unification regarding the problem of matter and the cosmological 
singularity. Particles which in this model are postulated to be coherent geometro- 
dynamic low quantum excitons on the background of a turbulent vacuum fluctua- 
tion of the metric appear to have sizes L related to the universal radius R, as 
L - Rii3L*2/3 with the correct order of magnitude of lo-l3 cm. The Eddington 
relation that the ratio (R,/L)2 is equal to the number of particles in the closed 
Einsteinian universe follows from the model, giving meaning to the numerical 
coincidence. 
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