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Part 1
Problems

1 Coordinates and 1-forms

1.1 Invertible transformations

Under what conditions is a coordinate transformation £* = £*(x®) invertible in a neighborhood of some point 2*?

1.2 Examples of coordinate transformations

The following coordinate transformations are given, mapping the standard Euclidean coordinates (z,y) or (z,y, z) into
new coordinates.

1. In a two-dimensional plane, (z,y) — (u,v), where —co < u,v < 400:

1
x:u+u02+§u3,

1
y:v—l—qu—i—gvS.

2. In a three-dimensional space, (z,y,z) — (1,60, ¢), where —oco < r < 400, 0 < 6 < +00, 0 < ¢ < 2m:

x = rsinh 0 cos ¢,
y = rsinh fsin ¢,

z =rcosh@.

3. In a three-dimensional space, (x,y,z) — (r,0,¢), where 0 < r < 400, 0 <0 <7, 0 < ¢ < 2m:Solutions

T = —rsinf cos ¢,
y = —rsinfsin ¢,
z =rcosf.

The following questions must be answered in all three cases:
(a) Find the subdomain covered by the new coordinates. Hint: Consider e.g. the range of = at constant value of y.
(b) Find the points where the new coordinates do not specify a one-to-one invertible transformation (singular points).
(c) If singular points exist, give a geometric interpretation.

1.3 Basis in tangent space

Prove that the vectors e, = a% are linearly independent.

1.4 Differentials of functions as 1-forms

If f(z®) is a function of coordinates x®, then one defines the 1-form df (called the differential of the function f) as
of
df =y ——dz°. 1
f Z ooade (1)

Compute d(z), d(2?), d(zy), d(z +y). Compute the 1-forms df, dg, dh, where the functions f, g, h are defined as follows,

[z, y, 2) =42y + 2°2,

g(z,y) =322 + 2,

h(z,y) = arctan (z + y) + arctan(z — y)
2z

arctan .
+ 2 —y2-1

1.5 Basis in cotangent space

Show that the 1-forms dz!, ..., dz™ comprise a basis in the space of 1-forms at any point M. Show that

« 8 (0%



1.6 Linearly independent 1-forms

Check whether the following sets of 1-forms are linearly independent at each point of the 2-dimensional or the 3-
dimensional space respectively. If not, determine the points where these sets are linearly dependent.

1. Two 1-forms d(e” cosy), d(e®siny).

2. Two 1-forms (1 + y)dx — 2zydy, 8dx.

3. Three 1-forms dx + dy, dx + dz, dy + d=z.
4. Three 1-forms dx — dy, dy — dz, dz — dx.

1.7 Transformation law for 1-forms

Derive the transformation law for 1-forms,

under a coordinate transformation z® — £ = 7 (27).

1.8 Examples of transformations
Consider the coordinate transformation (x,y) — (u,v) defined in Problem 1.2(1). Transform the following 1-form,

1
x+y’

into the coordinates (u,v) in two ways:
(a) By a direct substitution of the new coordinates.
(b) By using the transformation law (2).

1.9 Supplementary Problem Sheet 1
2D surfaces embedded in 3D Euclidean space

1A Tangent plane

Consider the surface given by z = —hexp (—%(aﬁ + y2)) . If gravity acts in the negative z-direction, at what points will

a ball rolling along this surface experience the greatest acceleration? Find the tangent plane at one of these points.

1B Induced metric

Find the metric for the surface given parametrically by

r = asin®#fcosa,
y = asin®6@sing,
z

= acosfsinb,

where, as usual, § € [0,7) and ¢ € [0,27). Is the metric well defined at § = 07 Do you think the surface is well defined
there?

1C Embedding waves
1. Sketch the surface given by

Cos v
xr = —,
V2 —sinu
sin v
Yy = =
V2 —sinu
COS U
2= =
V2 —sinu
where u, v € [0,27). (Hint: Consider the intersection of the surface with the plane y = 0. What happens for general

v?)

2. Find the normal vector and the tangent plane to this surface at point (u,v).



3. Determine the induced metric on the surface. Then consider the 2D vector V¢ = (cos v, sinv), i.e.

0
V =cosv— + sinv—,
v + ou
defined within the surface. Is V® a unit vector? What are the 3D Euclidean components of the vector V' in the 3D
space? Show that the 3D components of the vector V' everywhere lie in the tangent plane to the surface.

2 Tensors

2.1 Definition of tensor product

If wy and wy are 1-forms, their tensor product wy ® we is defined as a function on pairs of vectors:
(w1 ®@wa)(V1,v2) = (w1, V1) (W2, Va) . (3)

Let w1 = dx + 2ydy, wa = —2dy be 1-forms on a 2-dimensional space and v = 30/0x, vo = —x (0/0x + 0/0y) be vector
fields (also defined in this 2-dimensional space). Just for this problem, let us denote T' = w; ® wo.
(a) Compute T'(vy,vy).
(b) Compute T'(vy,Vv3).
(c) Show that
T(a+ Ab,u) = T(a,u) + AT (b, u), (4)

where a, b, u are vectors and A is a number). The same property holds for the second argument of 7'. Such functions T°
are called bilinear.

(d) Show that all bilinear functions of pairs of 2-dimensional vectors belong to a vector space of such functions. Show
that the tensor products dx ® dx, dx ® dy, dy ® dz, dy ® dy form a basis in that space. (That space is called the space
of tensors of rank 0 + 2.)

2.2 General tensors

(a) A general tensor of rank r+s is defined as a multilinear function on sets of r 1-forms f; and s vectors v; (multilinear
means linear in every argument). An example of a tensor of rank r + s is a tensor product of r vectors ey, ..., e, and s
1-forms wy, ..., ws, denoted by e; ® ... ¥ e, ®w; ® ... ®w,s. This tensor is a function that acts on a set of r 1-forms f; and
s vectors v; via the formula

€1®..0e Qw ® .. 0 Ws(f1, .0, fry V1, .y Vs)
= (f1,e1) ... {(fryer) (w1, V1) ... (ws,Vs).
(This is a generalization of Eq. (3) to tensors of rank r + s.) Show that this function is linear in every argument. Such
functions are called r 4 s-linear functions. Show that all » + s-linear functions form a vector space. This vector space is
called the space of tensors of rank r + s.

(b) Let e;, j =1,...,N, and w’, j =1,...,N are bases in the space of vectors and in the space of 1-forms respectively
(both spaces have dimension N). Show that the set of tensors

€a; ®...0 €, QW ® ... 0w (5)
form a basis in the space of 7 + s-tensors (where o; and §; exhaust all possible combinations of indices). Note that this

set contains n”T* basis tensors.

2.3 Example

(a) Let T be a bilinear function of two vectors with vector values, i.e. T(vy,va) is a vector if vi, vy are vectors. Give a
simple example of such T as a tensor and determine its rank.
(b) A particular example of such a tensor T in 3-dimensional Euclidean space is the following function,

T(Vl,Vg) =2vy X Vg — vl(n : VQ), (6)

where n is a fixed vector. Show that the function T is bilinear in vy, ve. Determine the components Taﬂ7 of the tensor

T in an orthogonal basis where the vector n has the components n® = (n',n?,n?3).

2.4 Transformation law

Derive the transformation law for the components T, " of a tensor of rank r + s.



2.5 Contractions of tensor indices

(a) Show that the results of addition, multiplication by scalar, tensor multiplication, and index contraction of tensors are
again tensors. Use the definition of tensor from Problem 2.2.

(b) Show that a contraction of indices in the same position (e.g. lower indices with lower indices, Thag) does not
generally yield a tensor.

(c) Consider the tensor 7% defined in Problem 2.3(b) and compute the contraction 7%, 5. Is the result a tensor? If
so, determine its rank.

2.6 Invariance of the interval

Show that the spacetime interval ds? = gagdxad:cﬁ is invariant under coordinate transformations z* — 2% if g,z are
components of a tensor transforming according to the tensor transformation law

Jap = 9ab = Gia gz I
2.7 Correspondence between vectors and 1-forms

For a given metric g, each vector v has a corresponding 1-form which we shall denote wy. This 1-form is defined by its
action on an arbitrary vector x as follows,
(wy,X) =V - X, (8)

where the scalar product v -x is defined through the metric g,g. Show that the components of the 1-form w, in the basis
dx® are related to the components of the vector v in the basis 9/0x* by

Wa = Japt®. (9)
2.8 Examples of spaces with a metric
(a) Consider the usual, Euclidean 3-dimensional space with the metric
9(v1,va) =vi-va — (n X vy)-(n X vy), (10)

where v1 - vo is the usual scalar product, a x b is the cross product, and n is a fixed vector with components n®. Compute
the components of the tensor gog. For which vectors n is the metric g nondegenerate (i.e. det gog # 0)?
(b) Answer the same questions for the 2-dimensional Euclidean space with the metric

g(v1,va) =3vy-va+ (n-vy)(n-va). (11)

Note that the cross product is undefined in the 2-dimensional space.
(c)* Answer the same questions for the metric (11) now defined in an r-dimensional Euclidean space, r > 3.
(d)* Consider a 2-dimensional surface embedded in the 3-dimensional Euclidean space,

z = Rcoshucosv, (12)
y = Rcoshusinv, (13)
z = Rsinhu. (14)

Determine the 2-dimensional metric g, in the basis du, dv.

2.9 Supplementary Problem Sheet 2
Calculations with tensor indices

2A Vector equations

In the following equations, the vector ¢ is unknown and all other quantities are known. The symbol ¢,3, denotes the
completely antisymmetric tensor. Determine the unknown vector x® from the given data. In every case, assume the
“generic” choice of data. This means that every given scalar, vector and tensor is nonzero (k, A4, B?, ...), there are no
accidental cancellations or linear dependence between given vectors, matrices are nondegenerate, etc.

(a) kz® + e*PYx5A, = B (3-dimensional vectors). The assumption of the “generic” case is k # 0 and A, and B,
linearly independent.

(b) eap 2P AY = By, 29C, = k (3-dimensional vectors).

(c) %A, = k, 2° Bg = [ (2-dimensional vectors).

(d) z*Anp = Bp (3-dimensional vectors and a given tensor A,g).



2B Tensor equations

In the following equations, the tensor X is unknown and all other quantities are known. The dimensionality of the
(Euclidean) space is indicated. Determine X®? under the assumption that all given quantities are generic.

(a) X = XPo XBA, = BP X =0, where A*B, = 0 (2-dimensional).

(b) X8 = —xBa x*BA, = BP X*$B, =0, where A*B,, = 0 (3-dimensional vectors).
2C Degeneracy of the metric

(a) A two-dimensional space with coordinates (z,y) has the metric given as a bilinear form
g =vy’dr @ dz + (2° + 1)(dz ® dy + dy ® dz). (15)

Is the metric nondegenerate at all points (z,y)?
(b) The same question for the n-dimensional metric of the form

Jdap = 6a[3 — (1 =+ 7’2) A(,(Alg, (16)

where A, is a given vector and r% = 6a5xaxf3 is the squared Euclidean distance.

3 The Christoffel symbol FZB

3.1 Transformations 1

In flat space with standard Euclidean coordinates £* and arbitrary coordinates z# = x#(£%), the Christoffel symbol can
be found as )
P 0 0w
B gredxB oLV

Derive the transformation law for I'! 5 between arbitrary coordinate systems 2/ and *:

03 007 027 3Pa®_ 03
P7 Qxr OFP Oz OTPOITY Oz

rg, =T (17)
3.2 Transformations 2

Show that the Christoffel symbol must transform according to Eq. (17) not only in flat space but also in arbitrary space.
Hint: consider the covariant derivative of a vector field,

0A, L
App = e — I 5 Au,
and demand that the components A,.g transform as a tensor.
3.3 Covariant derivatives
Derive the explicit form of the covariant derivative
a3
T Yop;v

af
for a tensor field T o

3.4 The Leibnitz rule

Prove the Leibnitz rule in the following specific case,

(AaB?) = Auy B + ALBY.

Hel

3.5 Locally inertial reference frame

o . .
(0w and is symmetric,

Suppose that the Christoffel symbol at a point x?o) in some coordinate system x® has the value I'
Then a locally inertial system at point xy can be constructed by defining the new coordinates

Loy = Yoy

% (z) = 2% — 2y + % ("TN - xﬁ))) (xu - CCl(/o)) Loy

The point z( in the new coordinates is the origin £¢ = 0. Prove explicitly that the Christoffel symbol, when transformed
to the new coordinates, is equal to zero at the point £% = 0.



4 Geodesics and curvature

4.1 Geodesics

(a) Show that the geodesic equation can be written in the following form,

dug  10gpy 5
ds 2 Jx® wu 0 (18)

(b) Show that g,su®u? is constant along a geodesic.

4.2 Commutator of covariant derivatives

Show that
U gy — u%sp = R0, (19)
where the Riemann tensor is defined by
ol'%sg  oI'% - -
Ra(;,yﬁ = W - axﬁ’y + FO‘MF 58 — F‘”‘gﬂl‘ 5y- (20)

4.3 Parallel transport

Consider a vector A, parallel-transported along a small closed curve z#(s). Show that the change in A, after the parallel
transport can be approximately expressed as

1
§Aq = f 7 (x)Apdz” ~ iRéanAé ]{ 2P da?, (21)

where it is assumed that the area within the closed curve is very small.
Hint: Use a locally inertial coordinate system where I'z, = 0 at one point. Also, show that

%xad:ﬂﬁ = —%xﬁdazo‘. (22)

(a) Using the symmetry properties of the Riemann tensor Rags, compute the number of independent components of
R.p+s in an n-dimensional space (n > 2).

(b) Prove the Bianchi identity: R®g~s.0 + R*8oy:6 + R ooy = 0.

(c) Compute the Einstein tensor G* in an arbitrary two-dimensional space. Hint: First determine the independent
components of R,gys-

4.4 Riemann tensor

4.5 Lorentz transformations

Determine the number of independent parameters in Lorentz transformations ## = A¥z®, given by matrices AZ, and
interpret these parameters. Hint: It is easier to consider infinitesimal Lorentz transformations A = 65 + eHf, where
£ < 1 and so €2 can be disregarded.

5 Gravitation theory applied
5.1 Redshift

Calculate the gravitational redshift at the surface of the Earth for the vertical distance of 1m between the sender and the
receiver. Same question for 1 km.

5.2 Emnergy-momentum tensor 1

Rewrite the conservation law 7% 5 = 0 explicitly in the nonrelativistic limit for an ideal fluid, and show that these
equations coincide with the continuity equation and the FEuler equation.

5.3 Energy-momentum tensor 2

The EMT for a massless scalar field is )
T =9%D.g5 — 56"‘5(13;”(1);7.

Show (using the conservation law) that the equation of motion the field is ®*,, = 0.



5.4 Weak gravity

Show that in the limit of weak static gravitational field (goo = 1 + 2®(x,y, 2), and g, is independent of t) the following
relation holds,
Rog ~ AD + O(Cbz) R

where A is the ordinary Laplace operator, A = 0,y + Oyy + 0.

5.5 Equations of motion from conservation law

The EMT for a point particle of mass my moving along a worldline z7(s) can be expressed as
dz* dz¥

1
T = ﬁmo/dSEgd(Zl)(Ig — Z‘U(S)) .

Show that the conservation law T#",, = 0 implies the geodesic equation for z7(s).
Hint: First derive the relations

1 0
'Y, = vV—Y)
! \/—7931‘”( 9)
T, L 9 (V—gTH") +T*H,,T"° .

e T
6 The gravitational field

6.1 Degrees of freedom

Using the scheme developed in the lecture, compute the number of degrees of freedom in the electromagnetic field, taking
into account the presence of charges and currents.

6.2 Spherically symmetric spacetime

Compute the Ricci tensor R and the curvature scalar R for a spherically symmetric gravitational field. Assume that the
metric has the form

e () 0 0 0

0 —ertr) 0

G = 0 0 —r? 0
0 0 0 —r2sin?6

Write the corresponding Einstein equations in vacuum (7, = 0).

Comment: This computation is extremely long when performed by the methods explained in this course (Christoffel
symbols, energy-momentum tensor). There exist faster methods for computing curvature, for example methods based on
the tetrad formalism, but this is beyond the scope of this introductory course on GR. In this course, it would be more
appropriate to ask for an easier computation. For example, to compute the curvature in two dimensions of the metric
g =diag(1,cos? 0), or another diagonal metric in a two-dimensional spacetime.

6.3 Motion in Schwarzschild spacetime

Derive the equation for the covariant component u; of the 4-velocity of a particle in Schwarzschild spacetime (uq () =
—f7Y(r)r, f(r) =1—r,/r). Verify that this equation follows from Eqgs. (23)(26) given in the lecture:

fi2— 792 =202 —r?sin%09° = K (= uqu®), (23)
d , ..

% (—rzé) +r2sinfcosfd? =0, (up) (25)

% (r2 sin? 0(]5) =0, (us3) (26)

where the overdot () denotes d/dA and the spherical coordinates are {202, 22, 2%} = {t,r,0, ¢}.

10



6.4 Equations of motion

Verify that Eq. (30) follows from Egs. (27)—(29) given in the lecture:

1 N 1
—\ o
—e (7‘2 - ’I“) + ﬁ - O7 (27)
A
764‘; =0, (28)
[V 1 1
—€ A<T+T'2)+’I’2:O7 (29)
1 (o L’Q V=N N
¢ <V T3 r 2
. A2

Here the prime (') denotes 9/9r and the overdot () denotes 9/0t.

7 Weak gravitational fields

7.1 Gravitational bending of light

Verify that the gravitational bending of light passing near the Sun is

Ro

R

where R is the distance at which the light passes from the center of the Sun and R is the radius of the Sun.

5 =1.75"

7.2 Einstein tensor for weak field

Derive the following expression for the Einstein tensor due to a weak gravitational field,

1, - _ _ _
G'uu == 5 (fh'ul/’a,a - 5uthB’B,a + h”a’a,v + hal/’u,oz) + O(h2)7 (31)

where h*, = ht, — %6% h.

7.3 Gravitational perturbations I

Derive the expressions (shown in the lecture) for the Einstein tensor G*, in terms of the scalar, vector, and tensor
perturbations of the gravitational field. The background is the flat Minkowski spacetime, (O)gaﬁ = Nag, and the metric is

goo =1+2®, go; = B; +Si, gij = —0ij +2Vo;; +2E;; + F j + Fj; + hyj. (32)

7.4 Gravitational perturbations II

Derive the transformation laws for the scalar, vector, and tensor perturbations of the gravitational field, under an
infinitesimal change of the coordinates,

=t + ¢ (x). (33)

Note: It is convenient to decompose £+ as EF = (50, &+ C’i)7 where £° and ¢ are scalar functions and 517 =0.

8 Gravitational radiation I

8.1 Gauge invariant variables

Verify that the following combinations of metric perturbations, D = ® — ¥ — B+ E and S; — E}, are gauge-invariant.

8.2 Detecting gravitational waves

Light noninteracting particles are situated in the x — y plane in free space. A plane gravitational wave propagating in
the z direction passes through the ring. The metric is of the form g,, = 7., + Ay, where hy, contains only the pure
tensor component,

nz

0 0
A A .
Ry = Al’ —AX+ exp [—iw (t — 2)] . (34)
0

0

o O O O
o O OO
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Describe the deformation of the shape of the ring due to the gravitational wave. Consider cases A4 # 0, Ax = 0 and
AL =0,A4 #0.

8.3 Poisson equation
Derive the solution of the following differential equation,
Ag(x) = dmp(x), (35)

with boundary conditions ¢ — 0 at |x| — oo.

8.4 Metric perturbations 1

Determine an explicit expression for a through TOM, where 0;a represents the scalar part of T°;.

8.5 Metric perturbations 2

Verify that the equation
1 . .
— 5 (8i = F}) = 8nGo; (36)

which follows from vector part of the spatial Einstein equation, also follows from other components of the Einstein
equation and from the conservation law (as derived in the lecture).

9 Gravitational radiation II

9.1 Projection of the matter tensor

The projection operator P;; is defined by

Py =6 —ninj, nn'=1, n;= % (37)
Show that the projected tensor ™ X4 (t, |R|) defined by
O Xik = PiaXapPor — %PikpabXaba Xin(t,R) = /dgr ririToo(t — [R[, 1), (38)
has the following properties,
a) M X, = 0; (39)
b) ™ Xii = O(X |R| ), (40)

that is, (T) X;;, is transverse-traceless up to terms of order |R|_1.

9.2 Matter sources

Verify thafullyt ™ X, = ™ Q;, where ™ X, (¢t — |]§|) is the projected tensor defined in Problem 9.1 and

1
Qi = PiaQabPor — EPikPaanm (41)

1
Qix = /(Tﬂ“k - gfsik ) T% d°r. (42)

9.3 Energy-momentum tensor of gravitational waves

Compute the second-order terms G2 3, L.e. terms quadratic in hy,,, of the Einstein tensor G for small perturbations
in flat space, g, = Nuw + hyw, where only the transverse and traceless part " h;; is nonzero. Verify that the energy-
momentum tensor of gravitational waves in vacuum (T}, = 0 for matter) is

o 1 a 1 i,
Oy = — 2 (69%) = 55 (T ik ) ()
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9.4 Power of emitted radiation

Show that the rate of energy loss (energy lost per unit time) is
dE G G
= _ _ = 200, D0, = _—20. o 44
dt 871'/ sz sz 5 szsz ( )

Here the integration goes over all directions n’ in 2-sphere. In the calculation, derive and use the following relations,

Q1
l,,m — —glm 4
/nn e 3(5 ) (45)
Q1
lL,,m ok, r _ Ilm skr Lk smr Lk smr
/nn nen’ - — —15((5 O 67T 4 67T (46)

10 Sample exam problems

These problems were at some time given at the exams. If some of these problems are again given at an exam, it means
that the professor is not doing his job properly. Professors are paid for teaching, so they must be able to invent new
exam problems each time.

10.1 Metric and curvature

1. A two-dimensional torus with coordinates (6, ¢) is described as the surface

x = (b4 acos @) cosb,
y = (b+acos¢)sinb,
z = asin ¢,

embedded in the three-dimensional Euclidean space with the metric ds? = da?+dy?+dz?. Compute
the induced metric on the torus,

ds® = (...)d0* + (...)dOde + (...) do>.

2. In a two-dimensional space, the basis vectors (in polar coordinates) are e, = %, ey = %a%' Consider

the dual basis of 1-forms w”, w?:
w'(er) =05, where i,k = ¢,r.

Find a function f,.(¢,7) such that the 1-form w” is the differential of f,, that is, w” = df,. Show
that the 1-form w? is not a differential.

3. A metric in a two-dimensional spacetime with coordinates (u,v) is
ds® = du® — u*dv?.
e Transform the line element ds* from (u,v) to new coordinates (z,t) defined by
r =wucoshv, t=wusinhv.
e Determine the curvature tensor R,g,, for this spacetime.

10.2 Geodesics

1. Consider a two-dimensional spacetime with coordinates (¢, x) and the metric
ds® = dt* — e*'da?, (47)

where H is a known constant. Determine the Christoffel symbols and the equation for a geodesic
t(s),z(s). Solve this equation for the case of a light-like geodesic with initial conditions ¢(0) = t,,
x(0) = x¢ and obtain x(s), y(s) explicitly. Hint: Use the property of light-like geodesics,

Gt = 0. (48)
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2. Suppose that the metric in a certain coordinate system {z*} has the form

1 0 0 O
0 911 912 G13
v — y 49
In 0 g21 922 Go3 (49)
0 931 932 gs3
where the spatial components g¢;;(z"), 4,7 = 1,2,3 are arbitrary functions of space and time.

Consider the worldline z#(s) describing a particle with constant values of the spatial coordinates,
1°(s) = s, "*(s) = const. (50)

Is the worldline z#(s) a geodesic?

10.3 Motion in central field

The motion of a particle in spacetime is given by the geodesic equation. For the Schwarzschild metric,
the radial equation of motion is
7+ V(r) = C?,

where "= d/dr and V(r) is the effective potential given by

V(r) = <1—27m> <1+i—z).

The details of the motion are governed by the constants C' and h; they are a measure of the particle’s
total energy and angular momentum respectively.

(a) For what values of h? are there circular orbits? Given that m and h? are positive, show that the
radii of these orbits are always larger than 3m.

(b) A circular orbit will be stable if V”(r) > 0. Show that when there are two circular orbits, the one
with the larger radius is stable. It follows that the other orbit is unstable.

(c) The radius of the unstable orbit gives the position of the potential barrier. In the limit of h > m,
show that the height of the barrier is approximately 2?% Sketch the potential.

(d) A particle coming in from infinity must have C? > 1. What happens to this particle if C? is also
larger than the barrier height? How is this result different from the case in Newtonian gravity?

10.4 Gravitational radiation

A light planet of mass m is revolving around a heavy star of mass M on a circular orbit with radius
R. Assume that the motion of the planet is non-relativistic, the star is approximately motionless, and
both the star and the planet can be treated as point masses.

1. Calculate the period T of the motion of the planet (in the Newtonian approximation). Determine
the power Lgy, of gravitational radiation emitted by the planet using the known formulae

Low = =3 <; Qi;(1)Qy; (t)> ,  where () means time average,

1
Qi;(t) = /d3$ (xz’%‘ - §I25z‘j) p(x,1).
Hint: Assume that the star is at the origin, write the trajectory of the planet as a function xpi(t) and express the
corresponding p(x, t) using d-functions,
p(x,t) = Md(x) + md(x — xpi(t)).
2. Estimate the timescale AT for a significant change in the kinetic energy of the planet due to
gravitational radiation. Express the dimensionless result, AT'/T', in terms of the ratios M/m and

R/Rs, where R, = GC—2M is the Schwarzschild radius of the star. Estimate the value AT/T for the
orbit of the Earth around the Sun (M/m ~ 343000, R, ~ 3km, R ~ 1.5-10"m, T' = 1 year).
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Part 1T
Solutions

1 Coordinates and 1-forms

1.1 Invertible transformations

The inverse function theorem guarantees that the equations £* = £%(x) are solvable near a point z if det (9*(x)/02”) #
0 at z¢. Under this condition, the coordinate transformation is invertible at xy. Note: we are inverting not just one
function £ = £(x), but we are determining = from a system of n equations, say £*(z) = C, where C' are n given values.

1.2 Examples of coordinate transformations

1. a) Since z = u (1 + v2) +u3/3, it is clear that = has range (—o0, +00) for any fixed value of v as u varies in the range
(—00,400). Similarly, y has the range (—oo,400). To verify that the coordinate system (z,y) covers the entire plane,
it is sufficient to show that x has the full range at every fixed value of y. It is sufficient to consider yo > 0 (else change
v — —v). At fixed y = yo > 0, we have yo = v + vu® + v3/3 and thus the admissible values of u are from —oo to +oo,
while the admissible values of v are from 0 to v = vyax such that yg = vmax + %v?nax. Then

1,3 1,3
[yo —v — 20 0— UV — =V
u == Y707 5% (we havey7320f01r0<v<vmax)7
v v

1,3 1.3
y0v3v> Yo — v — 5V

3v v

x:i(1+v2+

2 8 Yo Yo — v — 103
S (R O Y e R
(3 + 9 31)) v
We have now expressed = as a function of v, i.e. x = z(v). When v varies from 0 t0 vpmax, 2(v) varies from +oo to 0.
Since z(v) is nonsingular for v > 0, it follows that x has the full range. Therefore, the coordinates (x,y) cover the entire
two-dimensional plane.
b) The coordinate transformation is nonsingular if

d(z,y)
det 0
w0 7
Compute:
Oz 9y 1+ u2 + 0?2 2uv
u U —
det( % %% ) det( 2uv 1+ u? 4+ 0? ) (51)

:1+2(u2+v2)+(u2—v2)2>0.

Therefore there are no singular points.
2. a) To determine the range, first consider ¢ = 0. Then 2 = rsinh @, y = 0, z = rcosh §. It is clear that 2% — 22 = r2.
Since r > 0, the coordinates (x,y, z) cover only the domain |z| > |z|. With arbitrary ¢, it is clear that the coordinates

(x,y, z) cover the domain |z| > /22 + y2.
b) Compute the determinant:

sinh@cos¢ rcoshfcos¢ —rsinhfsing
det | sinhfsin¢ rcoshfsing rsinh6cos¢ =72 sinh 6.
cosh 6 rsinh 6 0

The coordinates are singular if » = 0 or 6 = 0.

¢) The singularity at » = 0 is due to the fact that the set {r = 0,0, ¢} corresponds to a single point x =y = z = 0.
This is similar to the singularity of the spherical coordinates at » = 0. Points along the cone |z| = /22 + y? are not
covered because they correspond to 8 — oo, r — 0. The singularity at § = 0, r # 0 is due to the fact that the set
{r,8 =0, ¢} corresponds to the point x =y = 0, z = r at fixed r # 0. This is similar to the polar coordinate singularity.

3. a) To determine the range, note that rsin @ > 0 for the given range of 6 and r. However, this is immaterial since the
factors cos ¢ and sin ¢ will make x,y cover the full range (—oo,4+00). The coordinates (x,y, z) are a slight modification
of the standard spherical coordinates. These coordinates cover the whole space (z,y, z).

b) Compute the determinant:

—sinfcos¢p —rcosfcos¢g rsinfsing
det | —sinfsing —rcospsing —rsinfcos¢ | =r2sinb.
cosf —rsinf 0
This is nonzero unless 7 = 0 or § = 0.
c¢) The singularities are completely analogous to those in the spherical coordinates.
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1.3 Basis in tangent space

Suppose that the vectors e, = a% are linearly dependent, then there exist constants ¢, not all zero, such that the vector

c®e, equals zero. Act with this vector on the coordinate function 2':

1 1 1

=c*—x =c.

ox«

By assumption, c®e, = 0, therefore ¢! = 0. It follows that every c¢® equals zero, contradicting the assumption.

c*e,T

1.4 Differentials of functions as 1-forms
d(z) = dz, d (2?) = 2xzdz,
d(zy) = ady + ydz,  d(z+y) =dz+dy,
d (422y + 2°2) = (8xy + 32%2) da + daPdy + 23dz,  d (3\/W> _ g%dz +ydy

Now let us compute dh by first finding

dr+d
d (arctan (x £ y)) = xiyw
1+ (xtvy)
2x 1 2dx 4z (zdx — ydy)
d | arctan —5—- = 472 2_2_1 (2.2 2
2 —y? -1 L+ ey |27 7Y (z2—y?2-1)

-2 (2? +y? + 1) do + daydy
(22 — y2 — 1) + 422 .

Adding these together and noting that
(1 + (2 + y)2) (1 +(z— y)2) = (@22 —1)" + 422,
we get

2z
dh =d t t - tan ———— | = 0.
(z,9) (arc an (z + y) + arctan(z — y) + arctan PR 1> 0

This means that h(x,y) is a constant. By using the tangent sum rule, we can easily show that h(x,y) = 0.

1.5 Basis in cotangent space

Note that the relation
aze, 2N — g
T LB) T OB

is the definition of how the 1-form dz® acts on vectors 9/0x%. Now, it is clear that any 1-form is decomposed as a linear

combination of the 1-forms dz!,...,dz™. It remains to show that all these forms are linearly independent. If this were

not so, there would exist a linear combination c,dz® = 0 such that not all ¢, = 0. Act with this on a vector §/9x! and

obtain 5 5
0= <0, 81;1> = <Cad$ ,axl> =C1.

Therefore ¢; = 0. Similarly, we find that every other ¢, = 0, which contradicts the assumption.

1.6 Linearly independent 1-forms
1. Two 1-forms d(e® cosy), d(e” siny) are linearly independent for every z,y because
d (€” cosy) = e” cosydx — e” sin ydy,
d (e” siny) = e sinydx + e cos ydy,

and the following determinant is always nonzero,

x . P
det( e’ cosy e’siny > _ 2 L),

e’siny e*cosy
2. Two 1-forms (1 + y)dx — 2zydy, 8dx are linearly independent if the following determinant is nonzero,

1+y —2zy \
det< 8 0 ) = 16zy.

This happens for xy # 0.
3. Three 1-forms dx + dy, dx + dz, dy + dz are always linearly independent.

4. Three 1-forms dz — dy, dy — dz, dz — dx are always linearly dependent (their sum is zero).
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1.7 Transformation law for 1-forms

The transformation law for 1-forms,
oz
di* = —— da”,
Oxf
under a coordinate transformation z® — ® = (2?), is merely a different interpretation of the definition of the 1-form
dz™ (see Problem 1.4), where Z(z) is considered a scalar function in the coordinates {z”}.

1.8 Examples of transformations

a) First compute dz and dy:

dr = (1+u® +v%) du + (2uv) dv,
dy = (2w) du + (1 + u® + v?) dv.

Then it is easy to compute xdx + ydy,etc. For instance,

1 detdy (du+dv)(1+(u+v)2>

TH @ g (14 o)

5-
b) The component transformation matrix is given in Eq. (51).

1.9 Supplementary problem sheet
1A Tangent plane

If the tangent plane is at angle o with the horizontal, then the acceleration is gsin a (from elementary mechanics). Since
0 <a < 3, we need to maximize « or, equivalently, tan a, which equals

82’ T’h 1.2 -2
o = o2¢ 30T = a2 42

The maximum of dz/0r is at 1y = o. For example, a point with maximum acceleration is 2o = o, yo = 0, 290 = —he™ 2.
The tangent plane at a point (2, Yo, 20) is given by the equation

nx($—$0)+ny(y—yo)+nz(2—20)207

where (ng,n,,n,) are the components of the normal vector,

0z 0z
(nmvnyanz) = ((956782]71)

Therefore the equation of the tangent plane is

1B Induced metric

The induced metric is found by taking the expression for the bulk metric, ¢ = dz? + dy? + dz?, and computing dz, dy, dz
through the forms df and d¢:

dz = 2asin 6 cos 0 cos ¢df — asin’ 0 sin ¢do,
dy = 2asin 0 cos 0 sin ¢df + a sin? 6 cos ¢do,
dz = 2a cos 20d6.

Therefore
g = da® + dy? + dz* = a®dh* + a* (sin 9)4 do?.
The metric is degenerate at § = 0 and § = 7. The singularities at these points are not merely coordinate singularities
that disappear when choosing a different coordinate system; but the reason is subtle.
To figure out the nature of these singularities, let us visualize the surface in a neighborhood of # = 0. The y = 0
section of the surface corresponds to sin¢ =0, so ¢ =0 or ¢ = w. Then

1 — cos20 7:&1—\/1—422
2 B 2 '

This is a union of two circles touching at x = z = 0. Hence, the surface is a torus with zero inner radius, i.e. intersecting
itself at x = y = 2z = 0. The rotational symmetry around the z axis leads to a “cusp” at 6 = 0: the surface has a sharp
corner and the metric cannot be made smooth and nondegenerate by any choice of local coordinates. The situation near

0= g is similar.

r=+sin’f, y=sinfcosh, z=-=+
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1C Embedded waves
The surface is defined by

CcoS v sinv CcoSu
r= ——m8 — - L=

\/ifsinu7 Y \/ifsinu’ \/ifsinu'

1. For y = 0, we have v = 0 and thus

1 cosu
T = z=

V2 —sinu’ V2 —sinu

To visualize this line in the (z, z) plane, we eliminate u from these equations and find

1 2
sinuz\f—;, (x—\/i) +22=1.

Therefore the line is a circle of radius 1 centered at (x = \@, z = 0). This circle does not intersect the z axis since

-1
V2 > 1. Now we see that (z,y) is obtained from (\/i —sin u) by multiplying with cosv and sinwv. Therefore,
the full surface is a rotation surface, where we need to use the z coordinate as the radius. Therefore, the figure in
the (z,z) plane needs to be rotated around the z axis. The resulting surface is a torus. It may be described by the

equation
(\/m_\/i)QJrz?—l:o.
Note that
Va2 +y? = # > 0.
V2 —sinu
Also

Va2 F 2 —V2 = 1-V2(V2—sinu) _ v2sinu—1
V2 —sinu V2 —sinu

2. Since the surface is now given by an equation of the form F'(z,y, z) = 0, the normal vector (up to a constant factor
() can be found as

foZ a2 [oZ & a2
(Ng,ny,n,) = a—F,a—F,a—F —c[2V® ty ﬁx,? Y \/iy,Zz .
Ox’ Oy’ 0z /22 + 42 /22 + 42

22 + y? (this factor is chosen for simplicity), we have

(N, My, M) = (m (\/mQ +y? - \/5) Y (\/xQ +y? - \/5) , 2/ 22 +y2) :
Expressed through the coordinates (u,v), this becomes

V2sinu—1 . V2sinu — 1 Ccos U
Na = (Ng, Ny, Nz) = | cOSV ,sinv .

(\/i—sinu)2 (\/E—sinu)27 (\@—sinu)2

The equation of the tangent plane at point x is

Na (:EO‘ — mE"O)> =0,

Multiplying by C' =

where n, must be computed at x = xg.

3. We compute

Or  cosvcosu or sinv
ou (\/E—sinu)27 v ﬂfsinu’
dy sinwvcosu dy cos v

du (V2 —sinu)’’ v V2 —sinu’
0z 1—+2sinu 0z

—=—7, — =0
ou (\/5 — sin u)2 v
Now we can expand
dx = %du + %dv etc
- Ou ov '
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Therefore the induced metric is

g =da’ +dy’ + dz* =

2
3 1 —+/2si dv?
cos? ; n f .bln u2 du? + v. _
(\/§ — sin u) (\/5 — sin u) (\@ — sin u)
du? + dv?

(\/i — Sinu)z.

The vector V* = (cosv,sinv) is not a unit vector because

2 2
g(V,V)ZCOb U-i-.bln;}: 1. 2#1
(\@ — sin u) (\@ — sin u)

The Cartesian components of the vectors 9/0u, 9/0v are found from

0  Ox(u,v) 0 | Oy(u,v) 0  0z(u,v) 0 0 _ Ox(u,v) 0  9Oy(u,v)

P
i ou 0z ou oy ou 92 v ow oz ov oy ov 0z

Therefore, the vector V¢ has the following Cartesian components,

V:cosv(— sin v 0 cosv 8)

7_’_ -
V2 —sinudr /2 —sinu 0y
. cosvcosu O sinvcosu O 1—+2sinu 9
+sinv 72(9*4— 2874— 29,
(\/ﬁ—sinu) x (\/ﬁ—sinu) Y (\/i—sinu) z
. sinu+cosu—+v2\ 9 sin?vcosu + v2cos?v — sinucos?v ) 9
= SIn v COS v 5 a——l— 3 8—
(\/5 — sin u) € (ﬁ — sin u) Y
1—+/2sinu 2
(\/i—sinu)Qaz'

This vector is within the tangent plane because n,V® = 0,

V2sinu — 1

na VY = cosv—— 5 sinv cos v
2
(\/5— sinu)

+sinv

sinu + cosu — \/§>
(\@—sinu)2

V2sinu — 1 <sin2vcosu+\@cos?vﬁsinucos%z)

(\/i — sinu)2 (\/ﬁ— sinu)2

Ccos U . 1—\/§sinu

+ 5 SIN v 5
(\@ — sin u) (ﬂ — sin u)

+ sinwv

(after simplification) = 0.

2 Tensors

2.1 Definition of tensor product

a),b) A direct calculation using the property (dz’,d/0z*) = 5j gives:

0
(w1, v1) = <dx + dey’38x> =3, etc.

The results:
T(Vl, V1) = O, T(Vl,Vg) = 6x.
c) d) First, show that the sum of two linear functions is again a linear function: If A(x) and B(x) are linear functions,
ie. if
A(x+ \y) = A(x) + MA(y)

and likewise for B, then A+ B obviously has the same property. Now, since a tensor is defined as a multi-linear function,
it is clear that tensors form a vector space.
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2.3 Example of tensor

a) An obvious example of such T is the vector product, T'(u, v) = ux v, defined in three-dimensional space. To determine
the rank of T, we need to represent 1" as a multilinear number-valued function of some number of 1-forms and vectors,
e.g. A(f1, ..., £, v1,...,vs). It is clear that T'(vy,va) itself is not such a function because it has vector values instead of
scalar (number) values. So we need to add a 1-form to the list of arguments. We can define

A(fr, vi,ve) = (1, T(v1,v2))

and then it’s clear that A is multilinear. Therefore T is a tensor of rank 1+2.
b) The calculation may go as follows. We need to determine the components T7., such that

[T(u,v)]* =Tg u’v?
So we rewrite the given definition of T'(u, v) in the index notation, e.g. like this:
[T(u,v)]* = 2%, 07 —u®ngoP.

Now we would like to move u?vY out of the brackets and so determine Tﬁ“,y. However, the expression above contains

u®v? instead of uPvY. Therefore we rename the index 3 to v and also introduce a Kronecker symbol 03, so as to rewrite
identically
u“ngv? = uﬁv”’nvég‘.

Therefore

[T(u,v)]* = 2e%,u’v" — uPv'n 05 = (265, — ny05) w7,
1§, = 2e%py — n,03.

2.5 Contraction of tensor indices

a) Using the definition of a tensor as a multilinear function, it is easy to show that linear combinations of tensors are also
multilinear functions. Tensor products and contractions are also multilinear. The arguments are much simpler than the
proof of tensor transformation law for components.

b) Contracting two lower indices, e.g. Thag, gives components of a quantity which is not a tensor because these
components do not transform correctly under changes of basis. If T,,ng were a tensor it would transform as

Ox™

foor = 5

T,uu)\-

However, this does not agree with the contraction of the tensor Ty, which transforms as

Oz dxt Oz
OF 0FB 0Fv M

Taﬁ’y =

The contraction over o = 3 yields

- 833)‘ &r” é)x

¢) Calculation gives
T% = 2%y — Ny 0 = —3ny

because €“o, = 0 and 5 = 3.

2.8 Examples of spaces with a metric

a) We perform the calculation in components,
g(u, V) = UV 5aﬁ’y€ Ap U'anv)‘n“

We would like to write g(u,v) = gaﬁu“vﬁ, where g,g are the components of the metric tensor. Using the known identity
for the e-symbol,

EapyE an = 0pA0yu — 030y,
we find

g0, v) = ugv® — (3526, — 05, 040) uPn v n#

= Un U~ — u)\fu)‘n#n“ + uAn’\vun“.
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Denote n? = n,n* = g(n,n), and then we need to relabel indices such that v®u” can be moved outside the parentheses.

The result is

g(u,v) = (5a5 - n25uﬂ + nanﬁ) U,

Therefore
Jap = (5a5 — 77,25&5 + nang.

To analyze the conditions under which det go3 # 0, we can choose an orthonormal basis such that n, is parallel to the
first basis vector. Then the components of the vector n in this basis are (|n|,0,0) and the matrix g,g has the following
simple form:
1 0 0
Gap = 0 1-— n2 0
0 0 1 —n?

Then it is clear that det go5 = (1 — n2)2. Therefore, the matrix g, is nondegenerate if n* # 1.

b) Similar calculations give
3+n% 0
Je8 =\ 0 3 )

Therefore the determinant of g,g is always nonzero.
c) Considerations are analogous to b), except that the size of the matrix g, is larger.
d) The metric is (dz)® + (dy)® + (dz)°, and we need to express dx, dy, dz through du and dv. A calculation gives

g = da® + dy* + dz* = R? (sinh® u + cosh® u) du® + R? cosh® u dv?.

2.9 Supplementary problem sheet

2A Vector equations

a) The equation contains two given vectors A, and B,. The solution z, can be found as a linear combination of A,,
B, and the cross product aagﬂ,Aﬁ B with unknown coefficients. Using vector notation, we have

x=aA+B+~v(AxB).
Substituting this expression into the given equation,
kx +x x A =B,
and using the known identity
(AxB)xC=B(A-C)—AB-C), (52)

we find
Aka—A-B)+B(kS+A-A-1)+(AxB)(ky—p8)=0.

On purpose, we write this equation in the form of linear combination of the three vectors A, B, and A x B. Since we
are considering the generic case, these three vectors are independent and so each of the coefficients above must be zero:

kae—A-B=0, kf+A-A-1=0, ky—p5=0.
Solving this system of equations, we find (assuming k # 0 in the generic case)

_A'B

C1-A-A 1-A-A
k b - - 5 — T 19 -

kj ) ,-Y k2

«

B
b) We have in vector notation
xxA=B, x-C=k.

Multiply xC:
(xxA)xC=BxC.

Simplify using the identity (52),
Ax-C)—x(A-C)=kA-x(A-C)=BxC.

Therefore
_kKA-BxC
*“TAC
¢), d) The equations have the form ro Mg = Ag, where Mg is a matrix and Apg is a known vector. The solution is
x = M~'A, where M ! is the inverse matrix (it exists in the generic case).
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2B Tensor equations

a) Since the vectors A, and B, are a basis in two-dimensional space (they are nonzero and orthogonal), then the
symmetric tensor X*? can be written generally as

XP = fA*AP 4 g (A°BP + APA*) + hB*B”,

where the coefficients f,g,h are unknown. It remains to determine these coefficients. Using A,B% = 0 and denoting
A%A, = |A|27 we get the system of equations

X*PA, =B = [|A?A° +g|AP B = B”,
X6a5=0 = flA”+h|B*=0.
The result is g = |A\72, f=h=0,s0
xop _ AWBY+ BoAT
4]

b) An antisymmetric tensor X*# in three dimensions can be always expressed as
XoB = gof Ty,
where u, is an unknown vector that we need to determine. We can now rewrite the conditions on X “8 in a vector form,
X*A,=B° = uxA=B
X**B,=0 = uxB=0
It follows that u is parallel to B and then the condition ux A = B leaves the only solution u = 0, and therefore X% =0

is the only admissible solution.

2C Degeneracy of the metric

a) The metric can be written in the basis {dz, dy} as the matrix

B y2 1+$2
9= 1422 o0 '

The determinant of this matrix is — (1 + :102)2 which is always nonzero.
b) In the basis where A,, is parallel to the first basis vector, the vector A, has components (4, 0,0,0,...) and therefore
the metric gog has the form
-2 0 0
0 10
0 01

The metric is degenerate if » = 0 (i.e. at the origin).

3 The Christoffel symbol

3.1 Transformations 1

We are considering a flat space where Euclidean coordinates exist. Suppose {z®} and {Z“} are two coordinate systems,
while {€*} is the standard Euclidean coordinate system. The Christoffel symbols are defined as

FH = ﬂ%
B gredxB oLV’
. 82£V Ot

“ = DFa0RR 087

The relationship between I' and I" can be found as follows. Assuming that the functions (%) and also Z*(z) are known,
we may express the partial derivative operators using the chain rule,

0 oo
Axk Ozt HF’
g 0z 0

dzh 9Tk P
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Also we can express
ozt ozt oz
oy Oz ogv’

Therefore we can calculate fgﬁ (when FZB is known) as follows,

p_gmar (or 0\ (00 0,
B gxA 9y \ 03 Oz 0zP Oxd

ozt oz [9xY 0z  9%¢” D%z’ oL

~ x> dgv [a:z:a 9P dx19x | DIPOIY 8:175}

9t 97 920 O*x®  OFH 92> 9¢¥

= 9 050 937 0 T 93905 01> 0€” 9
OFH Oz dx® _ 0%z Ozt

= 927 070 028 1 ' 9EPOL O™

Note that the Euclidean coordinate system £” is not needed to determine the transformation of I'.

3.2 Transformations 2

Consider a vector field u*. Assume that V,u" obeys the correct transformation law for rank (1,1) tensors,

b 03
0P Oz’

V,ut = (@aﬂﬁ)
and substitute

0
n= I e
Vout = ut + T8 u®,

ox¥
vV, it = iﬁu +TH o
1% - ai’” av °
We can now express I' through . Note that
0z 9P
oxP ozr

because the matrices are 93 /9x” and dx”/0F" are inverse to each other. The result is

VP Ox® OxP 0T 0xvOTP Ox® OxP’

\ -
Iy =T

3.3 Covariant derivatives

The rule is that every upper index gets a +I" and every lower index gets a —I'. Each term with I' replaces one index in
the original tensor by one of the indices in I'. Therefore we can write the answer as

Taﬁwéu;u = 6uTaﬁ76u + F?\éuvaéu + Fguvaéu

- Ff\,uTaﬁx\tSu - Fg\uTaﬁw\u - F,iuTaﬁ'yéA

3.4 The Leibnitz rule

Perform an explicit calculation,
Aay B+ AuBY, = B (0,40 =T AN) + Aq (0,87 + T3 BY)
B A
(AuB”)_ =0y (AaB”) =T}, AaB’ + 5 A.B .

Y

This proves the required property.

3.5 Locally inertial reference frame

In this problem (unlike problem 3.1) the coordinate system {£*} is not a flat Euclidean coordinate system, but it is just
a coordinate system which is like Euclidean at one point. Now we want to use the formula (53), which will enable us to
compute the Christoffel symbol I' in the coordinate system &, given the Christoffel symbol T in the original coordinate
system {z®}. To use that formula, we need to compute some derivatives. Denoting {z*} = {£*}, we find

aiﬁa a Vo @ a
o5 = 05 + (o = ol ) 05Ty = 05 + (2" — ally ) Dlopuee
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The inverse derivative, 9z /0%, can be found by inverting this matrix; the result can be found simply by assuming that

ox® . ‘ )
97 = (53 + (x/ — x?o)) AZ,B + O ((x — x(o)) ) ,
where Azﬁ is an unknown matrix. So up to quadratic terms we find
oz™ o N )
278 — 06~ (xﬂ - x?O)) Lloyus + 0 ((# = 20)7)-
Therefore s2h
x A
5579 — Lie, 0 (@ —2@).
Finally, we find
= OFH Oz 0xd _ 0%z oxk

a8 = 9ur 9zo 078 1 T 978077 O
= Fgﬁ — F,(Lo)ab’ +0 (x - CE(O)) .

At = 9 we have Fgﬁ = F?O)aﬁ' It follows that the new Christoffel symbol is equal to zero at x = xg.

Alternatively, one can use the transformation law for the Christoffel symbol in the inverse direction, I' = T'... 4 ...,
i.e. one denotes {2} = {¢%}, {2} = {2*}. This has the advantage that only derivatives 9*¢/0x0z need to be computed,
and not the derivatives §%x/9£0€. Since all derivatives only need to be evaluated at @ = x¢, the first-order derivatives
0x/0¢ at x = x¢ can be found as the inverse matrix to 9¢% /02" = 5, ie. 0z /0EP = d5. This considerably simplifies
the calculations.

4 Geodesics and curvature

4.1 Geodesics

(a) Note that d/ds is the ordinary (not “covariant”) derivative in the direction of u®. The geodesic equation can be

rewritten for the 1-form u, as

du
W ttayy =0 = T; - Ffwuﬁ?ﬂ.

An explicit formula for ng yields

1
nguﬂ“’y =TI avuﬁ“’y =3 (9ary + 98v,.0 = Gar,8) w .

Note that gga,y — gay,s is antisymmetric in (8 <> v). Therefore these terms will cancel after a contraction with uPur.
The remaining term yields

1
I‘gwumﬂ = égagﬁuﬂu"’.

b) We give two derivations; the first one is direct and the second one uses the property (a).

4.1.1 First derivation

Note that p

7 (gapuu?) = u” (gaguauﬁ)ﬂ
where we must use an ordinary derivative instead of the covariant derivative (according to the definition of d/ds). So we
find

u” (gaguauﬂ) L= gagy.yuauﬁu” + 29a5uau7uqy

)

Now we need to simplify an expression containing u{i/. By assumption, the derivative of the vector field u® satisfies

d
—u® + nguﬁzﬂ = u"’u?fy + Fgwuﬁu“’ =0

ds
1
=ulug + §9a)\ (9 Gy — Guryn)
Therefore
uau’yu% = _iuagcw\ (g)\;L,’y + 9y — gu'y,)\) ulut
1 1
= —§u)‘ (9ruy + Gayop — Guan) W ul = —§g>\#ﬁu/\u“u7.

What remains is a straightforward computation:
u” (gaﬂuauﬁ) L= Jop A uuPu? + 2ga5uo‘u7ug
= gapuuPur — gy, ututu?
=0.
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4.1.2 Second derivation
We write p p
ds (gapuu?) = ds (9% uaug) = ug™ suaus + 29" ug yupu’.

Now we need to express uq ,u? = du,/ds. To do that, we use the property derived in (a),

du 1
and find 5 5
dg® dg® dgnx
% <ga5uau5) — ZTU‘;‘U/B _’_gaﬁg)\%aukuﬂuﬂ — I UaUp + zS’Y )\
It remains to express the derivative of g®? through the derivative of Jgag- We use the identity
d d
=—(62)=0
dS (g gB'Y) ds ( ’Y) )
thus 5 5
dga dgﬁ’Y aff dga dg)\ll al B
[ = —— - — = M
ds 96 ds g ds ds “as Y
Therefore 5
dg® d A d A
St = =m0 ey = =g
and thus

d «
s (g ﬂuauﬁ) =0.

4.2 Commutator of covariant derivatives

First compute
ujp =u+ Fg)\u)‘,
why = (u + Thaut) |+ T, (uh + D) = T4, (us, + Tiyu?)

m
= ufpy + i + T, + Tl + T Thu’ = T uf,.

Since we want to compute the commutator Ugg, — Uz g, We can omit the terms that are symmetric in (8 <> ). These
terms are the following:

« YUY
Tl + T3 Ty i

py ¥ B’
The remaining terms are
A A ..
upy = TGy yu + T Thyu” + (symmetric in 8 < ),

which yields
A A
Uy — Uy = U (Fgﬁw IR+ Thsl5 Fivrgu) =u RS, p-

4.3 Parallel transport
The parallel-transported vector can be represented by a 1-form A,(s) such that
dA,, dx”
ds ds
However, the closed curve is assumed to cover only a very small neighborhood of one point zg, so we can approximate
A, by a constant, A, (zg), along the curve. Therefore

SA, = j{ d4q f I%_(2) Ap(x)da™ ~ Ag(ao) j{ I8 (2)da”.

Now, in a locally inertial system at z( we have ng (zo9) = 0. Therefore we can Taylor expand Fg,y () near zg as

agApu’ =0, u’ =

Fg,y(x) = (2* _IO)FBV/\ + 0 ((z — z0)?).

Therefore
dA, ~ Ag(xg) %FimA (z* — ) da” =~ A,@(wo)r'g,y’)\($o)%x}\dl"y,

where we have again approximated Ffm , () by its value at 2 = x¢, and also used the identity § dz7 = 0. Further,

%d (az”:r)‘) =0= j{:ﬂdaz)‘ + %I)‘dx“’.
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Therefore we may rewrite

1
SAn e AP | j[ Do’ = A5 (05, -0, j'{ 2z

L Rs A
= iAgRaM]{;E dx”.

4.4 Riemann tensor

a) It is more convenient to consider the fully covariant tensor R,g,s. This tensor has the following symmetries,

Raﬁ’yzs = _Rﬁa'yé = _Raﬁé'ya (54)
Raﬂ'yé + Rﬂ'yaé + R’ya,@é = O, (55)
RQBA/[; = R'yéaﬂ- (56)

However, it is known that the property (56) follows from (54)-(55), therefore it is sufficient to consider these two properties
[note that (55) does not follow from (54), (56)]. Let us first consider the property (54). For fixed 7, d, we have that Rags
is an antisymmetric n x n matrix (indices «, 8). This matrix has %n(n — 1) independent components. Likewise for fixed
a, 8. Therefore, the number of independent components of R,gs is reduced to

1

= [ 1]

Now we use the property (55). Let us see whether the property (55) is nontrivial at fixed §. If « = ~, then the
property (55) becomes
Ropas + Raaas + Raaps =0 (no summation),

which is already a consequence of (54). Likewise for § =« or for a = 3. Therefore, the property (55) is a new constraint
only if all three indices a, §, v are different (i.e. o # 8, a # 7, B # 7). Suppose that «, 3,7 are different. There are

Ny = én(n —1)(n—2)

choices of such «, 8,7. Therefore, for each 6 = 1,...,n we obtain N> additional constraints. Finally, let us check that
every such constraint is nontrivial for every § (even if ¢ is equal to one of «, 8,7). Suppose § = «, then (55) becomes

Rogya + Rgyaa + Ryapa =0 (no summation).

This is a nontrivial constraint (equivalent to Rogay = Rayap). Therefore, the number of constraints is nNo, and thus
the total number of independent components of R.g4s is

n? (n2 — 1).

N =N1 —nN; =
12

b) Weinberg, Chapter 6, §8
c) There is only one independent component of Rqg,s in two dimensions. For instance, we can choose Ri212 as the
independent parameter. Then we can express the Ricci tensor as

Raﬁ = g/\NR)\a;L[ﬁ~
Calculating component by component, we find

Ri1 = ¢ Riz1a, Ria = —¢"Riz12, Rao = g"' Rizro,
R=g""Ras = (2¢"'¢°* — 29"%¢*") Ri212 = 29 R1212.

<gz2 _912>
—giz gl

is equal to the inverse matrix to g®? (which is Jap), multiplied by the determinant det g“%; since det g*® = 1/g, we have

22 12
g -9 _
( 7912 g“ ) 99ap-

Note that the matrix

Therefore

1 1
Gap = Rap — §gaﬂR = 99apR1212 — §gaﬂ29R1212 =0.
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4.5 Lorentz transformations
A Lorentz transformation is represented by a matrix Af such that
AfAﬁgag = 9rp-
Consider an infinitesimal Lorentz transformation,
2 =03 +eHS.

The number of parameters in Lorentz transformations is the same as the number of parameters in H. The condition
for HY is
B B
(0% +HR) (8, +HL,) Gap = Ian:

Disregarding terms of order £2, we find
0 =07 HSgap + 6\ H) gap = Hux + Hay.
Therefore, H), is an antisymmetric n X n matrix, which has %n(n — 1) independent components. For n = 4 we get 6
components. These can be interpreted as three spatial rotations and three Lorentz rotations (boosts).
5 Gravitation theory applied
5.1 Redshift

In the weak field limit, the Newtonian gravitational potential near a mass M is

GM
P =—
r
while the component ggg of the metric is
20
goo =1+ ?

(We write the units explicitly.) Therefore the redshift factor z(r) at distance r from the center of the Earth is

/ 2GM GM
#(r) + cr + cr

To compare the redshift factors at the surface of the Earth, denote by Rg the radius of the Earth. We know that the
gravitational acceleration at the surface is

GM m
= ——~981—.
9B RZ, 82

Therefore, it is convenient to express GM = gpR%. For a vertical distance L between sender and receiver, we find

#(Rg) _  l+gpRpc® |4 9Elte (1 __Rg > _ geRpL
2(Re+L) 1+gpRpe 2z, c? Rp+L (Rp+1L)

Since in our problem L < Rpg, we may approximate

z(RE)

geL L
——xl+ =14+ 11—.
2(Rg+ L) * c? +

1016m

5.2 Energy-momentum tensor 1
In the nonrelativistic limit, we may disregard gravitation; gog = 743. The EMT of an ideal fluid is
7% = —pi” + (p + p) u®u”,
where u® is the 4-velocity vector of the fluid motion. In the nonrelativistic limit, u® ~ (1,7), where ¥ is the 3-vector of

velocity and |0] < 1 in the units where ¢ = 1.
The conservation law is

0=T%45=—p*+(p+p)guv’+(p+puu’s+{p+pu gu’.
Let us simplify this expression by introducing the time derivative along the fluid flow,

d

— =u%0,.
at
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Then we find
0=—p*+u (p+p+(p+p)u’s)+(+p) i (57)

Contracting with u, and using u,4* = 0, we find
p+(p+p)u’ 5=0. (58)

This is the relativistic continuity equation. Using this equation, we find from Eq. (57) that

0=—p*+u*p+(p+p)u® (59)
Now let us apply the nonrelativistic limit, u® =~ (1, ¥), to Egs. (58) and (59). In our notation, for any quantity X we
have p 9
X=—X=_X+(7-V)X.
aX =XtV

The continuity equation (58) gives

d

d—? + (p+ p) divi = 0.

This is the ordinary, nonrelativistic continuity equation.! Finally, Eq. (59) gives

Vp+ 0p+ (p+p)v=0.
(Note that p9 = —V7p.) This is the Euler equation,
dv 1 - dp
—=—-Vp—-v—|.
it p+p < P vdt)
5.3 Energy-momentum tensor 2
Compute the covariant derivative,
af o $9¢1 1 afB i\
T ., = | PP — 59 NPy
HeY

= q);a;aq);ﬂ + (p;oc(p;ﬁ;a _ gaﬂq);&p;)\a
= 3,00

Here we used ®.,3 = ®.3, which follows from Fé\t 5= Fga (note that @ is a scalar; covariant derivatives do not commute
when applied to vectors!) and also the property

P XY = DX,

which is due to gng,, = 0. Therefore, we get
Q;a;aé;ﬁ =0;

this entails ®*,, = 0 (since @ = 0 is a weaker condition than @2 = 0, i.e. if ®¥ = 0 then also ®*, = 0, so it is
sufficient to write the latter).

5.4 Weak gravity

A very short solution is to write Roo directly through I' and note that only I'f, , comes in (if we disregard terms of
second order). Then compute I'§, explicitly through ®. (Assume that goz,0 = 0.) We may disregard terms of order I'T
because I" is of order ®, and also we may raise and lower indices using 7, instead of g,,. (This is somewhat heuristic;
see below.) The calculation goes like this:

Roo = I'Go,0 = I'Gao +O(I'T),
00 = %Uaﬂ (90s.0 + gpo.0 — goo.5) = —n*’® 3,
therefore (using ® ¢ = 0)
Roo = —1%P® 45 = 00 = — Do+ P 1y + P oy + P33 = Ad.
Here is another, somewhat more comprehensive solution. In the weak field limit, we write

Juv = NMuv + h,uy-

INote that in the usual, nonrelativistic continuity equations as they are written in most books, there is no p + p - just p. This is so
because in most cases the matter is nonrelativistic, so p < p and p + p = p. This is, however, not true for relativistic matter, such as photons
(electromagnetic radiation) for which p = %p.
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Then we only compute everything up to first order in %,,. Therefore, we may raise and lower indices using the Minkowski
metric 7,5 instead of gag.

Note: the Newtonian limit does not determine the components of g,,,, except for goo = 1 +2®. The actual metric g,
is equal to 71, plus a small first-order deviation, A, , but this deviation cannot be expressed just through the Newtonian
potential ® = %hoo~ In principle, one needs to solve the full Einstein equations to find h,,; in other words, one needs to
determine other, “post-Newtonian potentials” and not just the Newtonian potential ®. However, when one only wants
to compute effects of gravitation on motion of slow bodies, only ggo is necessary. So it is sufficient to compute just the
Newtonian potential ®. But e.g. trajectories of light rays cannot be computed accurately in the Newtonian limit (because
light does not move slowly). To compute trajectories of light rays, one needs all components of h,,,,, not just hgo.

Let us do the computation through h,, in a more general way. First we compute the Christoffel symbol and the Ricci
tensor:

1
]'—‘t))\w = 577/\V (ha'y.u + hu'y a hay 'y) ) = '~ O((I)),
Rag=Roys=Togr—Tons +IT =TT ~Ths, — Iy s

(We may disregard the I'T' terms since they are second order in ®.) Now we compute (again up to first order in ®)

1 1
Tong = §7IM (Pay 8 + hay,ap — haxyp) = gnmhm,aﬁa

1
Rop = §"A7 (Pavy,6x + hgy,an — hapax — hay,ap) -

Let us now compute just the component Rgg, recalling that h,,, is time-independent (so hy,,0 = 0) and hop = 2®:

1 1
Roo = inM (hoy,0x + Poy,0x = hoox = hay,00) = —577Mh00m

= -0, = AD.

5.5 Equations of motion from conservation law

We would like to rewrite the covariant conservation law T#"., = 0 through ordinary derivatives. The given relations are
useful; let’s derive them first.

0 1 0 1
/g — - = aB
D 2v/=g (Wg) 2y=g (99" Gas)

1
= 5\/—99‘*ﬁgaﬂ,u;

" 1 " (L a
ﬁ;,y = igl @ (gMOéﬂ/ + Gua,u — gV/,L,Oé) = igl (’gua v — ﬁaxu vV —9.

Now rewrite the covariant derivative of TH" explicitly:

v v (6772 v « 1 14 v (63
T =T +Th, T + T, T = ——= (V=gT") , + TogT*".

V=9

Apply this to the given TH":

— uv — mO dl‘”dl‘ (4) o
0=T1,, H[/d B 50 (w7 — a7 (s))

i
mo dm dxP

1/ ds ds

Since in the first term the dependence on z is only through 6, we can rewrite

o ()0 (27 —a7(s)).

%62# {6(4) (% — xa(S))} - 7% {5(4) (2% —2%(s))

(this is easily understood if read from right to left) and then integrate by parts,

dx¥ d Az
(4) o — L s4)(o 0
/d 0@ —a(s)) /ds T 0@ —a%(s)).

Finally,
V- d%zv dz® dz”
0= JT””;# = /ds { prv, } W (27 — 29(s)).

mo ds? B ds ds

This is a function of % which should equal zero everywhere. Therefore, the integrand should vanish for every value of s,

dz® daP
IV g—— =0
tlas ds ds

Az
ds?

29



Remark: in general, equations of motion do not follow from conservation law, but they do follow if there is only one
field. (e.g. one fluid, or one scalar field, or some number of point particles). The situation in ordinary mechanics is similar:
e.g. the equation of motion for a particle follow from the conservation of energy only if the motion is in one dimension:

mv2

E—?—FV( x) = const,
E
0= Cﬁlt (mo+V'(z)v = mo=-V'(x).

However, equations of motion do not follow from conservation of energy if there is more than one degree of freedom.
Similarly, equations of motion for say two scalar fields ®, ¥ do not follow from the conservation of their combined 71}, .
These fields have two different equations of motion, and one cannot hope to derive them from a single conservation law.

6 The gravitational field

6.1 Degrees of freedom

The electromagnetic field is described by a 4-vector potential A,(x). This would give 4 degrees of freedom. However,
there is also a gauge symmetry,
Ay — A+ ¢y,

where ¢(x) is an arbitrary function of spacetime. Using this gauge symmetry, we may e.g. set the component Ag(x) = 0.
Then only three functions of spacetime (Aj, Ag, A3) are left. Hence the electromagnetic field has 3 degrees of freedom.
There are additional gauge symmetries involving functions ¢(x) that do not depend on time. Since these functions ¢(z)
are functions only of three arguments, they do not change the number of degrees of freedom.

6.2 Spherically symmetric spacetime
6.2.1 Straightforward solution

A direct computation listing all the possible Christoffel symbols and components of the Ricci tensor is certainly straight-
forward but very long. Here is a way to compute the curvature tensor without writing individual components. Since the
metric has a diagonal form, let us denote

1
9as =TNapAa, g% =n""——  (no summation!), (60)

where
A, = {eN,e" r? r?sin 0} (61)

is a fixed array of four functions. For this calculation, we do not use the Einstein summation convention any more; every
summation will be written explicitly. However, we make heavy use of the fact that n,g # 0 only if @ = 3, and that
nax = ™. At the end of the calculation of the Ricci tensor R.p, we shall substitute the known functions A, and use
the resulting simplifications.

We begin with the calculation of the Christoffel symbols,

L\
aB = Z # na;tAmB + 1puApa = NopAaul

A A 1 A
A /\ﬁ XA\ a)\
—5 N 255

A, 2 - (62)

Note that the summation over y results in setting A = u due to n**, and that we have relations such as nax7ax = 02 and
62Nae = Nap, which hold without summation. For convenience, we rewrite Eq. (62) as

A
Faﬁ = - [533,\,/3 + 5[}BA,a - 77,\,\77a/3AjBav\] ’

where we defined the auxiliary function
B, =InA,.

As a check, we compute the “trace” of the Christoffel symbols and compare with the known formula,

Zra)\_ Ba,a""_ZB)ua_i a,«
N Ag

Let us also denote for brevity

= ZBM_ nv=g),-

l\')\»—l

111\/7— ZB)n Zra)\_
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We proceed to the computation of the Ricci tensor. We use the formula (with Landau-Lifshitz sign conventions)

Rap =Y (Ds = Toxs) + D (T4, T2 ~ T2I% )
A1

A

We now compute the necessary terms:

1 1 A
F aa -B af T §lla iBa ’
Z af A = ,8+2 B,aB 277,82;77»\(14/\ ,,\>A
ZFQA,ﬁ: ,aBs
A

1 1 1 A
M 1.=Y C,=|6B 03B a — =arTag— Ba
AE: Aut aB EA: A5 { abxg+ 50852, 277)\/\77 ﬁA)\ A

Aq

C.aBas+CsBga— %@ZCWMAA

Ba,)\

l\')\»—l

)

A A

A A A o A

Z Louls = 4 Z {5aB/\,u +0,Bxra — 77/\/\77(1/»14)\3(1«\} |:5§BM7[3 +05Bu — nwmx\ﬂABk,u]
A, A

1 A,
=1 Z B, [5§BH’5 + 03 Bua — nu#naﬁABa,u} (here set A = «)
w ®

1 A
+ 4 ;Buva {Bu,ﬁ + 5gB,u,,u - mﬂmﬁAZB#,#} (here set A\ = p)

| Ao . . Ay
v ZA:nAAnaaTABa,A [5,\ Bog +053Bax — naan)\ﬁAaBk,ail (here set = )

1 1 1 A,

= jBaaBas + BapBsa = 1Mas zﬂ:nwA*#Ba,uBaw
1 1 1

t1 ZBu,aBu,ﬁ + 1BsaBss — 1 BsaBss

1 A, 1

Ba aBa e Ba Ba *Ba B o
1 B 477 5Z7M,\ A, A ,,\+4 BDs,
1
2

A, 1
5Ba,sBg,a — 577(1/3 Z WuufBa7uBa,u + 1 Z Byi,aBy,s-
I H w

Finally, we put all the terms together:

1 1 1 Ba BO[.
Ra,B = (2Ba + §BB - C) ; - 57704,31404 ZUAA ( A;\/\> + 07/\ A;\
QO A
1

1 1
+5CaBap+ 508850 — 5BapBsa - Z By,aBy,p-

We can simplify this expression by considering separately diagonal and off-diagonal components:
B
(1) et
Ax ) Ax
+ ( Ba,a) Ba,a - 1 Z Bu,aBu,a;
“w

1
(B + B — Z BA) +5 (CaBap + CpBsa — BapBp.a)
a8

1
Roo = (Ba C),aa 277ao¢A an)\

l\D\H

Z o Bus- (only for a # )

m

pM»—‘
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Now we need to simplify this expression further by using the specific form of the metric (60)-(61

Ar=eV, A, =eb, Ay =12 A¢:rzsin20;
Bi=N, B.=L, Bg=2lnr, Bg=2Ilnr+2lnsiné;

N+ L
C=lny—g= * +2Inr + Insin6;
N+ L N +L 2
Cyi= il ) C'r:;‘f'*, Cy =coth, C¢,:0.
’ 2 ’ 2 r ’ ’
Note that the term
1
2<BQ+BB_Z>\:B/\> 8

always vanishes when a # 8. We find (after some omitted algebra):

) -2
%7’2 ey Z - ( [ln (r2 sin 9)} ,A> Lo, [ln (r2 sin 9)] A
A A

Ry i i

N/ — L/ 1 1
2 .2 L .
—r“sin“ 0 ( + 7’2> € - 2:| )

N - L' 1
Rge:l—?"Qe—L( +2>;
2r r

Riy = Rry = Roy = Ryg = 0;

1 1 1 12
Ry = 50’3_39’7" - ZB@,«B@@ - COt 9* — *72 cotf = 0;

1 (N+L N’ L’ 2 : L
RtT:2< + N’+( * L— NL) Lyn - LL’:—;
,

2 2
—-N" 2 L' —N 1 I —
R, = = 4+ N L L =y 2
5 Tt 4 +2 ( T3 >+
- .N-L 1 N —L' 2
Ry=—+1L —eN=L N )N
tt 2+ 1 +2e [ +< 5 +r) }

Finally, we compute the Ricci scalar,

R= Z%\A R)\)\

L .N-L 1 N —-L 2
—-N —L " !
- y + = N" + +—-|N
¢ ( 2 4 ) 2" { ( 2 r) }

—N" 2 L'-N 1 1 . L—N.
—e L + =+ N + L) —=e N [L+ L
2 r2 r 2

4 2

Lo (N =L Y (N 1Y ]
_ e - Sl I
r2 2r 72 2r 72 72

N-L N - L L' — N’ 2
== ( L+L 5 )—e—L(—Q - N"+ N’ 5 )—.
T

Hence, the nonzero components of the Einstein tensor are

L eN

Gy = e L7 72 ;
L
Gtr = —
T

) / BL

Grp=—+— —
! 72 r r2’

). We have



6.2.2 Solution using conformal transformation

A more clever way to reduce the amount of computation is to notice that the metric g, is simplified after a conformal
transformation,

—r~“e
Juv = TQhW = r? 1
0 sin” #

The metric hy,, separates into the r — ¢ components and the # — ¢ components. We shall first compute the Ricci tensor
for the metric hy, and then determine how R, changes under a conformal transformation. The calculation of R,z for
the metric hy,, is much simpler because hy,, is a direct (“block”) sum of two metrics defined on 2-dimensional spaces. It
is clear that R, will also be a direct sum of the corresponding two-dimensional Ricci tensors.

Let us first compute the Ricci tensor for a diagonal metric 7,, = diag (eA, eB) in two dimensions; set A = A, B = A,
and indices a, b, ¢,... range from 1 to 2. For a two-dimensional metric 7,3, we know that the Ricci tensor is proportional
t0 Yap, namely (see Problem 4.4c)

1
Rap = 57w, R= Y Rap = 2 (det Yap) Ri212.

So it is sufficient to compute say Ri1,
Rll = Ftlll,a - Ftlla,l + Fgarlil - Fl{arllllﬂ

and afterwards we will have R R
Rab = Yao—r; R=~"Ry =2—2%,
Y11 Y11

The necessary Christoffel symbols are found as (no implicit summation from now on!)

1 1 _
% = Z E’Yac (’ch,b + Yoe,1 — 71b,c) = 5 (Al,b(S(f + 5,‘,’Ab,1 - 5;}€A1 A“Al,a) ;

1 1
Fl —ZA,: F2 — ~B.:
12 ) ,25 12 2 15
1 1
'Yy = A1167 — 5eAl—AaIalLa; rh = §Aa1’ 2 = —eABA,

1
D Tha = 50 In(det yeq) =
Then the component Ry of the Ricci tensor is
Rll = 11%1,(1 - F?lba,l + Fgarzil - F?a (llb

1
= Fh 1+ TH 2~ (A +B) 11 + 5 (A+B), I+ 5 (A + B) , F% — Iy Iy — 20T, — LI

1 1 1
:fAu—i(eA_BAz) —f(A+B)711+§(A+B),1§A,1 (A+B) et BAQ—fA Ax+Asg Loa- BAQ_,BlB
1 1
— Bn—ieA BAQQ—fA (A—B)VQeA_B—i—ZB,l(A—B)J

We also find (note the symmetry apparent in this formula; this shows that at least this is not obviously wrong)

R 1 1
R=2" — ¢ 4B —e¢ BAy— gA2(A=B) e — 2em By (B~ 4),
-~ : :

Well, I am not going to finish this calculation here, anyway. But this is roughly how it goes. Let us at
least derive a useful formula below.

The relationship between the curvature tensors under a conformal transformation is found as follows. First we define
the conformally transformed metric for convenience as follows,

gaﬂ = €2anﬁ'
Then the Christoffel symbols receive a correction which is a tensor Bg 8
[s=Ths+Bls; Bls=06005+ 6300 — gas?.
The Riemann and the Ricci tensors are defined (in Landau-Lifshitz sign convention) by

A _ A by
Ruuﬁ_ra&u r uﬁ"’Fuu af FBUFZ/,U

A A
Rap = Rong =10p\ — FAa,ﬁ +TI3,I% aB Fﬂvra)\'
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The same relation holds for R* app and Rap through f’é 3 (note that these relations do not involve the metric g5 explicitly).
Therefore

PA A _pA

R apB Rauﬁ - Baﬁ,u

Rop — Rap = Blg\ — Bia g+ BAI%s + T2, Bl + By, By — B

A v A v A v A v v o,
— B B—l—BWl—‘aﬂ—l—l—‘ Bos+ B, Bosg — Bs,l'g, — T VBML—BBVBQ#,
A

v
vt ai v v

We shall only compute the expression for the Ricci tensor R,3. As a preparation, we compute

B, =00 =NQ,,

«

where N = (5§ = gas g*? is the number of spacetime dimensions. We shall always raise and lower indices using the original
metric go3. So we compute term by term,

Rag — Rap = (6325 + 0300 — 9as?) | — NQap + N Ths + T3, (052,5 + 5500 — gas”)
+ NQ, (0505 + 6520 — gasQ”) — (53, + 005 — gp, Q) T%,
— T3, (05 + 050 — gaa ") = (6392, + 622 5 — g, 27) (B4 1 + 0500 — gar Q")
=20 05 — Gap — Jap a0 — NQog + NQ,TY, + T3, Qs + TA5Q0 — gaplh, Q"
+2NQ Q5 — NgapQ,, Q" —T55Q0, — T2, Qs + g 1502 —TaQ2 5 — TAsQa + garl'5, 2
— (24 N)QaQ 5+ 2902027
= =908 — GasTA V" — NgagQ Q" + 29050 0
= = (N = 2) [Q0p = QuT%s] + (N = 2) 2085 — gas [(N = 2) 2307 + Q) + 13,07
+ [gBVFZMQ’A + gal,F/”gAQ’)‘ — ga,@,)\Q’A} .

Now we note that some of the I' terms can be absorbed into covariant derivatives, and also that the terms in the last
bracket cancel,

[gﬁVFZAQ’)\ + gaurg’)\Q)\ - ga,B,/\Q,/\] = Oa
so the resulting formula can be written more concisely as
Ra[g — Raﬁ = (N — 2) [Q’aﬂ’g — Q;aﬁ] — Jagp [(N — 2) Q)\Q’/\ + Q;A;)\] .
The modified Ricci scalar is
R=§""Rag = e g Rog + e g™ {(N = 2)[Q,aQ5 — Qag] — gap [(N — 2) Q2 + 4]}
_ QQR—FS 251{ [Q e — Qa;a} —N[(N—Q) Q7/\Q’>‘—|—Q;)‘;)\]}
e MR- (N =2)(N —1)Q,0%—2(N -1)Q*,,}.

The Einstein tensor is modified as follows,

. . 1. .
Gop = Rop — 50aplt = Rap + (N = 2) (205 — Qias] — gas [(N = 2) 2207 + 0]
1
— 590 [R= (N =2) (N = 1) Q0% —2(N - 1) 2%]

(N —-2)(N-3)

= Gaﬁ + (N - 2) [Q,OAQ,B - Q;aﬂ] + Jap 9

Q0%+ (N -2)0%,
Note that there is no change in G in two dimensions (since the Einstein tensor is always equal to zero).

6.3 Motion in Schwarzschild spacetime

The equation for the covariant component u1(s) is

dU1 1 B 0
— — —u®u” — (gap) = 0.
as 24" or (9acp)
Using the metric g,g = diag ( ,—1/f,—r? —r?sin? 9), where f =1—1ry/r, and u* = {5,75,0., QS}, where = d/d\, we find
d d d (1 . .
o (—f7'7) - (diﬁ - (f) i — 2r6 — 2r¢* sin® 9) =0. (64)
To derive this equation from other equations given in the lecture, we transform in a clever way the expression
d ) .
Ozalc——{fﬂ F1p2 r292—r2¢2sm20].
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Namely, we try to separate terms of the form % (uq) out of the terms of the form % (uqu®) in the following way,

d
dr

d
(griu'u') = 2u' PN (gru') — Ululagn

d
(wu') = = (no summation!).
For example,

d .. cd . d
o (ff*) = 26— (ff) — tQJf, etc.

We find
%K—di[ftz 1 —TQHZ—TQSiIP@(bQ}
i _2£_ i =1 ~2i -1 _ i 2 2d
= 20— (i) - 25 2rd)\(f )+ 2 f 29d>\( 9>+9d>\( 2)

— 2¢— (r sin H(b) —|—¢ (r sin 9)

Now we substitute the given equations (2)-(4), and also evaluate derivatives of the metric, e.g. df /d\ = f'r, so
. d ! . . . .
0=—t2f"7 — 272a (f1) — r2ﬁr — 20r2¢? sin 0 cos 0 + 62217 + ¢*2r sin? 07 + 2¢>r26 sin 0 cos 0

—7“{ d (=2f71%) = f'P* - ;;r + 2r6% 4 2r¢? sin 9}

This is obviously equivalent to Eq. (64).

Note: the reason one of the equations follows from other equations is that the equation u,u® = const is a consequence
of the four geodesic equations, u” u®.g = 0, and the fact that g.g,, = 0. Therefore, when we consider the four geodesic
equations and the equation u,u® = const, any one of these five equations is a consequence of four others.

6.4 Equations of motion

I didn’t write a solution to this.

7 Weak gravitational fields

7.1 Gravitational bending of light

In the lecture it was shown that the trajectory of a light ray in polar coordinates satisfies the equation

2 /1\ 1 3r, 2GM
m()*z rg = g~ 3km,

where M is the mass of the Sun. Introduce an auxiliary variable v(¢) = r~! and solve the equation
vV +v==-ry

perturbatively, assuming that v is small,

v(¢) = vo(@) + v1 () + ...

The unperturbed solution is

vo(¢) = Rio cos ¢,

where Ry is the distance of closest approach to the Sun. Then

3r
vy + o = 2R2 cos® ¢ = 4R(2) (1+ cos 26) .
The solution is found with undetermined coefficients,
3r 1r
v1(¢) = A+ Bceos2¢, A= ZR;%’ B— 71}7%.

The total deflection angle is found as § = ¢1 — ¢2 — 7, where ¢4 o are fixed by the condition v(¢) = 0. We find a quadratic
equation
2R R R2
COSQ¢——OCOS¢—2:O, COS(b:—Oi ——1-2
Tg Tg rg
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Only the solution with the minus sign is meaningful (cos¢ < 1). Since r, < Ry, we may expand this in Taylor series and
find r
cos ¢ ~ —R—i) +O(r}/RY).

Therefore, the angle ¢ is very close to 7/2,
¢172:ﬂ:(g+5), E%T‘i = 0 =2c=—2

This formula can be rewritten as

Ry/Rg Ro| Ry’
For the Sun we have R = 6,96 x 10°km and r, = 2,954 km, therefore

_ 2T9/R@ _ |:2’I”g:| R@

2ry/Re = 8,489 x 107° = [[8,489 x 107°% x 360° /27 x 3600] [arc seconds]
=1,751”

(see R. Oloff “Geometrie der Raumzeit,” 2nd German edition, page 151).

7.2 Einstein tensor for weak field

For this problem Chapter 4 from the book Norbert Straumann “General Relativity and Relativistic Astrophysics” is
useful. We have g,,, = 1., + by and
R F BV F Ap,v0

where (...) ,denotes a derivative J,(...). Here one can ask the students about the symmetry of this tensor.
Furthermore

1 1
Fa/,u/ = 577a’6 [hHIBaV + hV,B;M - huu,ﬁ] = 5 [hzf,u + h(lip, - huft} ) (65>

where as usual we use the convention that indices are raised or lowered with n*”; thus e.g. h% = n“*hyg. Using Eq. (65)
we have

1
Ry = [Py a4 B0 px = Ol — hoy]
where O = 99,8, and h = hy = n**h,y. And for the Ricci scalar we obtain
R =n" Ry, =h",, — Oh.

Thus in the linear approximation we have

1 1
G/LV = R/Ll/ - §TIIU.VR = 5 |:h27l,)\ + hl);#i)\ - Dh/tu - h,/l.l/ - njj.l/h)\?ﬂ)\ + U/Lvmh] .
Let us introduce a new variable 7,, = h,, — %nm,h. The traces of two tensors h and 7 are related by v = —h, thus

hyw = Yoo — %nwﬁy. Inserting the last expression for h,, in G, we have

1 A A A
G = 5 [’m,ux +oun = B — 1wy ?BA} =
Lo A A8
= 5 |:’YM)\,V + Yo — D’yl“/ — Nuv Vg ] )

or finally
1

Gy = 5{%\1’4‘% —Ow - 5“%4

7.3 Gravitational perturbations I

The metric is written as g, = 1 + 6gu, i€
goo =1+2®, go; = B +5i, gij = —0i; +2Vo;; + 2E;; + Fi j + Fji + hij, (66)

where Si’i = Fi’i = hz; = hy; nij =0, h;j = hj;. We shall use the formula for G% derived in Problem 7.2. All 3-dimensional
indices are raised and lowered using d;;, so we can write these indices in any position, as convenient:

89 = 6go; = —0gd,  bg] = —8gi;.

Also note that for any quantity X we have
X9 = (X, -X,).
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We need to write the components of
1. -
2t = dgl — Soth, h=dgl,
using the 3+1 decomposition:
h = 6gl, =" ogu =2 (® - 3V — AE),

W =043V +AE, =B, +5; = - =0
i — ((I) — ¥ — AE) (52']' — 2E,ij — Fi,j — Fj,i — hij = ’Yl]

7
Now we compute
W =4 =3, =¢>+3¢/+A(E—B);
W == =30 — i =B, — 8 — (= (® =V = AE)6i; —2E;; — F, j — Fj; — hyj) ,
=-B; - S+ (®— T+ AE); + AF;;

)= (vg“)’o + (7&“)7]_ =430 +A (E - B) + [—B,j — 8+ (2 U+ AE) ; + AL
=343V + AF - 2AB+ A (P -V + AE).
Then we compute each component of G# separately:
2G) = 2900 — Tl — 975 =2 (615 +30 4+ A (E - B)) — 360 (® + 30 + AE) + A (@ + 30 + AE)
- (<’1’>+3£1’1+AE) F2AB — A(®— U+ AE)
= 4AVY,

2G) = Wi+ 0y — O — 69950 = (<i> +30 4+ A (E - B)) ]

— {—BJ -8+ <<1> — AE) -+ AF]}
5]
— (BJ + S]) + A (Byj + Sj) = 4\i/1j —+ ASJ — AFJ‘,
2G5 = i+ — O — 6y = [—B,j ~ 5+ (@~ U+ AE), + AF]} + [—Bﬂ- — 5+ (® - U+ AE), + AFz} j

FO(® — U — AE)Si; +2E.4; + Fij + Fji + hij) — 0y [é+3\1)+AE_2AB+A(¢_qJ+AE)}

:2(@—@—B+E) By — 8y — 80+ Ohij — 26 [2@+A(¢—@—B+E)].
J

52,

* .. . . A0 G
- the origin of the minus sign here is 7}’ = —7yg-

7.4 Gravitational perturbations II

Under an infinitesimal transformation z# — z* + £*, the metric changes as

9aB = Jap — Jar& s — 98+En = Jap — Sa.p — Ep.a- (67)

(This can be easily found from the standard formula for the change of coordinages, involving 9%*/dz”.) Now let
us write Eq. (67) in full, using the perturbation variables (66), the covariant components §,, and the decomposition
§u = (50, §1i+ Cl) We can write the transformation of g,g component by component using the 3+1 decomposition, and
we use the fact that the background metric is diagonal,

goo = goo — 265 goi — 90i — &% — &ior 9i5 = 9ij — &ij — Eji-

To simplify calculations, we adopt the convention of raising and lowering the spatial indices i, j,... by the Fuclidean
spatial metric d;; rather than by 7;;. This will get rid of some minus signs. We also denote dy = 0; by the overdot. Thus
we have

900 = goo — 28°; goi — goi — ¢ — & 9 = 9ij — &ij — e

Substituting the perturbation variables from Eq. (66), we get

d— PO, (68)
B;,+S5 —=B;+5; —5,0,» _éj_i _Ql,iv (69)
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Now we need to separate these equations and derive the transformation laws for the individual perturbation variables.
This is easy to do if we perform a Fourier transform of Egs. (68)-(70) and pass to the Fourier space (where every variable
is a function of a 3-vector k). A vector V; is decomposed into scalar and vector components as follows,

Vik

Vik vy _
- - V J k2

et =V, —ik;

Vy =ik, VS v v = =V —ik; V(). (71)
The idea is first, to project the given vector V;(k) onto the direction of k;, and second, to subtract the projection from
V; and to obtain the component of V; which is transversal to k;. The imaginary unit factors are added as coeflicients at

k; for convenience: with these factors, the decomposition (71) translates to real space as
_ s V)
V; =0,V 4 v

The same procedure applied to a symmetric tensor T;; leads to a decomposition into scalar, vector, and tensor
components. Let us go through this procedure in more detail. First, we subtract the trace and obtain the traceless part
TM of the tensor T,

1
Ti(].l) =T — g&szl% 7 =o0.

Note the coefficient % that depends on the number of spatial dimensions (three). Now we project Ti(jl) onto k;k; and

(2)

obtain the scalar component 7(5) proportional to kik; and the tensor 7" orthogonal to k;k;:

(1)
1 _ Lo o o\ s L@, s - 3RKETG ey,
1) = (—klkj + géw’“ )T( + T T = o= T kiky = 0.

Note that Tl(j ) is again a trace-free tensor, T( ) = 0, due to the subtraction of 3 k‘26 i; in the first term. Finally, we project

T»(»Q) onto k; and k; separately, to obtain a “vector” part Tj(

part T( ) such that T(T)k =0 and T(T) =0

such that Tj(v k'j = 0, and a completely traceless (“tensor”)

@ _ ) g V) @), V) Rn@) 1) @ () W)
T =ik} + ik + T oV =g, T =1 () 4 1)

In real space, the full decomposition is
T;; ;’Tu&” + (aiaj - ;@»J»A> 7 1+ 0,1 + 9,1 + ..
T = g%aiaj (T] - ;nléij); T = (T ;Tu ”) (aa s A) T
7 = Lor® D =12 _ 97" — 0,1
It may be convenient to gather the “trace” terms (the terms containing d;;) as one term,
T, = T35, + 89,7 + 0,1\ + 0,1 + T, T = %Tu — %AT@

Note that the perturbation variables U, E, F;, h;; are obtained by this decomposition method, starting from the
symmetric perturbation tensor dg;;, with slight modifications: there are some cosmetic factors of 2 and some minus signs.

Applying the decomposition method to Egs. (68)-(70), we get the following transformation laws for the perturbation
variables,

©—2-¢, BB--( 858 —¢u,
E—)E—C, \I/—)\I’, Fi_>Fi_§J_i; h”—>h”

Remarks:

1. Tt is clear that one can set F; = 0, B = E = 0 with a coordinate transformation. Other components will then show
whether the geometry is really perturbed or it’s just a coordinate transformation of a flat space. In general, there will
remain 6 independent components of perturbations (®, ¥, S;, h;;).

2. These considerations depend rather crucially on the silently made assumption that all the metric perturbations
vanish, 6g,, — 0, at spatial infinity. These boundary conditions are implicitly used when defining the Fourier transforms
necessary for the tensor/vector/scalar decompositions (a Fourier transform is undefined without this boundary condition).
Alternatively, one may do without Fourier transforms but then one still needs boundary conditions to solve the relevant
Poisson equations for components. Without boundary conditions, there is no unique decomposition of the form

1
Xi=A;+B;, A=_-X;i
) + A )
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because the function A is defined up to solutions of AA = 0. So the tensor/vector/scalar decomposition is actually
undefined without a fixed assumption about the boundary conditions. The boundary conditions dg,, — 0 at spatial
infinity is a natural, physically motivated set of boundary conditions. An explicit counterexample where these boundary
conditions are not satisfied: g¢,, = diag(A4,—B,—B,—B), where A # 1, B # 1 are constants. This metric is flat
but one cannot see this by using the perturbation formalism! (The component ¥ # 0 cannot be removed by a gauge
transformation.) The reason is that this g,, is a “perturbation” of flat metric with ® and ¥ that do not decay to zero at
spatial infinity. So a coordinate transformation with £* decaying to zero cannot bring this metric to 7,,,.

8 Gravitational radiation I

8.1 Gauge invariant variables

Using the equations derived in Problem 7.4, it is very easy to verify that D = & — & — B+ E and S; — F, are invariant
under infinitesimal changes of coordinates (i.e. invariant under infinitesimal gauge transformations).

8.2 Detecting gravitational waves
8.2.1 Using distances between particles

(This solution follows Hobson-Efstathiou-Lasenby [2006], §18.4.)
Consider a plane wave moving in the z direction, (all other components of A, are zero)

Paw = —hyy = Ape @2 py = hy, = Aye @0l (72)

To detect the presence of this gravitational wave, let us imagine a cloud of particles initially at rest at different positions.
The 4-vectors describing the particles are u* = (1,0, 0,0), so one can easily see that these particles move along geodesics:

uut, = u ut , + Th uu® =T,

)

1
Fllja = 577’\“ (h)\wa + h)\a,u - ham/\) s

P S
TGy = §TIA’ (hx0,0 + hx0,0 — hoo,n) = 0.

Therefore the coordinates z# of each particle remain constant with time. However, the distance between each pair of

particles is determined through the spacelike vector Az = x’(l) x’é) as
AL* = (N + ) Azt Ax”

and will change with time because of the dependence on h,. Since the only nonzero components of h,, are the z,y
components, it is clear that only changing lengths are between particles that have some separation in the x,y directions.
Therefore it is sufficient to consider a ring of particles situated in the x — y plane. The physically measured distances
between the particles in the ring will change with time, i.e. the ring will experience a deformation.

To visualize the deformation, it is convenient to make a local coordinate transformation (local in the neighborhood
of the ring) such that the metric becomes flat, g, "z” = n,,&"&" (up to second-order terms). The trick that performs
this transformation is the following,

ot =t + %hﬁm)‘ ="+ %ha,\x”\no‘“.
It is easy to check that
Gz’ = (Muu + hyw) 22’ = 0, THE” + O(h?).
Therefore, Z# can be understood as the (approximate) Cartesian coordinates where the length is given by the usual
Pythagorean formula. Now if we compute the shape of the ring in these coordinates, it will be easy to interpret this

shape in a straightforward way.
Consider a particle with constant 3-coordinates (z,y, z). After the coordinate transformation, we have

1 .
x + B (Apz+ Agy)ewt=2),

i‘ =

~ 1 —iw(t—z2)
y:y+§(Axx—A+y)e ;
zZ=z.

To visualize the deformation, it is convenient to consider first the case Ay # 0, Ax = 0 and then the opposite case.
The deformation of the ring is squeezing in one direction and expansion in the orthogonal direction. It follows that A
describes a deformation in the two vertical directions, while Ay describes a deformation in the directions at 45°.

Note that the deformations change the shape of the ring in the same way, except for the rotated orientation. This
can be verified by performing a rotation by 7,

(3)-wl 06D

and then it is straightforward to see that this will exchange Ay and A.
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8.2.2 Using geodesic deviation equation

PLEASE NOTE: The commonly found arguments that use the geodesic deviation equation are suspect because the
geodesic deviation equation uses coordinates " rather than gauge-invariant quantities. A cloud of particles at rest in
the gravitational field h,, described by Eq. (72) will stay indefinitely at rest in the coordinate system ({# = const)
even though the distances between particles will change with time. See arxiv:gr-qc/0605033 for nice explanations. The
solution given above is simple and straightforward. The argument using the geodesic deviation (see Carroll, Chapter 6,
p. 152-154) goes like this:

The geodesic deviation equation can be simplified for a deviation vector S° corresponding to nonrelativistic (almost
stationary) particles moving with 4-velocity approximately equal to (1,0,0,0),

dQSU _ o S)\
dt2 - 00 .
The Riemann tensor to first order in h can be expressed as
Dox = I3

(note that h,o = 0). Therefore, the geodesic deviation equation becomes

S7 =S,
5% = w2 (hgpST + haySY) = w? (AL 8% 4 Ay SY) e~ wlt=2)

SY = w2 (hyeS® + hyySY) = W (Ax ST — A SY) e w(t=2),

and there is no change in the z direction.

8.3 Poisson equation

The general solution of the Poisson equation,
A(b = 47Tp7

with boundary conditions ¢ — 0 at infinity, is easy to find using the Fourier transform:

_ 4’k eik.x47TP(k) _ dgikeik'lel 3y e iky _ 3 % —
o) = [ Gt TG = = [ s [ dve o) = [y i),

where G(x) is the Green’s function,
Bk 4 1 [ g . 2 oo 1
G(X):_/%emx% Z—*/ dk/ d@sin@elkl"'msg:——/ %sinij:——.
(2m) k ™ Jo 0 x| Jo kK x|

Here we used the known integral
* sinz 1 [T s 1
/ dz:f/ S P
0 z 2 —c0 z 2

d3y
— | TP
x -yl

Therefore

$(x) = ). (73)

One can denote this integral more concisely,

1
:4 —_—
@ AP

where the operator % is just a shorthand notation for the integral in Eq. (73).
Note that the function p must fall off sufficiently rapidly as |x| — oo or else the integral (73) will not converge. It is
sufficient that |p(x)| ~ [x|7°7¢ at large |x| (where & > 0).

8.4 Metric perturbations 1
An arbitrary 3-vector X; (such as T°;) is decomposed into scalar and vector parts as follows,
Xi = a,i + bi7 bm = 0
To determine an explicit expression for a, let us compute the divergence of X,
Xi,i = a)ii = Aa.

Therefore

1 Ay

Ar ) x -y

(¥)-

a(x) = —

One can write more concisely



8.5 Metric perturbations 2

The energy-momentum tensor 7),,, is decomposed as

1 1
T = o+ B, a= ZTIS’]“ Bi = Ti0 — {AT,SJC} K
le = po;k + )\,ik- + 0k + Ok + T,gT)i,
Bii=o0i=0, T =0, TV =0.
We need to verify that the equation
1 . .
" o B =0 (74)

which represents the vector part of the spatial Einstein equation (here o; is the vector part of the spatial T;;), also follows
from the conservation of 7, and from the other Einstein equations.
To calculate the components A, u of the EMT, we compute

T) = AN+ 3u,
Tpi = AN+ pi + Aoy,
Ti = AAN+ A

Now we solve this system of equations and find

1 . 1, . 31, . 1 .

= (T'— —T7". A= ——T¢r., — _T*"

M 2 ( i A k,zk) ’ 2A k,ik 9 79
7%= 3T A {ATk,ilJ j’ DT =T — pbj, — Aok — 04 — onsie

Note that the operator é applied to a function f(x) is defined only if the function f has a sufficiently fast decay at

x| = oo. It is sufficient that |f(x)| ~ |x|°~¢
operator %.

The Einstein equations are

with € > 0 at large |x|. This is a faster decay than that required by the

2AT = 8rGTY,
. 1 -
2U ; + §A5i = 87TGTZ»O =8nG (o + Bi),
. 1r= L 1 i i
Di;— b (AD +28) - 5 (S + 5] + 50hij = 87GT} = 87G (1ir + i+ o1+ o + T

where we have denoted for brevity ~ . .
SiESi—Fi, DE‘I)—\I’—FB—E,

which are gauge-invariant variables. In the 341 decomposition, the Einstein equations become

AV = 47GTY, (75)
¥ = 471G, (76)
AS; = 167G;, (77)
D = 871G, (78)
AD + 20 = —87Gy, (79)
S; = —167Go;, (80)
Ohi; = 16nGT, " (81)
The conservation law of the EMT in 341 decomposition looks like this,
T +T4, =0, T+T!,=0. (82)
This gives . )
T(g’ =Aa, &a;+0i+AN;+p;+ Ao =0,
therefore _ .
Ty = Ao, a+AN+p=0, fi+Ac; =0, (83)

Then it is easy to see that Egs. (76), (79), and (80) are consequences of Egs. (75), (77), (78), and the conservation
laws (83). In particular,

X 1 1
S; = athﬂ'GBi = —E167TGA0‘1‘ = —167Go;.
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9 Gravitational radiation II

9.1 Projection of the matter tensor

a) First note that P, is a projector,
Pabec = Pam

and its image has dimension 2, that is, the trace of Py, is 2,
Pz‘i =3 nin; = 2.

Therefore, for any X,, we have
- 1 1
Xii = PiaXapPyi — §P¢¢PabXab = PapXap — §2PabXab =0.

b) We compute

1 1 1
D Xipi = (PiaXabek: - 2]DikpabXab> = (Piapbk - 2PikPab> Xap + <Piank —3 ikPab) Xabi- (84)

7Z 7z

Note that the projection kills any component proportional to R; because P, R; = 0. At the same time, X, ; is propor-
tional to R; because

Xapi = {X(t— \é|)} = iy

i R
Therefore the second term in Eq. (84) vanishes:

1
(Piapbk - 2Pikpab> R;=0.

So only the first term remains,

1
O Xipi = (Pmek — 2PilcPab> Xap-

5T

However, this term contains derivatives of P,;, which are also sometimes proportional to R;. We compute

Jia  RiRy 1

R; R, R
Piga = =i alk — NNk Niq = (R>,a =7 @ |R|, = S Epi“’
1 2
P = % (Pying + Paxni), P = R (note that P,xng = 0)
1 1 1
Py Py, — ipikpab = Py, i Py — ipik,ipab + Pio Pok,i — §PikPab,i
2P+1P 1P(P + P, )+1P(P + Pying)
= —75Na SNeLab — 54%a i1 ik 51 aiTl iTlq
g aloe T ko — 4 bi Tk ) + 5 Pk b b
1 1 1
=% <_2napbk + N Pap — Papnig — Parnp + §Paknb + 2Pbkna>
1 /3 1
= (2 Pyna + = Puny ) -
R (2 bkMa + 5 knb)
This is higher-order in 1/|R| than P, as required.
9.2 Matter sources
The question is to verify the following property,
DX =T Qi

where )
Qik = Xik - / g(szk 7’2 TOO d37’.

It is easy to see that Xj;, differs from @, only by a term of the form A(t, R)d;;. The transverse-traceless part of d;; is
Zero,

1
(Pmpbk - 2Pikpab> dap = 0.

Therefore the transverse-traceless parts of X;; and @Q;; are the same.
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9.3 Energy-momentum tensor of gravitational waves

See Hobson-Efstathiou-Lasenby [2006], §17.11.

We need to compute the second-order terms in the Einstein tensor. The idea is to separate the second-order terms
already in the Ricci tensor. We will also try to simplify things by using the fact that h,, is purely transverse-traceless;
hOa = O, h” = 0, hik,i = 0. It follows that

N hy =0, hyt=
Also, it is given that the EMT of matter vanishes, T},, = 0, which we will use below.
First we decompose the metric,
g/Lu — 77/“/ + h.UV’ gP«V — 77#41/ _ hﬂu;
note that now indices are always raised and lowered using 7,,. We need to compute the Ricci tensor to second order.
The Christoffel symbol up to second order is

1

. A 2)A
Tag = 2 (T = W) (Bpsas + Pus.a = hag ) = TO + T,
1A 1 7
F((ll; - 577)\1 (hap,s + hpp,a — hapu)

2)A 1

The Ricci tensor is

v 1 2
Raﬁ = FgB A F)\a B + F)\UFaﬁ Fﬁu a\ — R( ) + Régv

(1) (1A (1)A
Raﬁ - FozB AT F)\a B

R((]Q[; _ F(()[QB)/\,\ Fg\?)}g + F(l)/\F(l)u . 1—,(1)/\1—‘(1)1/.

Let us now evaluate these expressions and simplify as much as possible, as early as possible:

1
F(l))\ 2 Auh)\u o= 5 (nAuhAH),a =0,
1 DA pa 1 1
R&ﬁ) = F&ﬁ) =T 8= 577” (hapox + hppax = hapur) = —50has,

because of the transverse traceless property of h,,. Now, since Rsﬁ) is found from the first-order Einstein equation

1
1
R((xg — inaﬂR(l) = 81GTys,

and it is given that 7,3 = 0. Hence, we have Ohyg = 0.
Let us now evaluate derivatives of the second-order terms in the Christoffel symbols:

1 1
Ff}?)\ = 75}1)\/1« (hoz,u,)\ + h)\,u,a - hcx)\,p) = *ihAMhAu,aa
2x _ 1,y Loy
-1 = S Paiap + S0 P,

2)A 1
Ff,é A= —ghw (hau,sx + hauax — hap,ux)

(in the last line we used h”\)\” = 0). Finally, we tackle the term F(ﬁly) AF(ORV. In this term, it helps to write
(1) A A
¢ (h 5t Mha = h)

where again the indices are raised via n*" since we only need this term to first order. Then we can simplify this expression
by grouping together terms where «, 5 appear in similar positions:

ar (hﬂ N h’ﬁﬁ) (P + P50 = B2
(expand brackets) = h} ,h% \ + hA BS o = BB B ghY B ghY o — B ghity — B b\ — B B, + B Y
(move, rename \,v) = hﬁ)\hw + hga, Vh)‘y h/; S+ hA”ha,,,,\ + hf‘B”hA,,,a — h,B hoxy — hﬁ Sy, — ha, Ah + hﬁ)\h 2
(gather terms) = 2h\hi3, + (hpaw = b ) o' — 203 byl + B (hawx = haxw) + B hava
(symmetry of k) = hayoh’f + Qh’;)\hb;\ 203,

Finally, we put together the expression for Rggz

(03

1 1 1 . )
R(Qﬁ) - §h>\u (—hapsx = hauaxr + hagux + Bapap) + §h:\£hA”’ﬁ 4 (h’\y’ah’)\éj + 2h’mh7°?\” B 2hg’”h;‘>‘)
1 1 1/, ., .
= 5““ (=hap.x = Bppax + hapux + hapap) + zhiﬁ‘hxu,ﬁ t3 (h’mh?,u - h’mh;ﬁ) : (85)
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The Ricci scalar is
1
4

[0} 1 v [e% QA LV 3 « 1 AV
WA, + = (RS = B oy y) = ZW P = 5h M B, (86)

(2) _ paB (2) _ lh)\,uDh
R n Ra,@ 5 ap 3

where we again used the transverse traceless property of h,, and also [h,g = 0. Note that the first-order Ricci scalar
is zero, R = 0, since Twps = 0. For this reason we may use n®? in Eq. (86), otherwise we would have to write
(n+h) (R(l) + R(2)) and pick up a second-order term hR™).

Again, since R(Y) = 0, we may use Nuv rather than g, to compute the Einstein tensor:

1
Gy = R — Slas R

We do not write the answer explicitly since it is a combination of Egs. (85) and (86).

Now let us perform an averaging of the quantity Ggﬁ) over both space and time. In other words, we integrate GS)
over a 4-dimensional region such that h,, = 0 and h,, o = 0 on the boundary of that region. Then (d, (...)) = 0 and so
we may integrate by parts, for example

(AuBua) = — (AuaBy),

as long as A, B, contains first powers of hag or hag,y, so that boundary terms vanish. Then, for example,
(WM hpap) = = (W) (87)
(W x) = = (B B ) = 0,
<h:)\hﬁu,u> = <ha>\|:|hﬁu> =0,

by Ohag = 0 and by the transverse traceless property of h,,. Many terms cancel in this way; for instance, <R(2)> =0.
Finally, we get

1 1 1/, ,
(6%) - <2h/\u (~hapox = hsmar + hagux + hawas) + W ans + 5 (HiARS, = h:,_nh’oj\u)>

1 1 1
=3 (P hypap) + 7 (R haup) = 1 (Wt ha)

using Eq. (87). Finally, we obtain the required equation,
1 1 1 .
T, =~ (G} = o= (W has) = 35— (Whhis)
= =5 \Gan) = garg (M) = 556 (Wahiis)

9.4 Power of emitted radiation

To derive the relations

dS) 1
l,,m lm
—_— = 75
/nn 1 3 ,

Q2 1
L, m_ k,_r — Ilm skr lk smr Lk smr
/nn nn’— —15(5 O 4 67T 4 67 0™T),

let us consider the generating function
gala) = d exp [—in'q]
) Ar ’

which is a function of a vector argument ¢;. After computing go(q;) it will be easy to obtain integrals such as the above:

a . 0.0
/nlnm = i—i—ga(gy)

— = , etc.
4m aQI dm

q;=0

The computation is easy if we introduce spherical coordinates with the z axis parallel to the vector ¢;, then n'q; = |q| cos 0,
where |¢| = /qiqi, and then we have

1 27 T . oy
gala) = - | d¢/0 df sin 0 exp i q| cos 0] = 2 _lib1|2|lq|
sin [g 1 1 , 1 )
"ol - ETR (@)™ = ] (qaq)” + ...
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We have used the Taylor expansion for convenience of evaluating derivatives at |¢| = 0. These derivatives can be found
as follows,

dga 2 4 2R
o0 TR 5!111|Q| ~=|\=3t3 lal” ) @i
8%ga 1 1, 4 1
(- + = 5 il
9qr0qi ( 33014 ) Ot Tpaas,
P gq 1
I (4.6 5 5;
aq]aqkaql 15 (QJ kl+qk ]l+ql Jk)7
84gQ 1

90000000, 15 mkt + Omst + Oimdsn)
J m

Now we compute the intensity of radiation. The flux of radiation in the direction ny, is (W) Ty,n*, and we need to
integrate this flux through a sphere of radius R:

dE [
Q(GW)T / 2 ij
o F / d o 327rG (L h h“’“>

The perturbation h;; is found from the Einstein equation. It was derived in the lecture that, in the leading order in 1/R,
we have

(TT)Qy(t — |R))
|R|
1
INQ,;; = <Painj abP1]> Qab-

hij = 2G

3

The projection tensor F;; is defined in Problem 9.1. The tensor @;; is defined by

1
Qij(t) = /d3X (.TiCCj - g |X|25ij> Too(X7t)
and is by definition trace-free, Q;; = 0. Thus we have

167G . R
IOt — |R|) ==
R Ql]( | |) R )

dE. G .
at (TT)5 (TT)7y
i =5 ] £9{T70, ).

hij =

It remains to compute the average over the sphere of
TV (T
QT Qy

Consider any symmetric, trace-free tensor A;; instead of Q the transverse-traceless part of A;; is defined by

Z]?
@) g, = (Pub,; — 1Pup, ) A
ij = ai bjfi ablij ab
Since A;; = 0, we have Ay Py = —Agpnanpy and so

1 1
(TT)Aij(TT)Aij = (Painj — 2PabPij> (Pcide - ZPCdPij> AabAcd

1 1
= (Pachd - 5 achd> AabAcd = (Pachd - 2nanbncnd) AabAcd
1
= AabAab - 2AacAbcnanb + §AabAcdnanbncnd-

After integration over the sphere, according to formulas derived above, we have (again note that d.p A4 = 0 and Ay, =
Aba)

1
7AabAaba

1 1
E /dQQ AgcApengny = gAacAbcéab = 3

1 1 2
E / d2Q AabAcdnanbncnd == BAabAcd (5ab5(:d + 6ac§bd + 5ad§bc) - BAabAaba

and thus

1 [, 2 12 9
— QUITATD A = ApAgy (1= 2+ == ) = ZAwp A
47r/d J J blab 5721 5 rabslab

45



Finally, substituting Q” instead of A;;, we find

dE G 1 o [ TTVE (T G e

ar = fﬂ/d Q<( )Qij( )Qij> = 5 <QijQij>' (88)
The angular brackets (...) indicate that we must perform an averaging over spacetime domains. This means, for us, that
we need to average over time (since @;; is a function only of time). Averaging is performed over timescales larger than
the typical timescale of change in the source. For instance, if the source is a rotating body, then averaging must be
performed over several periods of rotation.

10 Sample exam problems

10.1 Metric and curvature

1. The answer to the torus: ds = a2d¢? + (b + asin ¢)> d6>.
2. The form w" = dr.
3. This spacetime is flat and (u,v) are the Rindler coordinates.

10.2 Geodesics

(a) This is a metric of de Sitter spacetime.
(b) Yes, it is a geodesic. u* = (1,0,0,0);

uut,, = uly + T = 5

9™ (90,0 + 90,0 — Goo,u) = 0. (89)

10.3 Motion in central field

(a) V'(r) = 0 implies mr2/h? — r + 3m = 0. This has solutions when 1 — 12m?/h? > 0, in other words h? > 12m?. One
also has r = 3m + mr?/h? > 3m. The actual solutions are

h (h+ VA2 — 12m2)
ry = .
2m

(b) V"(r) > 0 implies 2mr/h? — 3r + 12m < 0. Since V'(r) = 0, this becomes r — 6m > 0. Now ry > h?/2m > 6m so
it is stable.
(c) Vh? —12m2 ~ h(1 — 6m?/h?) therefore r_ ~ 3m and result follows.
\%

3m

2m

(d) The particle will be captured. There is no infinite centrifugal barrier like in Newtonian gravity.
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10.4 Gravitational radiation

It is sufficient to compute only the time-dependent components of the quadrupole tensor, so we disregard the star and set
p(x) = md(x — xo(t)), where the trajectory of the planet is x¢(t) = (Rcoswt, Rsinwt,0) in the  — y plane. The period
T = 27 /w is found from the Newtonian calculation,

| R3 |GM

Then we compute (omitting constant terms)

2
cos 2wt + const.

Qe = mR? cos® wt + const =

2
m
Quy = 5 sin 2wt + const,

2

Qyy = cos 2wt + const, Qz: = Q. = Qy. =0,

cen ces 2 2
Z Qi;Q = (8w3)2 (mf) (2 cos? 2wt + 2sin? 2wt) = 32wm?R*4,
ij

The initial kinetic energy of the planet is
mu? _1GMm 1

2 2 r 2%
and this energy will be radiated during the time AT,

Eo =

Ly

AT = .
Lew

The dimensionless ratio of AT to the period T is

T T 2764G R*m2u® 1287

R

AT  w 5c® mw?R? 5 R\*?* M
—
For the Earth-Sun system, a calculation gives

AT
-~ 1023, (90)

Part 111
Addendum

1 Derivation: gravitational waves in flat spacetime

This is not a solution to any exercise, but a more detailed derivation of the formula for the energy radiated by the
gravitational waves due to a small matter source.

The metric is assumed to be of the form

uv = Nuv + h;un

where 7, = diag(1, —1, —1, —1) is the Minkowski metric for flat space and h,,, is a small perturbation which is assumed
to fall off to zero quickly at infinity. We start with a 3+1 decomposition of the metric perturbation h,, and compute
the Einstein tensor (see Problems 7.2, 7.3, 7.4) in terms of the perturbation variables ®, ¥, etc. We also decompose the
matter energy-momentum tensor 7, and obtain the Einstein equations separately for each component (8.5). The result
is that (a) the variables E, B, F; can be set to zero by choosing a coordinate system; (b) if there is no matter (vacuum)
the scalar and vector components of the metric perturbation are equal to zero; (c¢) the tensor component h;; satisfies the
wave equation (81).

Solutions of the wave equation in four dimensions with retarded boundary condition can be written using the known
Green’s function. For instance, if

af(t,r) = A(t,r) = f(taR>Z—%/d3rA(t_|r_R|’r).

We will use this formula for f = (T)hij and A = 167rG(T)T]? . Now, we are interested in describing the radiation sent far
away by a matter distribution, so we take the limit |R| > |r|, and then we can approximately set
4G

Dy~ R d*r MTit — [r — R, 1).
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Now we use a trick (See Hobson-Efstathiou-Lasenby, §17.9) to express the components Tij through 79; it is much easier
to compute with 73 because this is just the energy density of matter. Consider first the tensor T rather than its

transverse-traceless part (T)T]?. The trick is to write the integral (out of sheer luck)
/d3r 0,0 (rirj) T% = 2/d3r T,
Then we integrate by parts and use the conservation laws (82),
T, = *TJQ,Ov T;z] = *TJQ,OJ‘ = T(()),oo = T(?; Tij,ij = *T(?-

J?

2/d3rTij /dSrTabvabrirj = f/dBrrirog.
Now, we need to obtain the transverse-traceless part of the tensor. In principle, we have the formulas for this (see
Problem 8.5). But they are very complicated. A shortcut is to notice that the projection operator P,;, does the job
(Problems 9.1 and 9.2), at least in the leading order in 1/|R|. (We are only interested in everything to leading order in
1/ |R| since all smaller terms will not give any flux of radiated energy.) The result is

2G
Dhie(R, t) = @GT

Qir(t) = /d?’rTg(nt) (rirk - ;r26ik> . (91)

The tensor Q;i is the quadrupole moment of energy distribution; it is a traceless and symmetric tensor. In principle, we
could just use the integral

/d3r T (v, t)rirg, (92)

because the transverse-traceless parts of (92) and of Qi are the same, but it is more convenient to use Q.

Since we found the tensor perturbation (T)hij, now we would like to compute the energy radiated in the gravitational
waves. For this we need the energy-momentum tensor of gravitational waves. This is a rather nontrivial object, since
in general the gravitational field does not have any energy-momentum tensor. In the case of gravitational waves in
flat background spacetime, one can define some quantity (GW)TW which looks like the energy-momentum tensor of
gravitational waves (but actually is not even a generally covariant tensor). We will compute this quantity below. This
quantity is useful because it gives the correct value of the energy after one integrates over a large region of spacetime.
The real justification for using this procedure is complicated and is beyond the scope of this introductory course of
General Relativity. We will only show a heuristic justification, which is the following. Gravitation is sensitive to every
kind of energy, because the energy-momentum tensor acts as a “source” for gravity (it is on the right-hand side of the
Einstein equation). So gravitation should be also sensitive to the energy in gravitational waves. One expects that the
energy-momentum tensor for gravitational waves, (GW)TW (if we know how to compute it), will act as an additional
source for gravity, like every other energy-momentum tensor for other kinds of matter. We will guess the formula for
(GW)TW as follows. We can write the Einstein equation and expand it in powers of the perturbation A, :

G [ + hy) = G [R] + G [h] + ... = 8nGTg. (93)

Here G is the first-order Einstein tensor, G(?) is the second-order etc. First we solve only to first-order in A (this is

what we have been doing so far) and then we will get an approzimate solution hf},j):

G M) = 8rGTY. (94)

This solution disregards the effect of gravitational waves and only takes into account the effect of matter Tg. We can

try to get a more precise solution by using the second-order terms in Eq. (93). Then we will get a correction h() to the
solution; the solution g = n + A" 4+ h(?) will be more precise. From Eq. (93) we find

GG + 1)+ G W Y) = 8xCT.

Now this is similar to Eq. (94), but it looks as if there is an additional term in the energy-momentum tensor, which we
may rewrite as

Gg)a[h(l) + 1] = 8z@ {Tg‘ + (GW)TE} )

L@y,

(GW)pa — _
T5 = &G P

This motivates us to say that the EMT for gravitational waves is given by this formula. But of course this is not a real
derivation because this does not show why the quantity (GW)TW has anything to do with the energy carried by waves.
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The second-order terms ng)a are computed in Problem 9.3. The result is used to compute the power radiated in

gravitational waves (Problem 9.4). Note that the calculation of Gé?)a uses averaging over spacetime in an essential way.
Thus, the result is an averaged power radiated during a long time—much longer than the typical time scale of change
in the sources—and averaged over large distances, much larger than the typical length scale of the sources. This kind of
averaging is assumed in Eq. (88). It remains unclear exactly how one performs averaging over space and time; this is not
well explained in any books at the undergraduate level.

The result is that we can use the formula (88) to compute the gravitational radiation emitted by nonrelativistic matter
far away from those places where the matter is contained. The distribution of the energy density, 73(r,t), should be
given. Then we compute the tensor @;; according to Eq. (91), by integrating over space where the matter is contained.
Finally, we compute the third derivative @Q,;,, the trace, and averages over long times, as indicated in Eq. (88). If we want
to insert factors of ¢, we replace G by Ge¢™”.

2 GNU Free Documentation License

Version 1.2, November 2002

Copyright (c) 2000,2001,2002 Free Software Foundation, Inc. 59 Temple Place, Suite 330, Boston, MA 02111-1307,
USA

Everyone is permitted to copy and distribute verbatim copies of this license document, but changing it is not allowed.

Preamble

The purpose of this License is to make a manual, textbook, or other functional and useful document free in the sense
of freedom: to assure everyone the effective freedom to copy and redistribute it, with or without modifying it, either
commercially or noncommercially. Secondarily, this License preserves for the author and publisher a way to get credit
for their work, while not being considered responsible for modifications made by others.

This License is a kind of “copyleft”, which means that derivative works of the document must themselves be free in
the same sense. It complements the GNU General Public License, which is a copyleft license designed for free software.

We have designed this License in order to use it for manuals for free software, because free software needs free
documentation: a free program should come with manuals providing the same freedoms that the software does. But this
License is not limited to software manuals; it can be used for any textual work, regardless of subject matter or whether
it is published as a printed book. We recommend this License principally for works whose purpose is instruction or
reference.

2.0 Applicability and definitions

This License applies to any manual or other work, in any medium, that contains a notice placed by the copyright holder
saying it can be distributed under the terms of this License. Such a notice grants a world-wide, royalty-free license,
unlimited in duration, to use that work under the conditions stated herein. The “Document”, below, refers to any such
manual or work. Any member of the public is a licensee, and is addressed as “you”. You accept the license if you copy,
modify or distribute the work in a way requiring permission under copyright law.

A “Modified Version” of the Document means any work containing the Document or a portion of it, either copied
verbatim, or with modifications and/or translated into another language.

A “Secondary Section” is a named appendix or a front-matter section of the Document that deals exclusively with
the relationship of the publishers or authors of the Document to the Document’s overall subject (or to related matters)
and contains nothing that could fall directly within that overall subject. (Thus, if the Document is in part a textbook of
mathematics, a Secondary Section may not explain any mathematics.) The relationship could be a matter of historical
connection with the subject or with related matters, or of legal, commercial, philosophical, ethical or political position
regarding them.

The “Invariant Sections” are certain Secondary Sections whose titles are designated, as being those of Invariant
Sections, in the notice that says that the Document is released under this License. If a section does not fit the above
definition of Secondary then it is not allowed to be designated as Invariant. The Document may contain zero Invariant
Sections. If the Document does not identify any Invariant Sections then there are none.

The “Cover Texts” are certain short passages of text that are listed, as Front-Cover Texts or Back-Cover Texts, in the
notice that says that the Document is released under this License. A Front-Cover Text may be at most 5 words, and a
Back-Cover Text may be at most 25 words.

A “Transparent” copy of the Document means a machine-readable copy, represented in a format whose specification
is available to the general public, that is suitable for revising the document straightforwardly with generic text editors
or (for images composed of pixels) generic paint programs or (for drawings) some widely available drawing editor, and
that is suitable for input to text formatters or for automatic translation to a variety of formats suitable for input to text
formatters. A copy made in an otherwise Transparent file format whose markup, or absence of markup, has been arranged
to thwart or discourage subsequent modification by readers is not Transparent. An image format is not Transparent if
used for any substantial amount of text. A copy that is not “Transparent” is called “Opaque”.

Examples of suitable formats for Transparent copies include plain ASCII without markup, Texinfo input format,
ITEX input format, SGML or XML using a publicly available DTD, and standard-conforming simple HTML, PostScript
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or PDF designed for human modification. Examples of transparent image formats include PNG, XCF and JPG. Opaque
formats include proprietary formats that can be read and edited only by proprietary word processors, SGML or XML
for which the DTD and/or processing tools are not generally available, and the machine-generated HTML, PostScript or
PDF produced by some word processors for output purposes only.

The “Title Page” means, for a printed book, the title page itself, plus such following pages as are needed to hold,
legibly, the material this License requires to appear in the title page. For works in formats which do not have any title
page as such, “Title Page” means the text near the most prominent appearance of the work’s title, preceding the beginning
of the body of the text.

A section “Entitled XYZ” means a named subunit of the Document whose title either is precisely XYZ or contains
XYZ in parentheses following text that translates XYZ in another language. (Here XYZ stands for a specific section
name mentioned below, such as “Acknowledgements”, “Dedications”, “Endorsements”, or “History”.) To “Preserve the
Title” of such a section when you modify the Document means that it remains a section “Entitled XYZ” according to this
definition.

The Document may include Warranty Disclaimers next to the notice which states that this License applies to the
Document. These Warranty Disclaimers are considered to be included by reference in this License, but only as regards
disclaiming warranties: any other implication that these Warranty Disclaimers may have is void and has no effect on the
meaning of this License.

2.1 Verbatim copying

You may copy and distribute the Document in any medium, either commercially or noncommercially, provided that this
License, the copyright notices, and the license notice saying this License applies to the Document are reproduced in all
copies, and that you add no other conditions whatsoever to those of this License. You may not use technical measures
to obstruct or control the reading or further copying of the copies you make or distribute. However, you may accept
compensation in exchange for copies. If you distribute a large enough number of copies you must also follow the conditions
in section 2.2.

You may also lend copies, under the same conditions stated above, and you may publicly display copies.

2.2 Copying in quantity

If you publish printed copies (or copies in media that commonly have printed covers) of the Document, numbering more
than 100, and the Document’s license notice requires Cover Texts, you must enclose the copies in covers that carry, clearly
and legibly, all these Cover Texts: Front-Cover Texts on the front cover, and Back-Cover Texts on the back cover. Both
covers must also clearly and legibly identify you as the publisher of these copies. The front cover must present the full title
with all words of the title equally prominent and visible. You may add other material on the covers in addition. Copying
with changes limited to the covers, as long as they preserve the title of the Document and satisfy these conditions, can
be treated as verbatim copying in other respects.

If the required texts for either cover are too voluminous to fit legibly, you should put the first ones listed (as many as
fit reasonably) on the actual cover, and continue the rest onto adjacent pages.

If you publish or distribute Opaque copies of the Document numbering more than 100, you must either include a
machine-readable Transparent copy along with each Opaque copy, or state in or with each Opaque copy a computer-
network location from which the general network-using public has access to download using public-standard network
protocols a complete Transparent copy of the Document, free of added material. If you use the latter option, you must
take reasonably prudent steps, when you begin distribution of Opaque copies in quantity, to ensure that this Transparent
copy will remain thus accessible at the stated location until at least one year after the last time you distribute an Opaque
copy (directly or through your agents or retailers) of that edition to the public.

It is requested, but not required, that you contact the authors of the Document well before redistributing any large
number of copies, to give them a chance to provide you with an updated version of the Document.

2.3 Modifications

You may copy and distribute a Modified Version of the Document under the conditions of sections 2.1 and 2.2 above,
provided that you release the Modified Version under precisely this License, with the Modified Version filling the role of
the Document, thus licensing distribution and modification of the Modified Version to whoever possesses a copy of it. In
addition, you must do these things in the Modified Version:

A. Use in the Title Page (and on the covers, if any) a title distinct from that of the Document, and from those of
previous versions (which should, if there were any, be listed in the History section of the Document). You may use the
same title as a previous version if the original publisher of that version gives permission.

B. List on the Title Page, as authors, one or more persons or entities responsible for authorship of the modifications
in the Modified Version, together with at least five of the principal authors of the Document (all of its principal authors,
if it has fewer than five), unless they release you from this requirement.

C. State on the Title page the name of the publisher of the Modified Version, as the publisher.

D. Preserve all the copyright notices of the Document.

E. Add an appropriate copyright notice for your modifications adjacent to the other copyright notices.
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F. Include, immediately after the copyright notices, a license notice giving the public permission to use the Modified
Version under the terms of this License, in the form shown in the Addendum below.

G. Preserve in that license notice the full lists of Invariant Sections and required Cover Texts given in the Document’s
license notice.

H. Include an unaltered copy of this License.

I. Preserve the section Entitled “History”, Preserve its Title, and add to it an item stating at least the title, year, new
authors, and publisher of the Modified Version as given on the Title Page. If there is no section Entitled “History” in the
Document, create one stating the title, year, authors, and publisher of the Document as given on its Title Page, then add
an item describing the Modified Version as stated in the previous sentence.

J. Preserve the network location, if any, given in the Document for public access to a Transparent copy of the
Document, and likewise the network locations given in the Document for previous versions it was based on. These may
be placed in the “History” section. You may omit a network location for a work that was published at least four years
before the Document itself, or if the original publisher of the version it refers to gives permission.

K. For any section Entitled “Acknowledgements” or “Dedications”, Preserve the Title of the section, and preserve in
the section all the substance and tone of each of the contributor acknowledgements and/or dedications given therein.

L. Preserve all the Invariant Sections of the Document, unaltered in their text and in their titles. Section numbers or
the equivalent are not considered part of the section titles.

M. Delete any section Entitled “Endorsements”. Such a section may not be included in the Modified Version.

N. Do not retitle any existing section to be Entitled “Endorsements” or to conflict in title with any Invariant Section.

O. Preserve any Warranty Disclaimers.

If the Modified Version includes new front-matter sections or appendices that qualify as Secondary Sections and contain
no material copied from the Document, you may at your option designate some or all of these sections as invariant. To
do this, add their titles to the list of Invariant Sections in the Modified Version’s license notice. These titles must be
distinct from any other section titles.

You may add a section Entitled “Endorsements”, provided it contains nothing but endorsements of your Modified
Version by various parties—for example, statements of peer review or that the text has been approved by an organization
as the authoritative definition of a standard.

You may add a passage of up to five words as a Front-Cover Text, and a passage of up to 25 words as a Back-Cover
Text, to the end of the list of Cover Texts in the Modified Version. Only one passage of Front-Cover Text and one of
Back-Cover Text may be added by (or through arrangements made by) any one entity. If the Document already includes
a cover text for the same cover, previously added by you or by arrangement made by the same entity you are acting on
behalf of, you may not add another; but you may replace the old one, on explicit permission from the previous publisher
that added the old one.

The author(s) and publisher(s) of the Document do not by this License give permission to use their names for publicity
for or to assert or imply endorsement of any Modified Version.

Combining documents

You may combine the Document with other documents released under this License, under the terms defined in section
4 above for modified versions, provided that you include in the combination all of the Invariant Sections of all of the
original documents, unmodified, and list them all as Invariant Sections of your combined work in its license notice, and
that you preserve all their Warranty Disclaimers.

The combined work need only contain one copy of this License, and multiple identical Invariant Sections may be
replaced with a single copy. If there are multiple Invariant Sections with the same name but different contents, make the
title of each such section unique by adding at the end of it, in parentheses, the name of the original author or publisher
of that section if known, or else a unique number. Make the same adjustment to the section titles in the list of Invariant
Sections in the license notice of the combined work.

In the combination, you must combine any sections Entitled “History” in the various original documents, forming
one section Entitled “History”; likewise combine any sections Entitled “Acknowledgements”, and any sections Entitled
“Dedications”. You must delete all sections Entitled “Endorsements.”

Collections of documents

You may make a collection consisting of the Document and other documents released under this License, and replace the
individual copies of this License in the various documents with a single copy that is included in the collection, provided
that you follow the rules of this License for verbatim copying of each of the documents in all other respects.

You may extract a single document from such a collection, and distribute it individually under this License, provided
you insert a copy of this License into the extracted document, and follow this License in all other respects regarding
verbatim copying of that document.

2.4 Aggregation with independent works

A compilation of the Document or its derivatives with other separate and independent documents or works, in or on a
volume of a storage or distribution medium, is called an “aggregate” if the copyright resulting from the compilation is not
used to limit the legal rights of the compilation’s users beyond what the individual works permit. When the Document is
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included an aggregate, this License does not apply to the other works in the aggregate which are not themselves derivative
works of the Document.

If the Cover Text requirement of section 2.2 is applicable to these copies of the Document, then if the Document is less
than one half of the entire aggregate, the Document’s Cover Texts may be placed on covers that bracket the Document
within the aggregate, or the electronic equivalent of covers if the Document is in electronic form. Otherwise they must
appear on printed covers that bracket the whole aggregate.

Translation

Translation is considered a kind of modification, so you may distribute translations of the Document under the terms
of section 2.3. Replacing Invariant Sections with translations requires special permission from their copyright holders,
but you may include translations of some or all Invariant Sections in addition to the original versions of these Invariant
Sections. You may include a translation of this License, and all the license notices in the Document, and any Warrany
Disclaimers, provided that you also include the original English version of this License and the original versions of those
notices and disclaimers. In case of a disagreement between the translation and the original version of this License or a
notice or disclaimer, the original version will prevail.

If a section in the Document is Entitled “Acknowledgements”, “Dedications”, or “History”, the requirement (section 2.3)
to Preserve its Title (section 2.0) will typically require changing the actual title.

Termination

You may not copy, modify, sublicense, or distribute the Document except as expressly provided for under this License.
Any other attempt to copy, modify, sublicense or distribute the Document is void, and will automatically terminate your
rights under this License. However, parties who have received copies, or rights, from you under this License will not have
their licenses terminated so long as such parties remain in full compliance.

Future revisions of this license

The Free Software Foundation may publish new, revised versions of the GNU Free Documentation License from time to
time. Such new versions will be similar in spirit to the present version, but may differ in detail to address new problems
or concerns. See http://www.gnu.org/copyleft/.

Each version of the License is given a distinguishing version number. If the Document specifies that a particular
numbered version of this License “or any later version” applies to it, you have the option of following the terms and
conditions either of that specified version or of any later version that has been published (not as a draft) by the Free
Software Foundation. If the Document does not specify a version number of this License, you may choose any version
ever published (not as a draft) by the Free Software Foundation.

ADDENDUM: How to use this License for your documents

To use this License in a document you have written, include a copy of the License in the document and put the following
copyright and license notices just after the title page:

Copyright (c) <year> <your name>. Permission is granted to copy, distribute and/or modify this document under
the terms of the GNU Free Documentation License, Version 1.2 or any later version published by the Free Software
Foundation; with no Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts. A copy of the license is
included in the section entitled “GNU Free Documentation License”.

If you have Invariant Sections, Front-Cover Texts and Back-Cover Texts, replace the “with... Texts.” line with this:

with the Invariant Sections being <list their titles>, with the Front-Cover Texts being <list>, and with the Back-Cover
Texts being <list>.

If you have Invariant Sections without Cover Texts, or some other combination of the three, merge those two alterna-
tives to suit the situation.

If your document contains nontrivial examples of program code, we recommend releasing these examples in parallel
under your choice of free software license, such as the GNU General Public License, to permit their use in free software.

Copyright

Copyright (c) 2000, 2001, 2002 Free Software Foundation, Inc. 59 Temple Place, Suite 330, Boston, MA 02111-1307, USA
Everyone is permitted to copy and distribute verbatim copies of this license document, but changing it is not allowed.
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