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Part I

Problems

1 Coordinates and 1-forms

1.1 Invertible transformations

Under what conditions is a coordinate transformation ξα = ξα(xα) invertible in a neighborhood of some point xα?

1.2 Examples of coordinate transformations

The following coordinate transformations are given, mapping the standard Euclidean coordinates (x, y) or (x, y, z) into
new coordinates.

1. In a two-dimensional plane, (x, y) → (u, v), where −∞ < u, v < +∞:

x = u+ uv2 +
1

3
u3,

y = v + vu2 +
1

3
v3.

2. In a three-dimensional space, (x, y, z) → (r, θ, φ), where −∞ < r < +∞, 0 ≤ θ < +∞, 0 ≤ φ < 2π:

x = r sinh θ cosφ,

y = r sinh θ sinφ,

z = r cosh θ.

3. In a three-dimensional space, (x, y, z) → (r, θ, φ), where 0 ≤ r < +∞, 0 ≤ θ ≤ π, 0 ≤ φ < 2π:Solutions

x = −r sin θ cosφ,

y = −r sin θ sinφ,

z = r cos θ.

The following questions must be answered in all three cases:
(a) Find the subdomain covered by the new coordinates. Hint: Consider e.g. the range of x at constant value of y.
(b) Find the points where the new coordinates do not specify a one-to-one invertible transformation (singular points).
(c) If singular points exist, give a geometric interpretation.

1.3 Basis in tangent space

Prove that the vectors eα = ∂
∂xα are linearly independent.

1.4 Differentials of functions as 1-forms

If f(xα) is a function of coordinates xα, then one defines the 1-form df (called the differential of the function f) as

df ≡
∑

α

∂f

∂xα
dxα. (1)

Compute d(x), d(x2), d(xy), d(x+ y). Compute the 1-forms df , dg, dh, where the functions f, g, h are defined as follows,

f(x, y, z) =4x2y + x3z,

g(x, y) =3
√

x2 + y2,

h(x, y) = arctan (x+ y) + arctan(x− y)

+ arctan
2x

x2 − y2 − 1
.

1.5 Basis in cotangent space

Show that the 1-forms dx1, ..., dxn comprise a basis in the space of 1-forms at any point M . Show that

< dxα,
∂

∂xβ
>= δαβ .
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1.6 Linearly independent 1-forms

Check whether the following sets of 1-forms are linearly independent at each point of the 2-dimensional or the 3-
dimensional space respectively. If not, determine the points where these sets are linearly dependent.

1. Two 1-forms d(ex cos y), d(ex sin y).

2. Two 1-forms (1 + y)dx− 2xydy, 8dx.

3. Three 1-forms dx+ dy, dx+ dz, dy + dz.

4. Three 1-forms dx− dy, dy − dz, dz − dx.

1.7 Transformation law for 1-forms

Derive the transformation law for 1-forms,

dx̃α =
∂x̃α

∂xβ
dxβ , (2)

under a coordinate transformation xα → x̃α = x̃α(xβ).

1.8 Examples of transformations

Consider the coordinate transformation (x, y) → (u, v) defined in Problem 1.2(1). Transform the following 1-form,

ω = d
1

x+ y
,

into the coordinates (u, v) in two ways:
(a) By a direct substitution of the new coordinates.
(b) By using the transformation law (2).

1.9 Supplementary Problem Sheet 1

2D surfaces embedded in 3D Euclidean space

1A Tangent plane

Consider the surface given by z = −h exp
(

− 1
2σ2 (x

2 + y2)
)

. If gravity acts in the negative z-direction, at what points will
a ball rolling along this surface experience the greatest acceleration? Find the tangent plane at one of these points.

1B Induced metric

Find the metric for the surface given parametrically by

x = a sin2 θ cosφ,

y = a sin2 θ sinφ,

z = a cos θ sin θ,

where, as usual, θ ∈ [0, π) and φ ∈ [0, 2π). Is the metric well defined at θ = 0? Do you think the surface is well defined
there?

1C Embedding waves

1. Sketch the surface given by

x =
cos v√
2− sinu

,

y =
sin v√
2− sinu

,

z =
cosu√
2− sinu

,

where u, v ∈ [0, 2π). (Hint: Consider the intersection of the surface with the plane y = 0. What happens for general
v?)

2. Find the normal vector and the tangent plane to this surface at point (u, v).
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3. Determine the induced metric on the surface. Then consider the 2D vector V a = (cos v, sin v), i.e.

V = cos v
∂

∂v
+ sin v

∂

∂u
,

defined within the surface. Is V a a unit vector? What are the 3D Euclidean components of the vector V in the 3D
space? Show that the 3D components of the vector V everywhere lie in the tangent plane to the surface.

2 Tensors

2.1 Definition of tensor product

If ω1 and ω2 are 1-forms, their tensor product ω1 ⊗ ω2 is defined as a function on pairs of vectors:

(ω1 ⊗ ω2)(v1,v2) = 〈ω1,v1〉 〈ω2,v2〉 . (3)

Let ω1 = dx+2ydy, ω2 = −2dy be 1-forms on a 2-dimensional space and v1 = 3∂/∂x, v2 = −x (∂/∂x+ ∂/∂y) be vector
fields (also defined in this 2-dimensional space). Just for this problem, let us denote T ≡ ω1 ⊗ ω2.

(a) Compute T (v1,v1).
(b) Compute T (v1,v2).
(c) Show that

T (a+ λb,u) = T (a,u) + λT (b,u), (4)

where a,b,u are vectors and λ is a number). The same property holds for the second argument of T . Such functions T
are called bilinear.

(d) Show that all bilinear functions of pairs of 2-dimensional vectors belong to a vector space of such functions. Show
that the tensor products dx⊗ dx, dx⊗ dy, dy ⊗ dx, dy ⊗ dy form a basis in that space. (That space is called the space
of tensors of rank 0 + 2.)

2.2 General tensors

(a) A general tensor of rank r+s is defined as a multilinear function on sets of r 1-forms fj and s vectors vj (multilinear
means linear in every argument). An example of a tensor of rank r + s is a tensor product of r vectors e1, ..., er, and s
1-forms ω1, ..., ωs, denoted by e1 ⊗ ...⊗ er ⊗ω1 ⊗ ...⊗ωs. This tensor is a function that acts on a set of r 1-forms fj and
s vectors vj via the formula

e1 ⊗ ...⊗ er ⊗ ω1 ⊗ ...⊗ ωs(f1, ..., fr,v1, ...,vs)

= 〈f1, e1〉 ... 〈fr, er〉 〈ω1,v1〉 ... 〈ωs,vs〉 .

(This is a generalization of Eq. (3) to tensors of rank r + s.) Show that this function is linear in every argument. Such
functions are called r + s-linear functions. Show that all r + s-linear functions form a vector space. This vector space is
called the space of tensors of rank r + s.

(b) Let ej , j = 1, ..., N , and ωj , j = 1, ..., N are bases in the space of vectors and in the space of 1-forms respectively
(both spaces have dimension N). Show that the set of tensors

eα1 ⊗ ...⊗ eαr
⊗ ωβ1 ⊗ ...⊗ ωβs (5)

form a basis in the space of r + s-tensors (where αj and βj exhaust all possible combinations of indices). Note that this
set contains nr+s basis tensors.

2.3 Example

(a) Let T be a bilinear function of two vectors with vector values, i.e. T(v1,v2) is a vector if v1,v2 are vectors. Give a
simple example of such T as a tensor and determine its rank.

(b) A particular example of such a tensor T in 3-dimensional Euclidean space is the following function,

T(v1,v2) = 2v1 × v2 − v1(n · v2), (6)

where n is a fixed vector. Show that the function T is bilinear in v1,v2. Determine the components Tα
βγ of the tensor

T in an orthogonal basis where the vector n has the components nα ≡ (n1, n2, n3).

2.4 Transformation law

Derive the transformation law for the components T β1...βr
α1...αs

of a tensor of rank r + s.
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2.5 Contractions of tensor indices

(a) Show that the results of addition, multiplication by scalar, tensor multiplication, and index contraction of tensors are
again tensors. Use the definition of tensor from Problem 2.2.

(b) Show that a contraction of indices in the same position (e.g. lower indices with lower indices, Tααβ) does not
generally yield a tensor.

(c) Consider the tensor Tα
βγ defined in Problem 2.3(b) and compute the contraction Tα

αβ . Is the result a tensor? If
so, determine its rank.

2.6 Invariance of the interval

Show that the spacetime interval ds2 ≡ gαβdx
αdxβ is invariant under coordinate transformations xα → x̃α if gαβ are

components of a tensor transforming according to the tensor transformation law

gαβ → g̃αβ =
∂xµ

∂x̃α

∂xν

∂x̃β
gµν . (7)

2.7 Correspondence between vectors and 1-forms

For a given metric gαβ , each vector v has a corresponding 1-form which we shall denote ωv. This 1-form is defined by its
action on an arbitrary vector x as follows,

〈ωv,x〉 = v · x, (8)

where the scalar product v ·x is defined through the metric gαβ . Show that the components of the 1-form ωv in the basis
dxα are related to the components of the vector v in the basis ∂/∂xα by

ωα = gαβv
β . (9)

2.8 Examples of spaces with a metric

(a) Consider the usual, Euclidean 3-dimensional space with the metric

g(v1,v2) = v1 · v2 − (n× v1) · (n× v2), (10)

where v1 ·v2 is the usual scalar product, a×b is the cross product, and n is a fixed vector with components nα. Compute
the components of the tensor gαβ . For which vectors n is the metric g nondegenerate (i.e. det gαβ 6= 0)?

(b) Answer the same questions for the 2-dimensional Euclidean space with the metric

g(v1,v2) = 3v1 · v2 + (n · v1)(n · v2). (11)

Note that the cross product is undefined in the 2-dimensional space.
(c)* Answer the same questions for the metric (11) now defined in an r-dimensional Euclidean space, r ≥ 3.
(d)* Consider a 2-dimensional surface embedded in the 3-dimensional Euclidean space,

x = R coshu cos v, (12)

y = R coshu sin v, (13)

z = R sinhu. (14)

Determine the 2-dimensional metric gαβ in the basis du, dv.

2.9 Supplementary Problem Sheet 2

Calculations with tensor indices

2A Vector equations

In the following equations, the vector xα is unknown and all other quantities are known. The symbol εαβγ denotes the
completely antisymmetric tensor. Determine the unknown vector xα from the given data. In every case, assume the
“generic” choice of data. This means that every given scalar, vector and tensor is nonzero (k,Aα, B

β , ...), there are no
accidental cancellations or linear dependence between given vectors, matrices are nondegenerate, etc.

(a) kxα + εαβγxβAγ = Bα (3-dimensional vectors). The assumption of the “generic” case is k 6= 0 and Aα and Bα

linearly independent.
(b) εαβγx

βAγ = Bα, x
αCα = k (3-dimensional vectors).

(c) xαAα = k, xβBβ = l (2-dimensional vectors).
(d) xαAαβ = Bβ (3-dimensional vectors and a given tensor Aαβ).
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2B Tensor equations

In the following equations, the tensor Xαβ is unknown and all other quantities are known. The dimensionality of the
(Euclidean) space is indicated. Determine Xαβ under the assumption that all given quantities are generic.

(a) Xαβ = Xβα, XαβAα = Bβ , Xα
α = 0, where AαBα = 0 (2-dimensional).

(b) Xαβ = −Xβα, XαβAα = Bβ , XαβBα = 0, where AαBα = 0 (3-dimensional vectors).

2C Degeneracy of the metric

(a) A two-dimensional space with coordinates (x, y) has the metric given as a bilinear form

g = y2dx⊗ dx+ (x2 + 1)(dx⊗ dy + dy ⊗ dx). (15)

Is the metric nondegenerate at all points (x, y)?
(b) The same question for the n-dimensional metric of the form

gαβ = δαβ −
(

1 + r2
)

AαAβ , (16)

where Aα is a given vector and r2 ≡ δαβx
αxβ is the squared Euclidean distance.

3 The Christoffel symbol Γµ
αβ

3.1 Transformations 1

In flat space with standard Euclidean coordinates ξµ and arbitrary coordinates xµ = xµ(ξα), the Christoffel symbol can
be found as

Γµ
αβ =

∂2ξν

∂xα∂xβ

∂xµ

∂ξν
.

Derive the transformation law for Γµ
αβ between arbitrary coordinate systems xµ and x̃µ:

Γ̃α
βγ = Γµ

ρσ

∂x̃α

∂xµ

∂xρ

∂x̃β

∂xσ

∂x̃γ
+

∂2xσ

∂x̃β∂x̃γ

∂x̃α

∂xσ
. (17)

3.2 Transformations 2

Show that the Christoffel symbol must transform according to Eq. (17) not only in flat space but also in arbitrary space.
Hint: consider the covariant derivative of a vector field,

Aα;β =
∂Aα

∂xβ
− Γµ

αβAµ,

and demand that the components Aα;β transform as a tensor.

3.3 Covariant derivatives

Derive the explicit form of the covariant derivative
Tαβ

γδµ;ν

for a tensor field Tαβ
γδµ.

3.4 The Leibnitz rule

Prove the Leibnitz rule in the following specific case,

(

AαB
β
)

;γ
= Aα;γB

β +AαB
β
;γ .

3.5 Locally inertial reference frame

Suppose that the Christoffel symbol at a point xα
(0) in some coordinate system xα has the value Γα

(0)µν and is symmetric,
Γα
(0)µν = Γα

(0)νµ. Then a locally inertial system at point x0 can be constructed by defining the new coordinates

ξα(x) = xα − xα
(0) +

1

2

(

xµ − xµ
(0)

)(

xν − xν
(0)

)

Γα
(0)µν .

The point x0 in the new coordinates is the origin ξα = 0. Prove explicitly that the Christoffel symbol, when transformed
to the new coordinates, is equal to zero at the point ξα = 0.
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4 Geodesics and curvature

4.1 Geodesics

(a) Show that the geodesic equation can be written in the following form,

duα

ds
− 1

2

∂gβγ
∂xα

uβuγ = 0. (18)

(b) Show that gαβu
αuβ is constant along a geodesic.

4.2 Commutator of covariant derivatives

Show that
uα

;β;γ − uα
;γ;β = Rα

δγβu
δ, (19)

where the Riemann tensor is defined by

Rα
δγβ =

∂Γα
δβ

∂xγ
− ∂Γα

δγ

∂xβ
+ Γα

σγΓ
σ
δβ − Γα

σβΓ
σ
δγ . (20)

4.3 Parallel transport

Consider a vector Aα parallel-transported along a small closed curve xµ(s). Show that the change in Aα after the parallel
transport can be approximately expressed as

δAα ≡
∮

Γβ
αγ(x)Aβdx

γ ≈ 1

2
Rδ

αβγAδ

∮

xβdxγ , (21)

where it is assumed that the area within the closed curve is very small.
Hint: Use a locally inertial coordinate system where Γα

βγ = 0 at one point. Also, show that

∮

xαdxβ = −
∮

xβdxα. (22)

4.4 Riemann tensor

(a) Using the symmetry properties of the Riemann tensor Rαβγδ, compute the number of independent components of
Rαβγδ in an n-dimensional space (n ≥ 2).

(b) Prove the Bianchi identity: Rα
βγδ;σ +Rα

βσγ;δ +Rα
βδσ;γ = 0.

(c) Compute the Einstein tensor Gα
β in an arbitrary two-dimensional space. Hint: First determine the independent

components of Rαβγδ.

4.5 Lorentz transformations

Determine the number of independent parameters in Lorentz transformations x̃µ = Λµ
αx

α, given by matrices Λβ
α, and

interpret these parameters. Hint: It is easier to consider infinitesimal Lorentz transformations Λα
β = δαβ + εHα

β , where

ε ≪ 1 and so ε2 can be disregarded.

5 Gravitation theory applied

5.1 Redshift

Calculate the gravitational redshift at the surface of the Earth for the vertical distance of 1m between the sender and the
receiver. Same question for 1 km.

5.2 Energy-momentum tensor 1

Rewrite the conservation law Tαβ
;β = 0 explicitly in the nonrelativistic limit for an ideal fluid, and show that these

equations coincide with the continuity equation and the Euler equation.

5.3 Energy-momentum tensor 2

The EMT for a massless scalar field is

Tα
β = Φ;αΦ;β − 1

2
δαβΦ

;γΦ;γ .

Show (using the conservation law) that the equation of motion the field is Φ;α
;α = 0.
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5.4 Weak gravity

Show that in the limit of weak static gravitational field (g00 = 1 + 2Φ(x, y, z), and gµν is independent of t) the following
relation holds,

R00 ≈ ∆Φ+O(Φ2) ,

where ∆ is the ordinary Laplace operator, ∆ ≡ ∂xx + ∂yy + ∂zz.

5.5 Equations of motion from conservation law

The EMT for a point particle of mass m0 moving along a worldline xσ(s) can be expressed as

Tµν =
1√−g

m0

∫

ds
dxµ

ds

dxν

ds
δ(4)(xσ − xσ(s)) .

Show that the conservation law Tµν
;ν = 0 implies the geodesic equation for xσ(s).

Hint: First derive the relations

Γν
µν =

1√−g

∂

∂xµ
(
√−g) ,

Tµν
;ν =

1√−g

∂

∂xν
(
√−gTµν) + Γµ

ρσT
ρσ .

6 The gravitational field

6.1 Degrees of freedom

Using the scheme developed in the lecture, compute the number of degrees of freedom in the electromagnetic field, taking
into account the presence of charges and currents.

6.2 Spherically symmetric spacetime

Compute the Ricci tensor Rα
β and the curvature scalar R for a spherically symmetric gravitational field. Assume that the

metric has the form

gµν =









eν(t,r) 0 0 0
0 −eλ(t,r) 0 0
0 0 −r2 0
0 0 0 −r2 sin2 θ









.

Write the corresponding Einstein equations in vacuum (Tµν = 0).
Comment: This computation is extremely long when performed by the methods explained in this course (Christoffel

symbols, energy-momentum tensor). There exist faster methods for computing curvature, for example methods based on
the tetrad formalism, but this is beyond the scope of this introductory course on GR. In this course, it would be more
appropriate to ask for an easier computation. For example, to compute the curvature in two dimensions of the metric
gµν =diag(1,cos2 θ), or another diagonal metric in a two-dimensional spacetime.

6.3 Motion in Schwarzschild spacetime

Derive the equation for the covariant component u1 of the 4-velocity of a particle in Schwarzschild spacetime (u1(λ) ≡
−f−1(r)ṙ, f(r) = 1− rg/r). Verify that this equation follows from Eqs. (23)–(26) given in the lecture:

f ṫ2 − f−1ṙ2 − r2θ̇2 − r2 sin2 θφ̇2 = K (= uαu
α), (23)

d

dλ

(

f ṫ
)

= 0, (u0) (24)

d

dλ

(

−r2θ̇
)

+ r2 sin θ cos θφ̇2 = 0, (u2) (25)

d

dλ

(

r2 sin2 θφ̇
)

= 0, (u3) (26)

where the overdot (̇) denotes d/dλ and the spherical coordinates are
{

x0, x1, x2, x3
}

≡ {t, r, θ, φ}.

10



6.4 Equations of motion

Verify that Eq. (30) follows from Eqs. (27)–(29) given in the lecture:

−e−λ

(

1

r2
− λ′

r

)

+
1

r2
= 0, (27)

−e−λ λ̇

r
= 0, (28)

−e−λ

(

ν′

r
+

1

r2

)

+
1

r2
= 0, (29)

−1

2
e−λ

(

ν′′ +
ν′2

2
+

ν′ − λ′

r
− ν′λ′

2

)

+
1

2
e−ν

(

λ̈+
λ̇2

2
− λ̇ν̇

2

)

= 0. (30)

Here the prime (′) denotes ∂/∂r and the overdot (̇) denotes ∂/∂t.

7 Weak gravitational fields

7.1 Gravitational bending of light

Verify that the gravitational bending of light passing near the Sun is

δ = 1.75′′
R⊙

R

where R is the distance at which the light passes from the center of the Sun and R⊙ is the radius of the Sun.

7.2 Einstein tensor for weak field

Derive the following expression for the Einstein tensor due to a weak gravitational field,

Gµ
ν =

1

2

(

−h̄µ
ν
,α

,α − δµν h̄
α
β
,β

,α + h̄µ
α
,α

,ν + h̄α
ν
,µ

,α

)

+O(h2), (31)

where h̄µ
ν = hµ

ν − 1
2 δ

µ
ν h.

7.3 Gravitational perturbations I

Derive the expressions (shown in the lecture) for the Einstein tensor Gµ
ν in terms of the scalar, vector, and tensor

perturbations of the gravitational field. The background is the flat Minkowski spacetime, (0)gαβ = ηαβ , and the metric is

g00 = 1 + 2Φ, g0i = B,i + Si, gij = −δij + 2Ψδij + 2E,ij + Fi,j + Fj,i + hij . (32)

7.4 Gravitational perturbations II

Derive the transformation laws for the scalar, vector, and tensor perturbations of the gravitational field, under an
infinitesimal change of the coordinates,

x̃µ = xµ + ξµ(x). (33)

Note: It is convenient to decompose ξµ as ξµ =
(

ξ0, ξi⊥ + ζ ,i
)

, where ξ0 and ζ are scalar functions and ξi⊥,i = 0.

8 Gravitational radiation I

8.1 Gauge invariant variables

Verify that the following combinations of metric perturbations, D = Φ−Ψ− Ḃ + Ë and Si − Ḟi, are gauge-invariant.

8.2 Detecting gravitational waves

Light noninteracting particles are situated in the x − y plane in free space. A plane gravitational wave propagating in
the z direction passes through the ring. The metric is of the form gµν = ηµν + hµν , where hµn contains only the pure
tensor component,

hµν =









0 0 0 0
0 A+ A× 0
0 A× −A+ 0
0 0 0 0









exp [−iω (t− z)] . (34)
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Describe the deformation of the shape of the ring due to the gravitational wave. Consider cases A+ 6= 0, A× = 0 and
A+ = 0, A× 6= 0.

8.3 Poisson equation

Derive the solution of the following differential equation,

∆φ(x) = 4πρ(x), (35)

with boundary conditions φ → 0 at |x| → ∞.

8.4 Metric perturbations 1

Determine an explicit expression for α through T 0
i,i, where ∂iα represents the scalar part of T 0

i.

8.5 Metric perturbations 2

Verify that the equation

− 1

2
(Ṡi − F̈i) = 8πGσi (36)

which follows from vector part of the spatial Einstein equation, also follows from other components of the Einstein
equation and from the conservation law (as derived in the lecture).

9 Gravitational radiation II

9.1 Projection of the matter tensor

The projection operator Pij is defined by

Pij = δij − ninj , nin
i = 1, ni ≡

Ri

R
. (37)

Show that the projected tensor (T )Xik(t, |~R|) defined by

(T )Xik = PiaXabPbk − 1

2
PikPabXab, Xik(t,R) ≡

∫

d3r rirkT00(t− |R| , r), (38)

has the following properties,

a) (T )Xii = 0; (39)

b) (T )Xik,i = O(X |R|−1
), (40)

that is, (T )Xik is transverse-traceless up to terms of order |R|−1
.

9.2 Matter sources

Verify thafullyt (T )Xik = (T )Qik, where
(T )Xik(t− |~R|) is the projected tensor defined in Problem 9.1 and

(T )Qik = PiaQabPbk − 1

2
PikPabQab, (41)

Qik ≡
∫

(rirk − 1

3
δik r

2)T 0
0 d

3r. (42)

9.3 Energy-momentum tensor of gravitational waves

Compute the second-order terms G(2)α
β , i.e. terms quadratic in hµν , of the Einstein tensor Gα

β for small perturbations
in flat space, gµν = ηµν + hµν , where only the transverse and traceless part (T )hik is nonzero. Verify that the energy-
momentum tensor of gravitational waves in vacuum (Tµν = 0 for matter) is

(GW)Tα
β ≡ − 1

8πG

〈

G(2)α
β

〉

=
1

32πG

〈

(T )hi
k
,α(T )hi

k
,β

〉

. (43)
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9.4 Power of emitted radiation

Show that the rate of energy loss (energy lost per unit time) is

dE

dt
= − G

8π

∫

d2Ω(T )
...
Qik

(T )
...
Qik = −G

5

...
Qik

...
Qik. (44)

Here the integration goes over all directions ni in 2-sphere. In the calculation, derive and use the following relations,

∫

nlnm d2Ω

4π
=

1

3
δlm, (45)

∫

nlnmnknr d
2Ω

4π
=

1

15
(δlmδkr + δlkδmr + δlkδmr) . (46)

10 Sample exam problems

These problems were at some time given at the exams. If some of these problems are again given at an exam, it means
that the professor is not doing his job properly. Professors are paid for teaching, so they must be able to invent new
exam problems each time.

10.1 Metric and curvature

1. A two-dimensional torus with coordinates (θ, φ) is described as the surface

x = (b+ a cosφ) cos θ,

y = (b+ a cosφ) sin θ,

z = a sinφ,

embedded in the three-dimensional Euclidean space with the metric ds2 = dx2+dy2+dz2. Compute
the induced metric on the torus,

ds2 = (...) dθ2 + (...) dθdφ+ (...) dφ2.

2. In a two-dimensional space, the basis vectors (in polar coordinates) are er =
∂
∂r
, eφ = 1

r
∂
∂φ
. Consider

the dual basis of 1-forms ωr, ωφ:

ωi(ek) = δik, where i, k = φ, r.

Find a function fr(φ, r) such that the 1-form ωr is the differential of fr, that is, ω
r = dfr. Show

that the 1-form ωφ is not a differential.

3. A metric in a two-dimensional spacetime with coordinates (u, v) is

ds2 = du2 − u2dv2.

• Transform the line element ds2 from (u, v) to new coordinates (x, t) defined by

x = u cosh v, t = u sinh v.

• Determine the curvature tensor Rαβµν for this spacetime.

10.2 Geodesics

1. Consider a two-dimensional spacetime with coordinates (t, x) and the metric

ds2 = dt2 − e2Htdx2, (47)

where H is a known constant. Determine the Christoffel symbols and the equation for a geodesic
t(s), x(s). Solve this equation for the case of a light-like geodesic with initial conditions t(0) = t0,
x(0) = x0 and obtain x(s), y(s) explicitly. Hint: Use the property of light-like geodesics,

gµν ẋ
µẋν = 0. (48)
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2. Suppose that the metric in a certain coordinate system {xµ} has the form

gµν =









1 0 0 0
0 g11 g12 g13
0 g21 g22 g23
0 g31 g32 g33









, (49)

where the spatial components gij(x
µ), i, j = 1, 2, 3 are arbitrary functions of space and time.

Consider the worldline xµ(s) describing a particle with constant values of the spatial coordinates,

x0(s) = s, x1,2,3(s) = const. (50)

Is the worldline xµ(s) a geodesic?

10.3 Motion in central field

The motion of a particle in spacetime is given by the geodesic equation. For the Schwarzschild metric,
the radial equation of motion is

ṙ2 + V (r) = C2,

where ˙= d/dτ and V (r) is the effective potential given by

V (r) =

(

1− 2m

r

)(

1 +
h2

r2

)

.

The details of the motion are governed by the constants C and h; they are a measure of the particle’s
total energy and angular momentum respectively.
(a) For what values of h2 are there circular orbits? Given that m and h2 are positive, show that the
radii of these orbits are always larger than 3m.
(b) A circular orbit will be stable if V ′′(r) > 0. Show that when there are two circular orbits, the one
with the larger radius is stable. It follows that the other orbit is unstable.
(c) The radius of the unstable orbit gives the position of the potential barrier. In the limit of h ≫ m,

show that the height of the barrier is approximately h2

27m2 . Sketch the potential.
(d) A particle coming in from infinity must have C2 ≥ 1. What happens to this particle if C2 is also
larger than the barrier height? How is this result different from the case in Newtonian gravity?

10.4 Gravitational radiation

A light planet of mass m is revolving around a heavy star of mass M on a circular orbit with radius
R. Assume that the motion of the planet is non-relativistic, the star is approximately motionless, and
both the star and the planet can be treated as point masses.

1. Calculate the period T of the motion of the planet (in the Newtonian approximation). Determine
the power LGW of gravitational radiation emitted by the planet using the known formulae

LGW =
G

5c5

〈

∑

ij

...
Qij(t)

...
Qij(t)

〉

, where 〈〉 means time average,

Qij(t) =

∫

d3x

(

xixj −
1

3
x2δij

)

ρ(x, t).

Hint: Assume that the star is at the origin, write the trajectory of the planet as a function xpl(t) and express the
corresponding ρ(x, t) using δ-functions,

ρ(x, t) = Mδ(x) +mδ(x− xpl(t)).

2. Estimate the timescale ∆T for a significant change in the kinetic energy of the planet due to
gravitational radiation. Express the dimensionless result, ∆T/T , in terms of the ratios M/m and
R/Rs, where Rs =

GM
c2

is the Schwarzschild radius of the star. Estimate the value ∆T/T for the
orbit of the Earth around the Sun (M/m ∼ 343000, Rs ∼ 3km, R ∼ 1.5 · 1011m, T = 1 year).
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Part II

Solutions

1 Coordinates and 1-forms

1.1 Invertible transformations

The inverse function theorem guarantees that the equations ξα = ξα(x) are solvable near a point x0 if det
(

∂ξα(x)/∂xβ
)

6=
0 at x0. Under this condition, the coordinate transformation is invertible at x0. Note: we are inverting not just one
function ξ = ξ(x), but we are determining x from a system of n equations, say ξα(x) = Cα, where Cα are n given values.

1.2 Examples of coordinate transformations

1. a) Since x = u
(

1 + v2
)

+ u3/3, it is clear that x has range (−∞,+∞) for any fixed value of v as u varies in the range
(−∞,+∞). Similarly, y has the range (−∞,+∞). To verify that the coordinate system (x, y) covers the entire plane,
it is sufficient to show that x has the full range at every fixed value of y. It is sufficient to consider y0 > 0 (else change
v → −v). At fixed y = y0 > 0, we have y0 = v + vu2 + v3/3 and thus the admissible values of u are from −∞ to +∞,
while the admissible values of v are from 0 to v = vmax such that y0 = vmax +

1
3v

3
max. Then

u = ±

√

y0 − v − 1
3v

3

v
(we have

y0 − v − 1
3v

3

v
≥ 0 for 0 < v < vmax),

x = ±
(

1 + v2 +
y0 − v − 1

3v
3

3v

)

√

y0 − v − 1
3v

3

v

= ±
(

2

3
+

8

9
v2 +

y0
3v

)

√

y0 − v − 1
3v

3

v
.

We have now expressed x as a function of v, i.e. x = x(v). When v varies from 0 to vmax, x(v) varies from ±∞ to 0.
Since x(v) is nonsingular for v > 0, it follows that x has the full range. Therefore, the coordinates (x, y) cover the entire
two-dimensional plane.

b) The coordinate transformation is nonsingular if

det
∂ (x, y)

∂ (u, v)
6= 0.

Compute:

det

(

∂x
∂u

∂y
∂u

∂x
∂v

∂y
∂v

)

= det

(

1 + u2 + v2 2uv
2uv 1 + u2 + v2

)

(51)

= 1 + 2
(

u2 + v2
)

+
(

u2 − v2
)2

> 0.

Therefore there are no singular points.
2. a) To determine the range, first consider φ = 0. Then x = r sinh θ, y = 0, z = r cosh θ. It is clear that z2−x2 = r2.

Since r ≥ 0, the coordinates (x, y, z) cover only the domain |z| > |x|. With arbitrary φ, it is clear that the coordinates

(x, y, z) cover the domain |z| >
√

x2 + y2.
b) Compute the determinant:

det





sinh θ cosφ r cosh θ cosφ −r sinh θ sinφ
sinh θ sinφ r cosh θ sinφ r sinh θ cosφ

cosh θ r sinh θ 0



 = r2 sinh θ.

The coordinates are singular if r = 0 or θ = 0.
c) The singularity at r = 0 is due to the fact that the set {r = 0, θ, φ} corresponds to a single point x = y = z = 0.

This is similar to the singularity of the spherical coordinates at r = 0. Points along the cone |z| =
√

x2 + y2 are not
covered because they correspond to θ → ∞, r → 0. The singularity at θ = 0, r 6= 0 is due to the fact that the set
{r, θ = 0, φ} corresponds to the point x = y = 0, z = r at fixed r 6= 0. This is similar to the polar coordinate singularity.

3. a) To determine the range, note that r sin θ ≥ 0 for the given range of θ and r. However, this is immaterial since the
factors cosφ and sinφ will make x, y cover the full range (−∞,+∞). The coordinates (x, y, z) are a slight modification
of the standard spherical coordinates. These coordinates cover the whole space (x, y, z).

b) Compute the determinant:

det





− sin θ cosφ −r cos θ cosφ r sin θ sinφ
− sin θ sinφ −r cosφ sinφ −r sin θ cosφ

cos θ −r sin θ 0



 = r2 sin θ.

This is nonzero unless r = 0 or θ = 0.
c) The singularities are completely analogous to those in the spherical coordinates.
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1.3 Basis in tangent space

Suppose that the vectors eα = ∂
∂xα are linearly dependent, then there exist constants cα, not all zero, such that the vector

cαeα equals zero. Act with this vector on the coordinate function x1:

cαeαx
1 = cα

∂

∂xα
x1 = c1.

By assumption, cαeα = 0, therefore c1 = 0. It follows that every cα equals zero, contradicting the assumption.

1.4 Differentials of functions as 1-forms

d(x) = dx, d
(

x2
)

= 2xdx,

d (xy) = xdy + ydx, d (x+ y) = dx+ dy,

d
(

4x2y + x3z
)

=
(

8xy + 3x2z
)

dx+ 4x2dy + x3dz, d
(

3
√

x2 + y2
)

= 3
xdx+ ydy
√

x2 + y2
.

Now let us compute dh by first finding

d (arctan (x± y)) =
dx± dy

1 + (x± y)
2 ,

d

(

arctan
2x

x2 − y2 − 1

)

=
1

1 + 4x2

(x2−y2−1)2

[

2dx

x2 − y2 − 1
− 4x (xdx− ydy)

(x2 − y2 − 1)
2

]

=
−2
(

x2 + y2 + 1
)

dx+ 4xydy

(x2 − y2 − 1)
2
+ 4x2

.

Adding these together and noting that
(

1 + (x+ y)
2
)(

1 + (x− y)
2
)

=
(

x2 − y2 − 1
)2

+ 4x2,

we get

dh(x, y) = d

(

arctan (x+ y) + arctan(x− y) + arctan
2x

x2 − y2 − 1

)

= 0.

This means that h(x, y) is a constant. By using the tangent sum rule, we can easily show that h(x, y) = 0.

1.5 Basis in cotangent space

Note that the relation
〈

dxα,
∂

∂xβ

〉

= δαβ

is the definition of how the 1-form dxα acts on vectors ∂/∂xβ . Now, it is clear that any 1-form is decomposed as a linear
combination of the 1-forms dx1, ..., dxn. It remains to show that all these forms are linearly independent. If this were
not so, there would exist a linear combination cαdx

α = 0 such that not all cα = 0. Act with this on a vector ∂/∂x1 and
obtain

0 =

〈

0,
∂

∂x1

〉

=

〈

cαdx
α,

∂

∂x1

〉

= c1.

Therefore c1 = 0. Similarly, we find that every other cα = 0, which contradicts the assumption.

1.6 Linearly independent 1-forms

1. Two 1-forms d(ex cos y), d(ex sin y) are linearly independent for every x, y because

d (ex cos y) = ex cos ydx− ex sin ydy,

d (ex sin y) = ex sin ydx+ ex cos ydy,

and the following determinant is always nonzero,

det

(

ex cos y −ex sin y
ex sin y ex cos y

)

= e2x 6= 0.

2. Two 1-forms (1 + y)dx− 2xydy, 8dx are linearly independent if the following determinant is nonzero,

det

(

1 + y −2xy
8 0

)

= 16xy.

This happens for xy 6= 0.

3. Three 1-forms dx+ dy, dx+ dz, dy + dz are always linearly independent.

4. Three 1-forms dx− dy, dy − dz, dz − dx are always linearly dependent (their sum is zero).
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1.7 Transformation law for 1-forms

The transformation law for 1-forms,

dx̃α =
∂x̃α

∂xβ
dxβ ,

under a coordinate transformation xα → x̃α = x̃α(xβ), is merely a different interpretation of the definition of the 1-form
dx̃α (see Problem 1.4), where x̃α(x) is considered a scalar function in the coordinates

{

xβ
}

.

1.8 Examples of transformations

a) First compute dx and dy:

dx =
(

1 + u2 + v2
)

du+ (2uv) dv,

dy = (2uv) du+
(

1 + u2 + v2
)

dv.

Then it is easy to compute xdx+ ydy,etc. For instance,

d
1

x+ y
= − dx+ dy

(x+ y)
2 = −

(du+ dv)
(

1 + (u+ v)
2
)

(u+ v)
2
(

1 + 1
3 (u+ v)

2
)2 .

b) The component transformation matrix is given in Eq. (51).

1.9 Supplementary problem sheet

1A Tangent plane

If the tangent plane is at angle α with the horizontal, then the acceleration is g sinα (from elementary mechanics). Since
0 ≤ α < π

2 , we need to maximize α or, equivalently, tanα, which equals

∂z

∂r
=

rh

σ2
e−

1
2 r

2σ−2

, r ≡
√

x2 + y2.

The maximum of ∂z/∂r is at r0 = σ. For example, a point with maximum acceleration is x0 = σ, y0 = 0, z0 = −he−
1
2 .

The tangent plane at a point (x0, y0, z0) is given by the equation

nx (x− x0) + ny (y − y0) + nz (z − z0) = 0,

where (nx, ny, nz) are the components of the normal vector,

(nx, ny, nz) =

(

∂z

∂x
,
∂z

∂y
, 1

)∣

∣

∣

∣

x0,y0,z0

=

(

e−
1
2
h

σ
, 0, 1

)

.

Therefore the equation of the tangent plane is
x

σ
e−

1
2 +

z

h
= 0.

1B Induced metric

The induced metric is found by taking the expression for the bulk metric, g = dx2 + dy2 + dz2, and computing dx, dy, dz
through the forms dθ and dφ:

dx = 2a sin θ cos θ cosφdθ − a sin2 θ sinφdφ,

dy = 2a sin θ cos θ sinφdθ + a sin2 θ cosφdφ,

dz = 2a cos 2θdθ.

Therefore
g = dx2 + dy2 + dz2 = a2dθ2 + a2 (sin θ)

4
dφ2.

The metric is degenerate at θ = 0 and θ = π
2 . The singularities at these points are not merely coordinate singularities

that disappear when choosing a different coordinate system; but the reason is subtle.
To figure out the nature of these singularities, let us visualize the surface in a neighborhood of θ = 0. The y = 0

section of the surface corresponds to sinφ = 0, so φ = 0 or φ = π. Then

x = ± sin2 θ, y = sin θ cos θ, x = ±1− cos 2θ

2
= ±1−

√
1− 4z2

2
.

This is a union of two circles touching at x = z = 0. Hence, the surface is a torus with zero inner radius, i.e. intersecting
itself at x = y = z = 0. The rotational symmetry around the z axis leads to a “cusp” at θ = 0: the surface has a sharp
corner and the metric cannot be made smooth and nondegenerate by any choice of local coordinates. The situation near
θ = π

2 is similar.
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1C Embedded waves

The surface is defined by

x =
cos v√
2− sinu

, y =
sin v√
2− sinu

, z =
cosu√
2− sinu

.

1. For y = 0, we have v = 0 and thus

x =
1√

2− sinu
, z =

cosu√
2− sinu

.

To visualize this line in the (x, z) plane, we eliminate u from these equations and find

sinu =
√
2− 1

x
,
(

x−
√
2
)2

+ z2 = 1.

Therefore the line is a circle of radius 1 centered at
(

x =
√
2, z = 0

)

. This circle does not intersect the z axis since√
2 > 1. Now we see that (x, y) is obtained from

(√
2− sinu

)−1
by multiplying with cos v and sin v. Therefore,

the full surface is a rotation surface, where we need to use the x coordinate as the radius. Therefore, the figure in
the (x, z) plane needs to be rotated around the z axis. The resulting surface is a torus. It may be described by the
equation

(

√

x2 + y2 −
√
2
)2

+ z2 − 1 = 0.

Note that
√

x2 + y2 =
1√

2− sinu
> 0.

Also
√

x2 + y2 −
√
2 =

1−
√
2
(√

2− sinu
)

√
2− sinu

=

√
2 sinu− 1√
2− sinu

.

2. Since the surface is now given by an equation of the form F (x, y, z) = 0, the normal vector (up to a constant factor
C) can be found as

(nx, ny, nz) = C

(

∂F

∂x
,
∂F

∂y
,
∂F

∂z

)

= C

(

2

√

x2 + y2 −
√
2

√

x2 + y2
x, 2

√

x2 + y2 −
√
2

√

x2 + y2
y, 2z

)

.

Multiplying by C ≡ 1
2

√

x2 + y2 (this factor is chosen for simplicity), we have

(nx, ny, nz) =
(

x
(

√

x2 + y2 −
√
2
)

, y
(

√

x2 + y2 −
√
2
)

, z
√

x2 + y2
)

.

Expressed through the coordinates (u, v), this becomes

nα = (nx, ny, nz) =

(

cos v

√
2 sinu− 1

(√
2− sinu

)2 , sin v

√
2 sinu− 1

(√
2− sinu

)2 ,
cosu

(√
2− sinu

)2

)

.

The equation of the tangent plane at point x0 is

nα

(

xα − xα
(0)

)

= 0,

where nα must be computed at x = x0.

3. We compute

∂x

∂u
=

cos v cosu
(√

2− sinu
)2 ,

∂x

∂v
= − sin v√

2− sinu
,

∂y

∂u
=

sin v cosu
(√

2− sinu
)2 ,

∂y

∂v
=

cos v√
2− sinu

,

∂z

∂u
=

1−
√
2 sinu

(√
2− sinu

)2 ,
∂z

∂v
= 0.

Now we can expand

dx =
∂x

∂u
du+

∂x

∂v
dv, etc.
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Therefore the induced metric is

g = dx2 + dy2 + dz2 =





(

cosu
(√

2− sinu
)2

)2

+

(

1−
√
2 sinu

(√
2− sinu

)2

)2


 du2 +
dv2

(√
2− sinu

)2

=
du2 + dv2

(√
2− sinu

)2 .

The vector V a = (cos v, sin v) is not a unit vector because

g(V, V ) =
cos2 v + sin2 v
(√

2− sinu
)2 =

1
(√

2− sinu
)2 6= 1.

The Cartesian components of the vectors ∂/∂u, ∂/∂v are found from

∂

∂u
=

∂x(u, v)

∂u

∂

∂x
+

∂y(u, v)

∂u

∂

∂y
+

∂z(u, v)

∂u

∂

∂z
,

∂

∂v
=

∂x(u, v)

∂v

∂

∂x
+

∂y(u, v)

∂v

∂

∂y
+

∂z(u, v)

∂v

∂

∂z
.

Therefore, the vector V a has the following Cartesian components,

V = cos v

(

− sin v√
2− sinu

∂

∂x
+

cos v√
2− sinu

∂

∂y

)

+ sin v

(

cos v cosu
(√

2− sinu
)2

∂

∂x
+

sin v cosu
(√

2− sinu
)2

∂

∂y
+

1−
√
2 sinu

(√
2− sinu

)2

∂

∂z

)

= sin v cos v

(

sinu+ cosu−
√
2

(√
2− sinu

)2

)

∂

∂x
+

(

sin2 v cosu+
√
2 cos2 v − sinu cos2 v

(√
2− sinu

)2

)

∂

∂y

+ sin v
1−

√
2 sinu

(√
2− sinu

)2

∂

∂z
.

This vector is within the tangent plane because nαV
α = 0,

nαV
α = cos v

√
2 sinu− 1

(√
2− sinu

)2 sin v cos v

(

sinu+ cosu−
√
2

(√
2− sinu

)2

)

+ sin v

√
2 sinu− 1

(√
2− sinu

)2

(

sin2 v cosu+
√
2 cos2 v −

√
2 sinu cos2 v

(√
2− sinu

)2

)

+
cosu

(√
2− sinu

)2 sin v
1−

√
2 sinu

(√
2− sinu

)2

(after simplification) = 0.

2 Tensors

2.1 Definition of tensor product

a),b) A direct calculation using the property
〈

dxi, ∂/∂xk
〉

= δik gives:

〈ω1,v1〉 =
〈

dx+ 2ydy, 3
∂

∂x

〉

= 3, etc.

The results:
T (v1,v1) = 0, T (v1,v2) = 6x.

c) d) First, show that the sum of two linear functions is again a linear function: If A(x) and B(x) are linear functions,
i.e. if

A(x+ λy) = A(x) + λA(y)

and likewise for B, then A+B obviously has the same property. Now, since a tensor is defined as a multi-linear function,
it is clear that tensors form a vector space.
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2.3 Example of tensor

a) An obvious example of such T is the vector product, T (u,v) = u×v, defined in three-dimensional space. To determine
the rank of T , we need to represent T as a multilinear number-valued function of some number of 1-forms and vectors,
e.g. A(f1, ..., fr,v1, ...,vs). It is clear that T (v1,v2) itself is not such a function because it has vector values instead of
scalar (number) values. So we need to add a 1-form to the list of arguments. We can define

A(f1,v1,v2) = 〈f1, T (v1,v2)〉

and then it’s clear that A is multilinear. Therefore T is a tensor of rank 1+2.
b) The calculation may go as follows. We need to determine the components Tα

βγ such that

[T (u,v)]
α
= Tα

βγu
βvγ .

So we rewrite the given definition of T (u,v) in the index notation, e.g. like this:

[T (u,v)]
α
= 2εαβγu

βvγ − uαnβv
β .

Now we would like to move uβvγ out of the brackets and so determine Tα
βγ . However, the expression above contains

uαvβ instead of uβvγ . Therefore we rename the index β to γ and also introduce a Kronecker symbol δαβ , so as to rewrite
identically

uαnβv
β = uβvγnγδ

α
β .

Therefore

[T (u,v)]
α
= 2εαβγu

βvγ − uβvγnγδ
α
β =

(

2εαβγ − nγδ
α
β

)

uβvγ ,

Tα
βγ = 2εαβγ − nγδ

α
β .

2.5 Contraction of tensor indices

a) Using the definition of a tensor as a multilinear function, it is easy to show that linear combinations of tensors are also
multilinear functions. Tensor products and contractions are also multilinear. The arguments are much simpler than the
proof of tensor transformation law for components.

b) Contracting two lower indices, e.g. Tααβ , gives components of a quantity which is not a tensor because these
components do not transform correctly under changes of basis. If Tααβ were a tensor it would transform as

T̃ααγ =
∂xλ

∂x̃γ
Tµµλ.

However, this does not agree with the contraction of the tensor Tαβγ , which transforms as

T̃αβγ =
∂xλ

∂x̃α

∂xµ

∂x̃β

∂xν

∂x̃γ
Tλµν .

The contraction over α = β yields

∑

α

T̃ααγ =
∑

α

∂xλ

∂x̃α

∂xµ

∂x̃α

∂xν

∂x̃γ
Tλµν 6= ∂xλ

∂x̃γ
Tµµλ.

c) Calculation gives
Tα
αγ = 2εααγ − nγδ

α
α = −3nγ

because εααγ = 0 and δαα = 3.

2.8 Examples of spaces with a metric

a) We perform the calculation in components,

g(u,v) = uαv
α − εαβγε

α
λµu

βnγvλnµ.

We would like to write g(u,v) = gαβu
αvβ , where gαβ are the components of the metric tensor. Using the known identity

for the ε-symbol,
εαβγε

α
λµ = δβλδγµ − δβµδγλ,

we find

g(u,v) = uαv
α − (δβλδγµ − δβµδγλ)u

βnγvλnµ

= uαv
α − uλv

λnµn
µ + uλn

λvµn
µ.
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Denote n2 ≡ nµn
µ ≡ g(n,n), and then we need to relabel indices such that vαuβ can be moved outside the parentheses.

The result is
g(u,v) =

(

δαβ − n2δαβ + nαnβ

)

vαuβ .

Therefore
gαβ = δαβ − n2δαβ + nαnβ .

To analyze the conditions under which det gαβ 6= 0, we can choose an orthonormal basis such that nα is parallel to the
first basis vector. Then the components of the vector n in this basis are (|n| , 0, 0) and the matrix gαβ has the following
simple form:

gαβ =





1 0 0
0 1− n2 0
0 0 1− n2



 .

Then it is clear that det gαβ =
(

1− n2
)2
. Therefore, the matrix gαβ is nondegenerate if n2 6= 1.

b) Similar calculations give

gαβ =

(

3 + n2 0
0 3

)

.

Therefore the determinant of gαβ is always nonzero.
c) Considerations are analogous to b), except that the size of the matrix gαβ is larger.

d) The metric is (dx)
2
+ (dy)

2
+ (dz)

2
, and we need to express dx, dy, dz through du and dv. A calculation gives

g = dx2 + dy2 + dz2 = R2
(

sinh2 u+ cosh2 u
)

du2 +R2 cosh2 u dv2.

2.9 Supplementary problem sheet

2A Vector equations

a) The equation contains two given vectors Aα and Bα. The solution xα can be found as a linear combination of Aα,
Bα, and the cross product εαβγA

βBγ with unknown coefficients. Using vector notation, we have

x = αA+ βB+ γ (A×B) .

Substituting this expression into the given equation,

kx+ x×A = B,

and using the known identity
(A×B)×C = B (A ·C)−A (B ·C) , (52)

we find
A (kα−A ·B) +B (kβ +A ·A− 1) + (A×B) (kγ − β) = 0.

On purpose, we write this equation in the form of linear combination of the three vectors A, B, and A × B. Since we
are considering the generic case, these three vectors are independent and so each of the coefficients above must be zero:

kα−A ·B = 0, kβ +A ·A− 1 = 0, kγ − β = 0.

Solving this system of equations, we find (assuming k 6= 0 in the generic case)

α =
A ·B
k

, β =
1−A ·A

k
, γ =

1−A ·A
k2

.

b) We have in vector notation
x×A = B, x ·C = k.

Multiply ×C:
(x×A)×C = B×C.

Simplify using the identity (52),

A (x ·C)− x (A ·C) = kA− x (A ·C) = B×C.

Therefore

x =
kA−B×C

A ·C .

c), d) The equations have the form xαM
α
β = Aβ , where Mα

β is a matrix and Aβ is a known vector. The solution is

x = M−1A, where M−1 is the inverse matrix (it exists in the generic case).
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2B Tensor equations

a) Since the vectors Aα and Bα are a basis in two-dimensional space (they are nonzero and orthogonal), then the
symmetric tensor Xαβ can be written generally as

Xαβ = fAαAβ + g
(

AαBβ +AβAα
)

+ hBαBβ ,

where the coefficients f, g, h are unknown. It remains to determine these coefficients. Using AαB
α = 0 and denoting

AαAα ≡ |A|2, we get the system of equations

XαβAα = Bβ ⇒ f |A|2 Aβ + g |A|2 Bβ = Bβ ,

Xαβδαβ = 0 ⇒ f |A|2 + h |B|2 = 0.

The result is g = |A|−2
, f = h = 0, so

Xαβ =
AαBβ +BαAβ

|A|2
.

b) An antisymmetric tensor Xαβ in three dimensions can be always expressed as

Xαβ = εαβγuγ ,

where uγ is an unknown vector that we need to determine. We can now rewrite the conditions on Xαβ in a vector form,

XαβAα = Bβ ⇒ u×A = B

XαβBα = 0 ⇒ u×B = 0

It follows that u is parallel to B and then the condition u×A = B leaves the only solution u = 0, and therefore Xαβ = 0
is the only admissible solution.

2C Degeneracy of the metric

a) The metric can be written in the basis {dx, dy} as the matrix

g =

(

y2 1 + x2

1 + x2 0

)

.

The determinant of this matrix is −
(

1 + x2
)2

which is always nonzero.
b) In the basis where Aα is parallel to the first basis vector, the vector Aα has components (A, 0, 0, 0, ...) and therefore

the metric gαβ has the form










−r2 0 0 ...
0 1 0
0 0 1
...

. . .











.

The metric is degenerate if r = 0 (i.e. at the origin).

3 The Christoffel symbol

3.1 Transformations 1

We are considering a flat space where Euclidean coordinates exist. Suppose {xα} and {x̃α} are two coordinate systems,
while {ξα} is the standard Euclidean coordinate system. The Christoffel symbols are defined as

Γµ
αβ =

∂2ξν

∂xα∂xβ

∂xµ

∂ξν
,

Γ̃µ
αβ =

∂2ξν

∂x̃α∂x̃β

∂x̃µ

∂ξν
.

The relationship between Γ̃ and Γ can be found as follows. Assuming that the functions xα(x̃) and also x̃α(x) are known,
we may express the partial derivative operators using the chain rule,

∂

∂xµ
=

∂x̃α

∂xµ

∂

∂x̃α
,

∂

∂x̃µ
=

∂xα

∂x̃µ

∂

∂xα
.
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Also we can express
∂x̃µ

∂ξν
=

∂x̃µ

∂xλ

∂xλ

∂ξν
.

Therefore we can calculate Γ̃µ
αβ (when Γµ

αβ is known) as follows,

Γ̃µ
αβ =

∂x̃µ

∂xλ

∂xλ

∂ξν

(

∂xγ

∂x̃α

∂

∂xγ

)(

∂xδ

∂x̃β

∂

∂xδ

)

ξν

=
∂x̃µ

∂xλ

∂xλ

∂ξν

[

∂xγ

∂x̃α

∂xδ

∂x̃β

∂2ξν

∂xγ∂xδ
+

∂2xδ

∂x̃β∂x̃γ

∂ξν

∂xδ

]

=
∂x̃µ

∂xλ

∂xγ

∂x̃α

∂xδ

∂x̃β
Γλ
γδ +

∂2xδ

∂x̃β∂x̃γ

∂x̃µ

∂xλ

∂xλ

∂ξν
∂ξν

∂xδ

=
∂x̃µ

∂xλ

∂xγ

∂x̃α

∂xδ

∂x̃β
Γλ
γδ +

∂2xλ

∂x̃β∂x̃γ

∂x̃µ

∂xλ
. (53)

Note that the Euclidean coordinate system ξν is not needed to determine the transformation of Γ.

3.2 Transformations 2

Consider a vector field uµ. Assume that ∇νu
µ obeys the correct transformation law for rank (1,1) tensors,

∇νu
µ =

(

∇̃αũ
β
) ∂xµ

∂x̃β

∂x̃α

∂xν
,

and substitute

∇νu
µ ≡ ∂

∂xν
uµ + Γµ

ανu
α,

∇̃ν ũ
µ ≡ ∂

∂x̃ν
ũµ + Γ̃µ

αν ũ
α.

We can now express Γ through Γ̃. Note that
∂x̃α

∂xβ

∂xβ

∂x̃γ
= δαγ

because the matrices are ∂x̃α/∂xβ and ∂xβ/∂x̃γ are inverse to each other. The result is

Γλ
αβ = Γ̃µ

νρ

∂x̃ν

∂xα

∂x̃ρ

∂xβ

∂xλ

∂x̃µ
+

∂2xλ

∂x̃ν∂x̃ρ

∂x̃ν

∂xα

∂x̃ρ

∂xβ
.

3.3 Covariant derivatives

The rule is that every upper index gets a +Γ and every lower index gets a −Γ. Each term with Γ replaces one index in
the original tensor by one of the indices in Γ. Therefore we can write the answer as

Tαβ
γδµ;ν = ∂νT

αβ
γδµ + Γα

λνT
λβ

γδµ + Γβ
λνT

αλ
γδµ

− Γλ
γνT

αβ
λδµ − Γλ

δνT
αβ

γλµ − Γλ
µνT

αβ
γδλ

3.4 The Leibnitz rule

Perform an explicit calculation,

Aα;γB
β +AαB

β
;γ = Bβ

(

∂γAα − Γλ
αγAλ

)

+Aα

(

∂γB
β + Γβ

λγB
λ
)

;
(

AαB
β
)

;γ
= ∂γ

(

AαB
β
)

− Γλ
αγAαB

β + Γβ
λγAαB

λ.

This proves the required property.

3.5 Locally inertial reference frame

In this problem (unlike problem 3.1) the coordinate system {ξα} is not a flat Euclidean coordinate system, but it is just
a coordinate system which is like Euclidean at one point. Now we want to use the formula (53), which will enable us to
compute the Christoffel symbol Γ̃ in the coordinate system ξ, given the Christoffel symbol Γ in the original coordinate
system {xα}. To use that formula, we need to compute some derivatives. Denoting {x̃α} ≡ {ξα}, we find

∂x̃α

∂xβ
= δαβ +

(

xµ − xµ
(0)

)

δνβΓ
α
(0)µν = δαβ +

(

xµ − xµ
(0)

)

Γα
(0)µβ .
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The inverse derivative, ∂xα/∂x̃β , can be found by inverting this matrix; the result can be found simply by assuming that

∂xα

∂x̃β
= δαβ +

(

xµ − xµ
(0)

)

Aα
µβ +O

(

(x− x(0))
2
)

,

where Aα
µβ is an unknown matrix. So up to quadratic terms we find

∂xα

∂x̃β
= δαβ −

(

xµ − xµ
(0)

)

Γα
(0)µβ +O

(

(x− x(0))
2
)

.

Therefore
∂2xλ

∂x̃β∂x̃γ
= −Γλ

(0)βγ +O
(

x− x(0)

)

.

Finally, we find

Γ̃µ
αβ =

∂x̃µ

∂xλ

∂xγ

∂x̃α

∂xδ

∂x̃β
Γλ
γδ +

∂2xλ

∂x̃β∂x̃γ

∂x̃µ

∂xλ

= Γµ
αβ − Γµ

(0)αβ +O
(

x− x(0)

)

.

At x = x0 we have Γµ
αβ = Γµ

(0)αβ . It follows that the new Christoffel symbol is equal to zero at x = x0.

Alternatively, one can use the transformation law for the Christoffel symbol in the inverse direction, Γ = Γ̃... + ...,
i.e. one denotes {xα} ≡ {ξα}, {x̃α} ≡ {xα}. This has the advantage that only derivatives ∂2ξ/∂x∂x need to be computed,
and not the derivatives ∂2x/∂ξ∂ξ. Since all derivatives only need to be evaluated at x = x0, the first-order derivatives
∂x/∂ξ at x = x0 can be found as the inverse matrix to ∂ξα/∂xβ = δαβ , i.e. ∂x

α/∂ξβ = δαβ . This considerably simplifies
the calculations.

4 Geodesics and curvature

4.1 Geodesics

(a) Note that d/ds is the ordinary (not “covariant”) derivative in the direction of uα. The geodesic equation can be
rewritten for the 1-form uα as

uγuα;γ = 0 =
duα

ds
− Γβ

αγuβu
γ .

An explicit formula for Γβ
αγ yields

Γβ
αγuβu

γ = Γβ αγu
βuγ =

1

2
(gβα,γ + gβγ,α − gαγ,β)u

βuγ .

Note that gβα,γ − gαγ,β is antisymmetric in (β ↔ γ). Therefore these terms will cancel after a contraction with uβuγ .
The remaining term yields

Γβ
αγuβu

γ =
1

2
gαβ,γu

βuγ .

b) We give two derivations; the first one is direct and the second one uses the property (a).

4.1.1 First derivation

Note that
d

ds

(

gαβu
αuβ

)

= uγ
(

gαβu
αuβ

)

,γ

where we must use an ordinary derivative instead of the covariant derivative (according to the definition of d/ds). So we
find

uγ
(

gαβu
αuβ

)

,γ
= gαβ,γu

αuβuγ + 2gαβu
αuγuβ

,γ .

Now we need to simplify an expression containing uβ
,γ . By assumption, the derivative of the vector field uα satisfies

d

ds
uα + Γα

βγu
βuγ = uγuα

,γ + Γα
βγu

βuγ = 0

= uγuα
,γ +

1

2
gαλ (gλµ,γ + gλγ,µ − gµγ,λ)u

γuµ.

Therefore

uαu
γuα

,γ = −1

2
uαg

αλ (gλµ,γ + gλγ,µ − gµγ,λ)u
γuµ

= −1

2
uλ (gλµ,γ + gλγ,µ − gµγ,λ)u

γuµ = −1

2
gλµ,γu

λuµuγ .

What remains is a straightforward computation:

uγ
(

gαβu
αuβ

)

,γ
= gαβ,γu

αuβuγ + 2gαβu
αuγuβ

,γ

= gαβ,γu
αuβuγ − gλµ,γu

λuµuγ

= 0.
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4.1.2 Second derivation

We write
d

ds

(

gαβu
αuβ

)

=
d

ds

(

gαβuαuβ

)

= uγgαβ,γuαuβ + 2gαβuα,γuβu
γ .

Now we need to express uα,γu
γ ≡ duα/ds. To do that, we use the property derived in (a),

duα

ds
=

1

2
gβγ,αu

βuγ ,

and find
d

ds

(

gαβuαuβ

)

=
dgαβ

ds
uαuβ + gαβgλγ,αu

λuβu
γ =

dgαβ

ds
uαuβ +

dgλγ
ds

uλuγ .

It remains to express the derivative of gαβ through the derivative of gαβ . We use the identity

d

ds

(

gαβgβγ
)

=
d

ds

(

δαγ
)

= 0,

thus
dgαβ

ds
gβγ = −dgβγ

ds
gαβ ⇒ dgαβ

ds
= −dgλµ

ds
gαλgβµ.

Therefore
dgαβ

ds
uαuβ = −dgλµ

ds
gαλgβµuαuβ = −dgλµ

ds
uλuµ,

and thus
d

ds

(

gαβuαuβ

)

= 0.

4.2 Commutator of covariant derivatives

First compute

uα
;β = uα

,β + Γα
βλu

λ,

uα
;βγ =

(

uα
,β + Γα

βλu
λ
)

,γ
+ Γα

µγ

(

uµ
,β + Γµ

βλu
λ
)

− Γµ
βγ

(

uα
,µ + Γα

µλu
λ
)

= uα
,βγ + Γα

βλ,γu
λ + Γα

βλu
λ
,γ + Γα

µγu
µ
,β + Γα

µγΓ
µ
βλu

λ − Γµ
βγu

α
;µ.

Since we want to compute the commutator uα
;βγ − uα

;γβ , we can omit the terms that are symmetric in (β ↔ γ). These
terms are the following:

uα
,βγ , Γα

βλu
λ
,γ + Γα

µγu
µ
,β , Γµ

βγu
α
;µ.

The remaining terms are
uα
;βγ = Γα

βλ,γu
λ + Γα

µγΓ
µ
βλu

λ + (symmetric in β ↔ γ) ,

which yields

uα
;βγ − uα

;γβ = uλ
(

Γα
λβ,γ − Γα

λγ,β + Γµ
λβΓ

α
γµ − Γµ

λγΓ
α
βµ

)

= uλRα
λγβ .

4.3 Parallel transport

The parallel-transported vector can be represented by a 1-form Aα(s) such that

dAα

ds
− Γβ

αgAβu
γ = 0, uγ ≡ dxγ

ds
.

However, the closed curve is assumed to cover only a very small neighborhood of one point x0, so we can approximate
Aα by a constant, Aα(x0), along the curve. Therefore

δAα =

∮

dAα

ds
ds =

∮

Γβ
αγ(x)Aβ(x)dx

γ ≈ Aβ(x0)

∮

Γβ
αγ(x)dx

γ .

Now, in a locally inertial system at x0 we have Γβ
αγ(x0) = 0. Therefore we can Taylor expand Γβ

αγ(x) near x0 as

Γβ
αγ(x) =

(

xλ − xλ
0

)

Γβ
αγ,λ +O

(

(x− x0)
2
)

.

Therefore

δAα ≈ Aβ(x0)

∮

Γβ
αγ,λ

(

xλ − xλ
0

)

dxγ ≈ Aβ(x0)Γ
β
αγ,λ(x0)

∮

xλdxγ ,

where we have again approximated Γβ
αγ,λ(x) by its value at x = x0, and also used the identity

∮

dxγ = 0. Further,

∮

d
(

xγxλ
)

= 0 =

∮

xγdxλ +

∮

xλdxγ .
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Therefore we may rewrite

δAα ≈ AβΓ
β
αγ,λ

∮

xλdxγ =
1

2
Aβ

(

Γβ
αγ,λ − Γβ

αλ,γ

)

∮

xλdxγ

=
1

2
AβR

β
αλγ

∮

xλdxγ .

4.4 Riemann tensor

a) It is more convenient to consider the fully covariant tensor Rαβγδ. This tensor has the following symmetries,

Rαβγδ = −Rβαγδ = −Rαβδγ , (54)

Rαβγδ +Rβγαδ +Rγαβδ = 0, (55)

Rαβγδ = Rγδαβ . (56)

However, it is known that the property (56) follows from (54)-(55), therefore it is sufficient to consider these two properties
[note that (55) does not follow from (54), (56)]. Let us first consider the property (54). For fixed γ, δ, we have that Rαβγδ

is an antisymmetric n× n matrix (indices α, β). This matrix has 1
2n(n− 1) independent components. Likewise for fixed

α, β. Therefore, the number of independent components of Rαβγδ is reduced to

N1 =

[

1

2
n(n− 1)

]2

.

Now we use the property (55). Let us see whether the property (55) is nontrivial at fixed δ. If α = γ, then the
property (55) becomes

Rαβαδ +Rβααδ +Rααβδ = 0 (no summation),

which is already a consequence of (54). Likewise for β = γ or for α = β. Therefore, the property (55) is a new constraint
only if all three indices α, β, γ are different (i.e. α 6= β, α 6= γ, β 6= γ). Suppose that α, β, γ are different. There are

N2 =
1

6
n(n− 1)(n− 2)

choices of such α, β, γ. Therefore, for each δ = 1, ..., n we obtain N2 additional constraints. Finally, let us check that
every such constraint is nontrivial for every δ (even if δ is equal to one of α, β, γ). Suppose δ = α, then (55) becomes

Rαβγα +Rβγαα +Rγαβα = 0 (no summation).

This is a nontrivial constraint (equivalent to Rαβαγ = Rαγαβ). Therefore, the number of constraints is nN2, and thus
the total number of independent components of Rαβγδ is

N = N1 − nN2 =
n2
(

n2 − 1
)

12
.

b) Weinberg, Chapter 6, §8
c) There is only one independent component of Rαβγδ in two dimensions. For instance, we can choose R1212 as the

independent parameter. Then we can express the Ricci tensor as

Rαβ = gλµRλαµβ .

Calculating component by component, we find

R11 = g22R1212, R12 = −g12R1212, R22 = g11R1212,

R = gαβRαβ =
(

2g11g22 − 2g12g21
)

R1212 = 2gR1212.

Note that the matrix
(

g22 −g12

−g12 g11

)

is equal to the inverse matrix to gαβ (which is gαβ), multiplied by the determinant det gαβ ; since det gαβ = 1/g, we have

(

g22 −g12

−g12 g11

)

= ggαβ .

Therefore

Gαβ = Rαβ − 1

2
gαβR = ggαβR1212 −

1

2
gαβ2gR1212 = 0.
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4.5 Lorentz transformations

A Lorentz transformation is represented by a matrix Λα
β such that

Λα
λΛ

β
µgαβ = gλµ.

Consider an infinitesimal Lorentz transformation,

Λα
λ = δαλ + εHα

λ.

The number of parameters in Lorentz transformations is the same as the number of parameters in Hα
β . The condition

for Hα
β is

(δαλ + εHα
λ)
(

δβµ + εHβ
µ

)

gαβ = gλµ.

Disregarding terms of order ε2, we find

0 = δβµH
α
λgαβ + δαλH

β
µgαβ = Hµλ +Hλµ.

Therefore, Hλµ is an antisymmetric n × n matrix, which has 1
2n(n − 1) independent components. For n = 4 we get 6

components. These can be interpreted as three spatial rotations and three Lorentz rotations (boosts).

5 Gravitation theory applied

5.1 Redshift

In the weak field limit, the Newtonian gravitational potential near a mass M is

Φ =
GM

r
,

while the component g00 of the metric is

g00 = 1 +
2Φ

c2
.

(We write the units explicitly.) Therefore the redshift factor z(r) at distance r from the center of the Earth is

z(r) =

√

1 +
2GM

c2r
≈ 1 +

GM

c2r
.

To compare the redshift factors at the surface of the Earth, denote by RE the radius of the Earth. We know that the
gravitational acceleration at the surface is

gE =
GM

R2
E

≈ 9.81
m

s2
.

Therefore, it is convenient to express GM = gER
2
E . For a vertical distance L between sender and receiver, we find

z(RE)

z(RE + L)
=

1 + gEREc
−2

1 + gEREc−2 RE

RE+L

≈ 1 +
gERE

c2

(

1− RE

RE + L

)

= 1 +
gEREL

c2 (RE + L)
.

Since in our problem L ≪ RE , we may approximate

z(RE)

z(RE + L)
≈ 1 +

gEL

c2
≈ 1 + 1.1

L

1016m
.

5.2 Energy-momentum tensor 1

In the nonrelativistic limit, we may disregard gravitation; gαβ = ηαβ . The EMT of an ideal fluid is

Tαβ = −pηαβ + (p+ ρ)uαuβ ,

where uα is the 4-velocity vector of the fluid motion. In the nonrelativistic limit, uα ≈ (1, ~v), where ~v is the 3-vector of
velocity and |~v| ≪ 1 in the units where c = 1.

The conservation law is

0 = Tαβ
,β = −p,α + (p+ ρ),β u

αuβ + (p+ ρ)uαuβ
,β + (p+ ρ)uα

,βu
β .

Let us simplify this expression by introducing the time derivative along the fluid flow,

d

dt
≡ uα∂α.
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Then we find
0 = −p,α + uα

(

ṗ+ ρ̇+ (p+ ρ)uβ
,β

)

+ (p+ ρ) u̇α. (57)

Contracting with uα and using uαu̇
α = 0, we find

ρ̇+ (p+ ρ)uβ
,β = 0. (58)

This is the relativistic continuity equation. Using this equation, we find from Eq. (57) that

0 = −p,α + uαṗ+ (p+ ρ) u̇α. (59)

Now let us apply the nonrelativistic limit, uα ≈ (1, ~v), to Eqs. (58) and (59). In our notation, for any quantity X we
have

Ẋ ≡ d

dt
X ≡ ∂

∂t
X + (~v · ∇)X.

The continuity equation (58) gives
dρ

dt
+ (p+ ρ) div~v = 0.

This is the ordinary, nonrelativistic continuity equation.1 Finally, Eq. (59) gives

~∇p+ ~vṗ+ (p+ ρ) ~̇v = 0.

(Note that p,j = −∇jp.) This is the Euler equation,

d~v

dt
=

1

p+ ρ

(

−~∇p− ~v
dp

dt

)

.

5.3 Energy-momentum tensor 2

Compute the covariant derivative,

Tαβ
;α =

[

Φ;αΦ;β − 1

2
gαβΦ;λΦ;λ

]

;α

= Φ;α
;αΦ

;β +Φ;αΦ;β
;α − gαβΦ;λΦ;λα

= Φ;α
;αΦ

;β .

Here we used Φ;αβ = Φ;βα which follows from Γλ
αβ = Γλ

βα (note that Φ is a scalar; covariant derivatives do not commute
when applied to vectors!) and also the property

Φ;α
;βX

α = Φ;αβX
α,

which is due to gαβ;µ = 0. Therefore, we get
Φ;α

;αΦ
;β = 0;

this entails Φ;α
;α = 0 (since Φ;β = 0 is a weaker condition than Φ;α

;α = 0, i.e. if Φ;β = 0 then also Φ;α
;α = 0, so it is

sufficient to write the latter).

5.4 Weak gravity

A very short solution is to write R00 directly through Γ and note that only Γα
00,α comes in (if we disregard terms of

second order). Then compute Γα
00 explicitly through Φ. (Assume that gαβ,0 = 0.) We may disregard terms of order ΓΓ

because Γ is of order Φ, and also we may raise and lower indices using ηµν instead of gµν . (This is somewhat heuristic;
see below.) The calculation goes like this:

R00 = Γα
00,α − Γα

0α,0 +O( Γ Γ ),

Γα
00 =

1

2
ηαβ (g0β,0 + gβ0,0 − g00,β) = −ηαβΦ,β ,

therefore (using Φ,0 = 0)

R00 = −ηαβΦ,αβ = −�Φ = −Φ,00 +Φ,11 +Φ,22 +Φ,33 = ∆Φ.

Here is another, somewhat more comprehensive solution. In the weak field limit, we write

gµν = ηµν + hµν .

1Note that in the usual, nonrelativistic continuity equations as they are written in most books, there is no p + ρ - just ρ. This is so
because in most cases the matter is nonrelativistic, so p ≪ ρ and p+ ρ ≈ ρ. This is, however, not true for relativistic matter, such as photons
(electromagnetic radiation) for which p = 1

3
ρ.
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Then we only compute everything up to first order in hµν . Therefore, we may raise and lower indices using the Minkowski
metric ηαβ instead of gαβ .

Note: the Newtonian limit does not determine the components of gµν except for g00 = 1+ 2Φ. The actual metric gµν
is equal to ηµν plus a small first-order deviation, hµν , but this deviation cannot be expressed just through the Newtonian
potential Φ ≡ 1

2h00. In principle, one needs to solve the full Einstein equations to find hµν ; in other words, one needs to
determine other, “post-Newtonian potentials” and not just the Newtonian potential Φ. However, when one only wants
to compute effects of gravitation on motion of slow bodies, only g00 is necessary. So it is sufficient to compute just the
Newtonian potential Φ. But e.g. trajectories of light rays cannot be computed accurately in the Newtonian limit (because
light does not move slowly). To compute trajectories of light rays, one needs all components of hµν , not just h00.

Let us do the computation through hµν in a more general way. First we compute the Christoffel symbol and the Ricci
tensor:

Γλ
αν =

1

2
ηλγ (hαγ,ν + hνγ,α − hαν,γ) ; ⇒ Γ ∼ O(Φ);

Rαβ = Rλ
αλβ = Γλ

αβ,λ − Γλ
αλ,β + ΓΓ− ΓΓ ≈ Γλ

αβ,λ − Γλ
αλ,β .

(We may disregard the ΓΓ terms since they are second order in Φ.) Now we compute (again up to first order in Φ)

Γλ
αλ,β =

1

2
ηλγ (hαγ,λβ + hλγ,αβ − hαλ,γβ) =

1

2
ηλγhλγ,αβ ,

Rαβ =
1

2
ηλγ (hαγ,βλ + hβγ,αλ − hαβ,γλ − hλγ,αβ) .

Let us now compute just the component R00, recalling that hµν is time-independent (so hµν,0 = 0) and h00 = 2Φ:

R00 =
1

2
ηλγ (h0γ,0λ + h0γ,0λ − h00,γλ − hλγ,00) = −1

2
ηλγh00,γλ

= −ηλγΦ,λγ = ∆Φ.

5.5 Equations of motion from conservation law

We would like to rewrite the covariant conservation law Tµν
;ν = 0 through ordinary derivatives. The given relations are

useful; let’s derive them first.

∂

∂xν

√−g = − 1

2
√−g

(

∂

∂xν
g

)

= − 1

2
√−g

(

ggαβgαβ,ν
)

=
1

2

√−ggαβgαβ,ν ;

Γµ
µν =

1

2
gµα (gµα,ν + gνα,µ − gνµ,α) =

1

2
gµαgµα,ν =

1√−g

∂

∂xν

√−g.

Now rewrite the covariant derivative of Tµν explicitly:

Tµν
;µ = Tµν

,µ + Γµ
αµT

αν + Γν
αµT

µα =
1√−g

(√−gTµν
)

,ν
+ Γν

αβT
αβ .

Apply this to the given Tµν :

0 = Tµν
;µ =

m0√−g

[∫

ds
dxµ

ds

dxν

ds
δ(4)(xσ − xσ(s))

]

,µ

+
m0√−g

∫

ds
dxα

ds

dxβ

ds
Γν
αβ(x)δ

(4)(xσ − xσ(s)).

Since in the first term the dependence on xσ is only through δ(4), we can rewrite

dxµ

ds

∂

∂xµ

[

δ(4)(xα − xα(s))
]

= − d

ds

[

δ(4)(xα − xα(s))
]

(this is easily understood if read from right to left) and then integrate by parts,

∫

ds
dxν

ds

d

ds
δ(4)(xσ − xσ(s)) = −

∫

ds
d2xν

ds2
δ(4)(xσ − xσ(s)).

Finally,

0 =

√−g

m0
Tµν

;µ =

∫

ds

[

d2xν

ds2
+ Γν

αβ

dxα

ds

dxβ

ds

]

δ(4)(xσ − xσ(s)).

This is a function of xσ which should equal zero everywhere. Therefore, the integrand should vanish for every value of s,

d2xν

ds2
+ Γν

αβ

dxα

ds

dxβ

ds
= 0.
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Remark: in general, equations of motion do not follow from conservation law, but they do follow if there is only one
field. (e.g. one fluid, or one scalar field, or some number of point particles). The situation in ordinary mechanics is similar:
e.g. the equation of motion for a particle follow from the conservation of energy only if the motion is in one dimension:

E =
mv2

2
+ V (x) = const,

0 =
dE

dt
= (mv̇ + V ′(x)) v ⇒ mv̇ = −V ′(x).

However, equations of motion do not follow from conservation of energy if there is more than one degree of freedom.
Similarly, equations of motion for say two scalar fields Φ,Ψ do not follow from the conservation of their combined Tµν .
These fields have two different equations of motion, and one cannot hope to derive them from a single conservation law.

6 The gravitational field

6.1 Degrees of freedom

The electromagnetic field is described by a 4-vector potential Aµ(x). This would give 4 degrees of freedom. However,
there is also a gauge symmetry,

Aµ → Aµ + φ,µ,

where φ(x) is an arbitrary function of spacetime. Using this gauge symmetry, we may e.g. set the component A0(x) = 0.
Then only three functions of spacetime (A1, A2, A3) are left. Hence the electromagnetic field has 3 degrees of freedom.
There are additional gauge symmetries involving functions φ(x) that do not depend on time. Since these functions φ(x)
are functions only of three arguments, they do not change the number of degrees of freedom.

6.2 Spherically symmetric spacetime

6.2.1 Straightforward solution

A direct computation listing all the possible Christoffel symbols and components of the Ricci tensor is certainly straight-
forward but very long. Here is a way to compute the curvature tensor without writing individual components. Since the
metric has a diagonal form, let us denote

gαβ = ηαβAα, gαβ = ηαβ
1

Aα
(no summation!), (60)

where
Aα ≡

{

eN , eL, r2, r2 sin2 θ
}

(61)

is a fixed array of four functions. For this calculation, we do not use the Einstein summation convention any more; every
summation will be written explicitly. However, we make heavy use of the fact that ηαβ 6= 0 only if α = β, and that
ηλλ = ηλλ. At the end of the calculation of the Ricci tensor Rαβ , we shall substitute the known functions Aα and use
the resulting simplifications.

We begin with the calculation of the Christoffel symbols,

Γλ
αβ =

∑

µ

1

2
ηλµ

1

Aλ
[ηαµAµ,β + ηβµAµ,α − ηαβAα,µ]

=
1

2
δλα

Aλ,β

Aλ
+

1

2
δλβ

Aλ,α

Aλ
− 1

2
ηλληαβ

Aα,λ

Aλ
. (62)

Note that the summation over µ results in setting λ = µ due to ηλµ, and that we have relations such as ηλληαλ = δλα and
δβαηαα = ηαβ , which hold without summation. For convenience, we rewrite Eq. (62) as

Γλ
αβ =

1

2

[

δλαBλ,β + δλβBλ,α − ηλληαβ
Aα

Aλ
Bα,λ

]

,

where we defined the auxiliary function
Bα ≡ lnAα.

As a check, we compute the “trace” of the Christoffel symbols and compare with the known formula,

∑

λ

Γλ
αλ =

1

2

[

Bα,α +
∑

λ

Bλ,α − Aα

Aα
Bα,α

]

=
1

2

∑

λ

Bλ,α =
(

ln
√−g

)

,α
.

Let us also denote for brevity

C ≡ ln
√−g =

1

2

∑

λ

Bλ;
∑

λ

Γλ
αλ = C,α.
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We proceed to the computation of the Ricci tensor. We use the formula (with Landau-Lifshitz sign conventions)

Rαβ =
∑

λ

(

Γλ
αβ,λ − Γλ

αλ,β

)

+
∑

λ,µ

(

Γµ
λµΓ

λ
αβ − Γλ

αµΓ
µ
βλ

)

.

We now compute the necessary terms:

∑

λ

Γλ
αβ,λ =

1

2
Bα,αβ +

1

2
Bβ,αβ − 1

2
ηαβ

∑

λ

ηλλ

(

Aα

Aλ
Bα,λ

)

,λ

,

∑

λ

Γλ
αλ,β = C,αβ ,

∑

λ,µ

Γµ
λµΓ

λ
αβ =

∑

λ

C,λ
1

2

[

δλαBλ,β +
1

2
δλβBλ,α − 1

2
ηλληαβ

Aα

Aλ
Bα,λ

]

=
1

2

[

C,αBα,β + C,βBβ,α − ηαβ
∑

λ

C,ληλλ
Aα

Aλ
Bα,λ

]

,

∑

λ,µ

Γλ
αµΓ

µ
λβ =

1

4

∑

λ,µ

[

δλαBλ,µ + δλµBλ,α − ηλληαµ
Aα

Aλ
Bα,λ

] [

δµλBµ,β + δµβBµ,λ − ηµµηλβ
Aλ

Aµ
Bλ,µ

]

=
1

4

∑

µ

Bα,µ

[

δµαBµ,β + δµβBµ,α − ηµµηαβ
Aα

Aµ
Bα,µ

]

(here set λ = α)

+
1

4

∑

µ

Bµ,α

[

Bµ,β + δµβBµ,µ − ηµµηµβ
Aµ

Aµ
Bµ,µ

]

(here set λ = µ)

− 1

4

∑

λ

ηλληαα
Aα

Aλ
Bα,λ

[

δαλBα,β + δαβBα,λ − ηααηλβ
Aλ

Aα
Bλ,α

]

(here set µ = α)

=
1

4
Bα,αBα,β +

1

4
Bα,βBβ,α − 1

4
ηαβ

∑

µ

ηµµ
Aα

Aµ
Bα,µBα,µ

+
1

4

∑

µ

Bµ,αBµ,β +
1

4
Bβ,αBβ,β − 1

4
Bβ,αBβ,β

− 1

4
Bα,αBα,β − 1

4
ηαβ

∑

λ

ηλλ
Aα

Aλ
Bα,λBα,λ +

1

4
Bα,βBβ,α

=
1

2
Bα,βBβ,α − 1

2
ηαβ

∑

µ

ηµµ
Aα

Aµ
Bα,µBα,µ +

1

4

∑

µ

Bµ,αBµ,β .

Finally, we put all the terms together:

Rαβ =

(

1

2
Bα +

1

2
Bβ − C

)

,αβ

− 1

2
ηαβAα

∑

λ

ηλλ

[

(

Bα,λ

Aλ

)

,λ

+ C,λ
Bα,λ

Aλ

]

+
1

2
C,αBα,β +

1

2
C,βBβ,α − 1

2
Bα,βBβ,α − 1

4

∑

µ

Bµ,αBµ,β .

We can simplify this expression by considering separately diagonal and off-diagonal components:

Rαα = (Bα − C),αα − 1

2
ηααAα

∑

λ

ηλλ

[

(

Bα,λ

Aλ

)

,λ

+ C,λ
Bα,λ

Aλ

]

+

(

C,α − 1

2
Bα,α

)

Bα,α − 1

4

∑

µ

Bµ,αBµ,α;

Rαβ =
1

2

(

Bα +Bβ −
∑

λ

Bλ

)

,αβ

+
1

2
(C,αBα,β + C,βBβ,α −Bα,βBβ,α)

− 1

4

∑

µ

Bµ,αBµ,β . (only for α 6= β)
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Now we need to simplify this expression further by using the specific form of the metric (60)-(61). We have

At = eN , Ar = eL, Aθ = r2, Aφ = r2 sin2 θ;

Bt = N, Br = L, Bθ = 2 ln r, Bφ = 2 ln r + 2 ln sin θ;

C = ln
√−g =

N + L

2
+ 2 ln r + ln sin θ;

C,t =
Ṅ + L̇

2
, C,r =

N ′ + L′

2
+

2

r
, C,θ = cot θ, C,φ = 0.

Note that the term
1

2

(

Bα +Bβ −
∑

λ

Bλ

)

,αβ

(63)

always vanishes when α 6= β. We find (after some omitted algebra):

Rφφ =
1

2
r2 sin2 θ

∑

λ

ηλλ





([

ln
(

r2 sin2 θ
)]

,λ

Aλ

)

,λ

+ C,λ

[

ln
(

r2 sin2 θ
)]

,λ

Aλ





= −r2 sin2 θ

[(

N ′ − L′

2r
+

1

r2

)

e−L − 1

r2

]

;

Rθθ = 1− r2e−L

(

N ′ − L′

2r
+

1

r2

)

;

Rtφ = Rrφ = Rθφ = Rtθ = 0;

Rrθ =
1

2
C,θBθ,r −

1

4
Bφ,rBφ,θ =

1

2
cot θ

2

r
− 1

4

2

r
2 cot θ = 0;

Rtr =
1

2

(

Ṅ + L̇

2
N ′ +

(

N ′ + L′

2
+

2

r

)

L̇− ṄL′

)

− 1

4
ṄN ′ − 1

4
L̇L′ =

L̇

r
;

Rrr =
−N ′′

2
+

2

r2
+N ′L

′ −N ′

4
+

1

2
eL−N

(

L̈+
L̇− Ṅ

2
L̇

)

+
1

r
L′;

Rtt =
−L̈

2
+ L̇

Ṅ − L̇

4
+

1

2
eN−L

[

N ′′ +

(

N ′ − L′

2
+

2

r

)

N ′

]

.

Finally, we compute the Ricci scalar,

R =
∑

λ

ηλλ
1

Aλ
Rλλ

= e−N

(

− L̈

2
+ L̇

Ṅ − L̇

4

)

+
1

2
e−L

[

N ′′ +

(

N ′ − L′

2
+

2

r

)

N ′

]

− e−L

(−N ′′

2
+

2

r2
+N ′L

′ −N ′

4
+

1

r
L′

)

− 1

2
e−N

(

L̈+
L̇− Ṅ

2
L̇

)

− 1

r2
+ e−L

(

N ′ − L′

2r
+

1

r2

)

+

(

N ′ − L′

2r
+

1

r2

)

e−L − 1

r2

= e−N

(

−L̈+ L̇
Ṅ − L̇

2

)

− e−L

(

−2
N ′ − L′

r
−N ′′ +N ′L

′ −N ′

2

)

− 2

r2
.

Hence, the nonzero components of the Einstein tensor are

Gtt = eN−LL′

r
+

eN

r2
;

Gtr =
L̇

r
;

Grr =
2

r2
+

N ′

r
− eL

r2
;

Gθθ = −r2e−L

(

−N ′ − L′

2r
+

1

r2
+−N ′′

2
+N ′L

′ −N ′

4

)

+ r2
e−N

2

(

−L̈+ L̇
Ṅ − L̇

2

)

;

Gφφ = −1

2
r2 sin2 θ

[

e−N

(

−L̈+ L̇
Ṅ − L̇

2

)

− e−L

(

−N ′ − L′

r
+

2

r2
−N ′′ +N ′L

′ −N ′

2

)

]

.
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6.2.2 Solution using conformal transformation

A more clever way to reduce the amount of computation is to notice that the metric gµν is simplified after a conformal
transformation,

gµν = r2hµν = r2









r−2eL 0
−r−2eN

1
0 sin2 θ









.

The metric hµν separates into the r − t components and the θ − φ components. We shall first compute the Ricci tensor
for the metric hµν and then determine how Rαβ changes under a conformal transformation. The calculation of Rαβ for
the metric hµν is much simpler because hµν is a direct (“block”) sum of two metrics defined on 2-dimensional spaces. It
is clear that Rαβ will also be a direct sum of the corresponding two-dimensional Ricci tensors.

Let us first compute the Ricci tensor for a diagonal metric γab = diag
(

eA, eB
)

in two dimensions; set A ≡ A1, B ≡ A2,
and indices a, b, c,... range from 1 to 2. For a two-dimensional metric γab, we know that the Ricci tensor is proportional
to γab, namely (see Problem 4.4c)

Rab =
1

2
γabR, R ≡ γabRab = 2 (det γab)R1212.

So it is sufficient to compute say R11,

R11 = Γa
11,a − Γa

1a,1 + Γa
baΓ

b
11 − Γb

1aΓ
a
1b,

and afterwards we will have

Rab = γab
R11

γ11
; R = γabRab = 2

R11

γ11
.

The necessary Christoffel symbols are found as (no implicit summation from now on!)

Γa
1b =

∑

c

1

2
γac (γ1c,b + γbc,1 − γ1b,c) =

1

2

(

A1,bδ
a
1 + δabAb,1 − δ1be

A1−AaA1,a

)

;

Γ1
12 =

1

2
A,2; Γ2

12 =
1

2
B,1;

Γa
11 = A1,1δ

a
1 − 1

2
eA1−AaA1,a; Γ1

11 =
1

2
A,1; Γ2

11 = −1

2
eA−BA,2.

∑

a

Γa
ba =

1

2
∂b ln (det γcd) =

1

2
(A1,b +A2,b) =

1

2
(A+B),b .

Then the component R11 of the Ricci tensor is

R11 = Γa
11,a − Γa

1a,1 + Γa
baΓ

b
11 − Γb

1aΓ
a
1b

= Γ1
11,1 + Γ2

11,2 −
1

2
(A+B),11 +

1

2
(A+B),1 Γ

1
11 +

1

2
(A+B),2 Γ

2
11 − Γ1

11Γ
1
11 − 2Γ1

12Γ
2
11 − Γ2

12Γ
2
12

=
1

2
A,11 −

1

2

(

eA−BA,2

)

,2
− 1

2
(A+B),11 +

1

2
(A+B),1

1

2
A,1 −

1

2
(A+B),2

1

2
eA−BA,2 −

1

4
A,1A,1 +A,2

1

2
eA−BA,2 −

1

4
B,1B,1

= −1

2
B,11 −

1

2
eA−BA,22 −

1

4
A,2 (A−B),2 e

A−B +
1

4
B,1 (A−B),1 .

We also find (note the symmetry apparent in this formula; this shows that at least this is not obviously wrong)

R = 2
R11

γ11
= −e−AB,11 − e−BA,22 −

1

2
A,2 (A−B),2 e

−B − 1

2
e−AB,1 (B −A),1 .

Well, I am not going to finish this calculation here, anyway. But this is roughly how it goes. Let us at
least derive a useful formula below.

The relationship between the curvature tensors under a conformal transformation is found as follows. First we define
the conformally transformed metric for convenience as follows,

g̃αβ = e2Ωgαβ .

Then the Christoffel symbols receive a correction which is a tensor Bλ
αβ ,

Γ̃λ
αβ = Γλ

αβ +Bλ
αβ ; Bλ

αβ ≡ δλαΩ,β + δλβΩ,α − gαβΩ
,λ.

The Riemann and the Ricci tensors are defined (in Landau-Lifshitz sign convention) by

Rλ
αµβ = Γλ

αβ,µ − Γλ
αµ,β + Γλ

µνΓ
ν
αβ − Γλ

βνΓ
ν
αµ,

Rαβ = Rλ
αλβ = Γλ

αβ,λ − Γλ
λα,β + Γλ

λνΓ
ν
αβ − Γλ

βνΓ
ν
αλ.
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The same relation holds for R̃λ
αµβ and Rαβ through Γ̃λ

αβ (note that these relations do not involve the metric gαβ explicitly).
Therefore

R̃λ
αµβ −Rλ

αµβ = Bλ
αβ,µ −Bλ

αµ,β +Bλ
µνΓ

ν
αβ + Γλ

µνB
ν
αβ +Bλ

µνB
ν
αβ −Bλ

βνΓ
ν
αµ − Γλ

βνB
ν
αµ −Bλ

βνB
ν
αµ;

R̃αβ −Rαβ = Bλ
αβ,λ −Bλ

λα,β +Bλ
λνΓ

ν
αβ + Γλ

λνB
ν
αβ +Bλ

λνB
ν
αβ −Bλ

βνΓ
ν
αλ − Γλ

βνB
ν
αλ −Bλ

βνB
ν
αλ.

We shall only compute the expression for the Ricci tensor Rαβ . As a preparation, we compute

Bλ
λα = δλλΩ,α ≡ NΩ,α,

where N = δλλ = gαβg
αβ is the number of spacetime dimensions. We shall always raise and lower indices using the original

metric gαβ . So we compute term by term,

R̃αβ −Rαβ =
(

δλαΩ,β + δλβΩ,α − gαβΩ
,λ
)

,λ
−NΩ,αβ +NΩ,νΓ

ν
αβ + Γλ

λν

(

δναΩ,β + δνβΩ,α − gαβΩ
,ν
)

+NΩ,ν

(

δναΩ,β + δνβΩ,α − gαβΩ
,ν
)

−
(

δλβΩ,ν + δλνΩ,β − gβνΩ
,λ
)

Γν
αλ

− Γλ
βν (δ

ν
αΩ,λ + δνλΩ,α − gαλΩ

,ν)−
(

δλβΩ,ν + δλνΩ,β − gβνΩ
,λ
)

(δναΩ,λ + δνλΩ,α − gαλΩ
,ν)

= 2Ω,αβ − gαβΩ
,λ
,λ − gαβ,λΩ

,λ −NΩ,αβ +NΩ,νΓ
ν
αβ + Γλ

λαΩ,β + Γλ
λβΩ,α − gαβΓ

λ
λνΩ

,ν

+ 2NΩ,αΩ,β −NgαβΩ,νΩ
,ν − Γν

αβΩ,ν − Γλ
λαΩ,β + gβνΓ

ν
αλΩ

,λ − Γλ
αβΩ,λ − Γλ

λβΩ,α + gαλΓ
λ
βνΩ

,ν

− (2 +N) Ω,αΩ,β + 2gαβΩ,λΩ
,λ

= −gαβΩ
,λ
,λ − gαβΓ

λ
λνΩ

,ν −NgαβΩ,νΩ
,ν + 2gαβΩ,λΩ

,λ

= − (N − 2)
[

Ω,αβ − Ω,νΓ
ν
αβ

]

+ (N − 2)Ω,αΩ,β − gαβ

[

(N − 2)Ω,λΩ
,λ +Ω,λ

,λ + Γλ
λνΩ

,ν
]

+
[

gβνΓ
ν
αλΩ

,λ + gανΓ
ν
βλΩ

,λ − gαβ,λΩ
,λ
]

.

Now we note that some of the Γ terms can be absorbed into covariant derivatives, and also that the terms in the last
bracket cancel,

[

gβνΓ
ν
αλΩ

,λ + gανΓ
ν
βλΩ

,λ − gαβ,λΩ
,λ
]

= 0,

so the resulting formula can be written more concisely as

R̃αβ −Rαβ = (N − 2) [Ω,αΩ,β − Ω;αβ ]− gαβ
[

(N − 2)Ω,λΩ
,λ +Ω;λ

;λ

]

.

The modified Ricci scalar is

R̃ = g̃αβR̃αβ = e−2ΩgαβRαβ + e−2Ωgαβ
{

(N − 2) [Ω,αΩ,β − Ω;αβ ]− gαβ
[

(N − 2)Ω,λΩ
,λ +Ω;λ

;λ

]}

= e−2ΩR+ e−2Ω
{

(N − 2) [Ω,αΩ
,α − Ω;α

;α]−N
[

(N − 2)Ω,λΩ
,λ +Ω;λ

;λ

]}

= e−2Ω {R− (N − 2) (N − 1)Ω,αΩ
,α − 2 (N − 1)Ω;α

;α} .

The Einstein tensor is modified as follows,

G̃αβ = R̃αβ − 1

2
g̃αβR̃ = Rαβ + (N − 2) [Ω,αΩ,β − Ω;αβ ]− gαβ

[

(N − 2)Ω,λΩ
,λ +Ω;λ

;λ

]

− 1

2
gαβ [R− (N − 2) (N − 1)Ω,αΩ

,α − 2 (N − 1)Ω;α
;α]

= Gαβ + (N − 2) [Ω,αΩ,β − Ω;αβ ] + gαβ

[

(N − 2) (N − 3)

2
Ω,αΩ

,α + (N − 2)Ω;α
;α

]

.

Note that there is no change in Gαβ in two dimensions (since the Einstein tensor is always equal to zero).

6.3 Motion in Schwarzschild spacetime

The equation for the covariant component u1(s) is

du1

ds
− 1

2
uαuβ ∂

∂r
(gαβ) = 0.

Using the metric gαβ = diag
(

f,−1/f,−r2,−r2 sin2 θ
)

, where f ≡ 1− rg/r, and uα =
{

ṫ, ṙ, θ̇, φ̇
}

, where ˙≡ d/dλ, we find

d

dλ

(

−f−1ṙ
)

− 1

2

(

df

dr
ṫ2 − d

dr

(

1

f

)

ṙ2 − 2rθ̇2 − 2rφ̇2 sin2 θ

)

= 0. (64)

To derive this equation from other equations given in the lecture, we transform in a clever way the expression

0 =
d

dλ
K =

d

dλ

[

f ṫ2 − f−1ṙ2 − r2θ̇2 − r2φ̇2 sin2 θ
]

.
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Namely, we try to separate terms of the form d
dλ (uα) out of the terms of the form d

dλ (uαu
α) in the following way,

d

dλ

(

u1u
1
)

=
d

dλ

(

g11u
1u1
)

= 2u1 d

dλ

(

g11u
1
)

− u1u1 d

dλ
g11 (no summation!).

For example,
d

dλ

(

f ṫ2
)

= 2ṫ
d

dλ

(

f ṫ
)

− ṫ2
d

dλ
f, etc.

We find

0 =
d

dλ
K =

d

dλ

[

f ṫ2 − f−1ṙ2 − r2θ̇2 − r2 sin2 θφ̇2
]

= 2ṫ
d

dλ

(

f ṫ
)

− ṫ2
df

dλ
− 2ṙ

d

dλ

(

f−1ṙ
)

+ ṙ2
d

dλ
f−1 − 2θ̇

d

dλ

(

r2θ̇
)

+ θ̇2
d

dλ

(

r2
)

− 2φ̇
d

dλ

(

r2 sin2 θφ̇
)

+ φ̇2 d

dλ

(

r2 sin2 θ
)

.

Now we substitute the given equations (2)-(4), and also evaluate derivatives of the metric, e.g. df/dλ = f ′ṙ, so

0 = −ṫ2f ′ṙ − 2ṙ
d

dλ

(

f−1ṙ
)

− ṙ2
f ′

f2
ṙ − 2θ̇r2φ̇2 sin θ cos θ + θ̇22rṙ + φ̇22r sin2 θṙ + 2φ̇2r2θ̇ sin θ cos θ

= ṙ

{

d

dλ

(

−2f−1ṙ
)

− f ′ṫ2 − f ′

f2
ṙ2 + 2rθ̇2 + 2rφ̇2 sin2 θ

}

.

This is obviously equivalent to Eq. (64).
Note: the reason one of the equations follows from other equations is that the equation uαu

α = const is a consequence
of the four geodesic equations, uβuα

;β = 0, and the fact that gαβ;µ = 0. Therefore, when we consider the four geodesic
equations and the equation uαu

α = const, any one of these five equations is a consequence of four others.

6.4 Equations of motion

I didn’t write a solution to this.

7 Weak gravitational fields

7.1 Gravitational bending of light

In the lecture it was shown that the trajectory of a light ray in polar coordinates satisfies the equation

d2

dφ2

(

1

r

)

+
1

r
=

3

2

rg
r2

, rg ≡ 2GM

c2
≈ 3km,

where M is the mass of the Sun. Introduce an auxiliary variable v(φ) ≡ r−1 and solve the equation

v′′ + v =
3

2
rgv

2

perturbatively, assuming that v is small,
v(φ) = v0(φ) + v1(φ) + ...

The unperturbed solution is

v0(φ) =
1

R0
cosφ,

where R0 is the distance of closest approach to the Sun. Then

v′′1 + v1 =
3

2

rg
R2

0

cos2 φ =
3

4

rg
R2

0

(1 + cos 2φ) .

The solution is found with undetermined coefficients,

v1(φ) = A+B cos 2φ, A =
3

4

rg
R2

0

, B = −1

4

rg
R2

0

.

The total deflection angle is found as δ = φ1−φ2−π, where φ1,2 are fixed by the condition v(φ) = 0. We find a quadratic
equation

cos2 φ− 2R0

rg
cosφ− 2 = 0, cosφ =

R0

rg
±
√

R2
0

r2g
+ 2.
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Only the solution with the minus sign is meaningful (cosφ < 1). Since rg ≪ R0, we may expand this in Taylor series and
find

cosφ ≈ − rg
R0

+O(r3g/R
3
0).

Therefore, the angle φ is very close to π/2,

φ1,2 = ±
(π

2
+ ε
)

, ε ≈ rg
R0

, ⇒ δ = 2ε =
2rg
R0

.

This formula can be rewritten as

δ =
2rg/R⊙

R0/R⊙
=

[

2rg
R⊙

]

R⊙

R0
.

For the Sun we have R⊙ = 6, 96× 105km and rg = 2, 954 km, therefore

2rg/R⊙ = 8, 489× 10−6 =
[[

8, 489× 10−6 × 360◦/2π
]

× 3600
]

[arc seconds]

= 1, 751”

(see R. Oloff “Geometrie der Raumzeit,” 2nd German edition, page 151).

7.2 Einstein tensor for weak field

For this problem Chapter 4 from the book Norbert Straumann “General Relativity and Relativistic Astrophysics” is
useful. We have gµν = ηµν + hµν and

Rµν = Γλ
µν,λ − Γλ

λµ,ν ,

where (...),µdenotes a derivative ∂µ(...). Here one can ask the students about the symmetry of this tensor.
Furthermore

Γα
µν =

1

2
ηαβ [hµβ,ν + hνβ,µ − hµν,β ] =

1

2

[

hα
µ,ν + hα

ν,µ − h ,α
µν

]

, (65)

where as usual we use the convention that indices are raised or lowered with ηµν ; thus e.g. hα
β ≡ ηαλhλβ . Using Eq. (65)

we have

Rµν =
1

2

[

hλ
µ,νλ + hλ

ν,µλ −�hµν − h,µν

]

,

where � = ηµν∂µ∂ν and h = hλ
λ = ηλαhαλ. And for the Ricci scalar we obtain

R = ηµνRµν = hλν
,νλ −�h.

Thus in the linear approximation we have

Gµν = Rµν − 1

2
ηµνR =

1

2

[

hλ
µ,νλ + hλ

ν,µλ −�hµν − h,µν − ηµνh
λβ
,βλ + ηµν�h

]

.

Let us introduce a new variable γµν ≡ hµν − 1
2ηµνh. The traces of two tensors h and γ are related by γ = −h, thus

hµν ≡ γµν − 1
2ηµνγ. Inserting the last expression for hµν in Gµν , we have

Gµν =
1

2

[

γλ
µ,νλ + γλ

ν,µλ −�γµν − ηµνγ
λβ
,βλ

]

=

=
1

2

[

γ,λ
µλ,ν + γ,λ

νλ,µ −�γµν − ηµνγ
,λβ

βλ

]

,

or finally

Gµ
ν =

1

2

[

γµ,λ
λ,ν + γλ,µ

ν,λ −�γµ
ν − δµν γ

β,λ
λ,β

]

.

7.3 Gravitational perturbations I

The metric is written as gµν = ηµν + δgµν , i.e.

g00 = 1 + 2Φ, g0i = B,i + Si, gij = −δij + 2Ψδij + 2E,ij + Fi,j + Fj,i + hij , (66)

where S ,i
i = F ,i

i = h ,i
ij = hijη

ij = 0, hij = hji. We shall use the formula for Gµ
ν derived in Problem 7.2. All 3-dimensional

indices are raised and lowered using δij , so we can write these indices in any position, as convenient:

δg0j = δg0j = −δgj0, δgji = −δgij .

Also note that for any quantity X we have

X ,j =
(

Ẋ,−X,j

)

.
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We need to write the components of

γµ
ν = δgµν − 1

2
δµν h̄, h̄ ≡ δgµµ ,

using the 3+1 decomposition:

h̄ = δgµµ = ηµνδgµν = 2 (Φ− 3Ψ−∆E) ,

γ0
0 = Φ+ 3Ψ +∆E, γ0

j = B,j + Sj = −γj
0 = γ0j ,

γi
j = − (Φ−Ψ−∆E) δij − 2E,ij − Fi,j − Fj,i − hij = γj

i .

Now we compute

γ0,λ
λ = γ̇0

0 − γ0
j,j = Φ̇ + 3Ψ̇ + ∆

(

Ė −B
)

;

γj,λ
λ = −γλ

j,λ = −γ̇0j − γj
i,i = −Ḃ,j − Ṡj − (− (Φ−Ψ−∆E) δij − 2E,ij − Fi,j − Fj,i − hij),i

= −Ḃ,j − Ṡj + (Φ−Ψ+∆E),j +∆Fj ;

γβ,λ
λ,β =

(

γ0,λ
λ

)

,0
+
(

γj,λ
λ

)

,j
= Φ̈ + 3Ψ̈ + ∆

(

Ë − Ḃ
)

+
[

−Ḃ,j − Ṡj + (Φ−Ψ+∆E),j +∆Fj

]

,j

= Φ̈ + 3Ψ̈ + ∆Ë − 2∆Ḃ +∆(Φ−Ψ+∆E) .

Then we compute each component of Gµ
ν separately:

2G0
0 = 2γ0,λ

λ,0 −�γ0
0 − δ00γ

β,λ
λ,β = 2

(

Φ̈ + 3Ψ̈ + ∆
(

Ë − Ḃ
))

− ∂0∂0 (Φ + 3Ψ +∆E) + ∆ (Φ + 3Ψ +∆E)

−
(

Φ̈ + 3Ψ̈ + ∆Ë
)

+ 2∆Ḃ −∆(Φ−Ψ+∆E)

= 4∆Ψ;

2G0
j = γ0,λ

λ,j + γλ,0
j,λ −�γ0

j − δ0j γ
β,λ
λ,β =

(

Φ̇ + 3Ψ̇ + ∆
(

Ė −B
))

,j
−∗

[

−B̈,j − S̈j +
(

Φ̇− Ψ̇ + ∆Ė
)

,j
+∆Ḟj

]

−
(

B̈,j + S̈j

)

+∆(B,j + Sj) = 4Ψ̇,j +∆Sj −∆Ḟj ,

2Gi
j = γi,λ

λ,j + γj,λ
λ,i −�γi

j − δijγ
β,λ
λ,β =

[

−Ḃ,j − Ṡj + (Φ−Ψ+∆E),j +∆Fj

]

,i
+
[

−Ḃ,i − Ṡi + (Φ−Ψ+∆E),i +∆Fi

]

,j

+� ((Φ−Ψ−∆E) δij + 2E,ij + Fi,j + Fj,i + hij)− δij

[

Φ̈ + 3Ψ̈ + ∆Ë − 2∆Ḃ +∆(Φ−Ψ+∆E)
]

= 2
(

Φ−Ψ− Ḃ + Ë
)

,ij
+ F̈i,j + F̈j,i − Ṡi,j − Ṡj,i +�hij − 2δij

[

2Ψ̈ + ∆
(

Φ−Ψ− Ḃ + Ë
)]

.

* - the origin of the minus sign here is γλ,0
j,λ = −γj,λ

λ,0.

7.4 Gravitational perturbations II

Under an infinitesimal transformation xµ → xµ + ξµ, the metric changes as

gαβ → gαβ − gαγξ
γ
,β − gβγξ

γ
,α = gαβ − ξα,β − ξβ,α. (67)

(This can be easily found from the standard formula for the change of coordinages, involving ∂x̃µ/∂xν .) Now let
us write Eq. (67) in full, using the perturbation variables (66), the covariant components ξµ, and the decomposition
ξµ =

(

ξ0, ξ⊥i + ζ,i
)

. We can write the transformation of gαβ component by component using the 3+1 decomposition, and
we use the fact that the background metric is diagonal,

g00 → g00 − 2ξ0,0; g0i → g0i − ξ0,i − ξi,0; gij → gij − ξi,j − ξj,i.

To simplify calculations, we adopt the convention of raising and lowering the spatial indices i, j, ... by the Euclidean

spatial metric δij rather than by ηij . This will get rid of some minus signs. We also denote ∂0 ≡ ∂t by the overdot. Thus
we have

g00 → g00 − 2ξ̇0; g0i → g0i − ξ0,i − ξ̇i; gij → gij − ξi,j − ξj,i.

Substituting the perturbation variables from Eq. (66), we get

Φ → Φ− ξ̇0, (68)

B,i + Si → B,i + Si − ξ0,i − ξ̇⊥i − ζ̇,i, (69)

2Ψδij + 2E,ij + Fi,j + Fj,i + hij → 2Ψδij + 2E,ij + Fi,j + Fj,i + hij − ξ⊥i,j − ξ⊥j,i − 2ζ,ij . (70)
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Now we need to separate these equations and derive the transformation laws for the individual perturbation variables.
This is easy to do if we perform a Fourier transform of Eqs. (68)-(70) and pass to the Fourier space (where every variable
is a function of a 3-vector k). A vector Vi is decomposed into scalar and vector components as follows,

Vj = ikjV
(S) + V

(V )
j ; V (S) ≡ Vlkl

k2
, V

(V )
j ≡ Vj − ikj

Vlkl
k2

= Vj − ikjV
(S). (71)

The idea is first, to project the given vector Vi(k) onto the direction of ki, and second, to subtract the projection from
Vi and to obtain the component of Vi which is transversal to ki. The imaginary unit factors are added as coefficients at
kj for convenience: with these factors, the decomposition (71) translates to real space as

Vj = ∂jV
(S) + V

(V )
j .

The same procedure applied to a symmetric tensor Tij leads to a decomposition into scalar, vector, and tensor
components. Let us go through this procedure in more detail. First, we subtract the trace and obtain the traceless part
T (1) of the tensor T ,

T
(1)
ij ≡ Tij −

1

3
δijTll; T

(1)
ii = 0.

Note the coefficient 1
3 that depends on the number of spatial dimensions (three). Now we project T

(1)
ij onto kikj and

obtain the scalar component T (S) proportional to kikj and the tensor T
(2)
ij orthogonal to kikj :

T
(1)
ij ≡

(

−kikj +
1

3
δijk

2

)

T (S) + T
(2)
ij ; T (S) ≡ −3

2

kikjT
(1)
ij

k4
; T

(2)
ij kikj = 0.

Note that T
(2)
ij is again a trace-free tensor, T

(2)
ii = 0, due to the subtraction of 1

3k
2δij in the first term. Finally, we project

T
(2)
ij onto ki and kj separately, to obtain a “vector” part T

(V )
j such that T

(V )
j kj = 0, and a completely traceless (“tensor”)

part T
(T )
ij such that T

(T )
ij kj = 0 and T

(T )
ii = 0:

T
(2)
ij = ikiT

(V )
j + ikjT

(V )
i + T

(T )
ij ; T

(V )
j ≡ i

kl
k2

T
(2)
jl , T

(T )
ij ≡ T

(2)
ij − i

(

kiT
(V )
j + kjT

(V )
i

)

.

In real space, the full decomposition is

Tij =
1

3
Tllδij +

(

∂i∂j −
1

3
δij∆

)

T (S) + ∂iT
(V )
j + ∂jT

(V )
i + T

(T )
ij .

T (S) ≡ 3

2

1

∆2
∂i∂j

(

Tij −
1

3
Tllδij

)

; T
(2)
ij ≡

(

Tij −
1

3
Tllδij

)

−
(

∂i∂j −
1

3
δij∆

)

T (S);

T
(V )
j =

1

∆
∂iT

(2)
ij , T

(T )
ij = T

(2)
ij − ∂iT

(V )
j − ∂jT

(V )
i .

It may be convenient to gather the “trace” terms (the terms containing δij) as one term,

Tij = T (tr)δij + ∂i∂jT
(S) + ∂iT

(V )
j + ∂jT

(V )
i + T

(T )
ij , T (tr) ≡ 1

3
Tll −

1

3
∆T (S).

Note that the perturbation variables Ψ, E, Fi, hij are obtained by this decomposition method, starting from the
symmetric perturbation tensor δgij , with slight modifications: there are some cosmetic factors of 2 and some minus signs.

Applying the decomposition method to Eqs. (68)-(70), we get the following transformation laws for the perturbation
variables,

Φ → Φ− ξ̇0, B → B − ξ0 − ζ̇, Si → Si − ξ̇⊥i,

E → E − ζ, Ψ → Ψ, Fi → Fi − ξ⊥i, hij → hij .

Remarks:

1. It is clear that one can set Fi = 0, B = E = 0 with a coordinate transformation. Other components will then show
whether the geometry is really perturbed or it’s just a coordinate transformation of a flat space. In general, there will
remain 6 independent components of perturbations (Φ,Ψ, Si, hij).

2. These considerations depend rather crucially on the silently made assumption that all the metric perturbations
vanish, δgµν → 0, at spatial infinity. These boundary conditions are implicitly used when defining the Fourier transforms
necessary for the tensor/vector/scalar decompositions (a Fourier transform is undefined without this boundary condition).
Alternatively, one may do without Fourier transforms but then one still needs boundary conditions to solve the relevant
Poisson equations for components. Without boundary conditions, there is no unique decomposition of the form

Xi = A,i +Bi, A =
1

∆
Xi,i,

38



because the function A is defined up to solutions of ∆A = 0. So the tensor/vector/scalar decomposition is actually
undefined without a fixed assumption about the boundary conditions. The boundary conditions δgµν → 0 at spatial
infinity is a natural, physically motivated set of boundary conditions. An explicit counterexample where these boundary
conditions are not satisfied: gµν = diag (A,−B,−B,−B), where A 6= 1, B 6= 1 are constants. This metric is flat
but one cannot see this by using the perturbation formalism! (The component Ψ 6= 0 cannot be removed by a gauge
transformation.) The reason is that this gµν is a “perturbation” of flat metric with Φ and Ψ that do not decay to zero at
spatial infinity. So a coordinate transformation with ξµ decaying to zero cannot bring this metric to ηµν .

8 Gravitational radiation I

8.1 Gauge invariant variables

Using the equations derived in Problem 7.4, it is very easy to verify that D = Φ−Ψ− Ḃ + Ë and Si − Ḟi are invariant
under infinitesimal changes of coordinates (i.e. invariant under infinitesimal gauge transformations).

8.2 Detecting gravitational waves

8.2.1 Using distances between particles

(This solution follows Hobson-Efstathiou-Lasenby [2006], §18.4.)
Consider a plane wave moving in the z direction, (all other components of hµν are zero)

hxx = −hyy = A+e
−iω(t−z), hxy = hyx = A×e

−iω(t−z). (72)

To detect the presence of this gravitational wave, let us imagine a cloud of particles initially at rest at different positions.
The 4-vectors describing the particles are uµ = (1, 0, 0, 0), so one can easily see that these particles move along geodesics:

uνuµ
;ν = uνuµ

,ν + Γµ
ναu

νuα = Γµ
00,

Γµ
να =

1

2
ηλµ (hλν,α + hλα,ν − hαν,λ) ,

Γµ
00 =

1

2
ηλµ (hλ0,0 + hλ0,0 − h00,λ) = 0.

Therefore the coordinates xµ of each particle remain constant with time. However, the distance between each pair of
particles is determined through the spacelike vector ∆xµ ≡ xµ

(1) − xµ
(2) as

∆L2 ≈ (ηµν + hµν)∆xµ∆xν

and will change with time because of the dependence on hµν . Since the only nonzero components of hµν are the x, y
components, it is clear that only changing lengths are between particles that have some separation in the x, y directions.
Therefore it is sufficient to consider a ring of particles situated in the x − y plane. The physically measured distances
between the particles in the ring will change with time, i.e. the ring will experience a deformation.

To visualize the deformation, it is convenient to make a local coordinate transformation (local in the neighborhood
of the ring) such that the metric becomes flat, gµνx

µxν = ηµν x̃
µx̃ν (up to second-order terms). The trick that performs

this transformation is the following,

x̃µ = xµ +
1

2
hµ
λx

λ ≡ xµ +
1

2
hαλx

ληαµ.

It is easy to check that
gµνx

µxν ≡ (ηµν + hµν)x
µxν = ηµν x̃

µx̃ν +O(h2).

Therefore, x̃µ can be understood as the (approximate) Cartesian coordinates where the length is given by the usual
Pythagorean formula. Now if we compute the shape of the ring in these coordinates, it will be easy to interpret this
shape in a straightforward way.

Consider a particle with constant 3-coordinates (x, y, z). After the coordinate transformation, we have

x̃ = x+
1

2
(A+x+A×y) e

−iω(t−z),

ỹ = y +
1

2
(A×x−A+y) e

−iω(t−z),

z̃ = z.

To visualize the deformation, it is convenient to consider first the case A+ 6= 0, A× = 0 and then the opposite case.
The deformation of the ring is squeezing in one direction and expansion in the orthogonal direction. It follows that A+

describes a deformation in the two vertical directions, while A× describes a deformation in the directions at 45◦.
Note that the deformations change the shape of the ring in the same way, except for the rotated orientation. This

can be verified by performing a rotation by π
4 ,
(

x̃
ỹ

)

→ 1√
2

(

1 −1
1 1

)(

x̃
ỹ

)

,

and then it is straightforward to see that this will exchange A+ and A×.
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8.2.2 Using geodesic deviation equation

PLEASE NOTE: The commonly found arguments that use the geodesic deviation equation are suspect because the
geodesic deviation equation uses coordinates ξµ rather than gauge-invariant quantities. A cloud of particles at rest in
the gravitational field hµν described by Eq. (72) will stay indefinitely at rest in the coordinate system (ξµ = const)
even though the distances between particles will change with time. See arxiv:gr-qc/0605033 for nice explanations. The
solution given above is simple and straightforward. The argument using the geodesic deviation (see Carroll, Chapter 6,
p. 152-154) goes like this:

The geodesic deviation equation can be simplified for a deviation vector Sσ corresponding to nonrelativistic (almost
stationary) particles moving with 4-velocity approximately equal to (1, 0, 0, 0),

d2Sσ

dt2
= Rσ

00λS
λ.

The Riemann tensor to first order in h can be expressed as

Rσ
00λ = ḧσ

λ

(note that hµ0 = 0). Therefore, the geodesic deviation equation becomes

S̈σ = ḧσ
λS

λ,

S̈x = ω2 (hxxS
x + hxyS

y) = ω2 (A+S
x +A×S

y) e−iω(t−z),

S̈y = ω2 (hyxS
x + hyyS

y) = ω2 (A×S
x −A+S

y) e−iω(t−z),

and there is no change in the z direction.

8.3 Poisson equation

The general solution of the Poisson equation,
∆φ = 4πρ,

with boundary conditions φ → 0 at infinity, is easy to find using the Fourier transform:

−k2φ(k) = 4πρ(k),

φ(x) = −
∫

d3k

(2π)
3 e

ik·x 4πρ(k)

k2
= −

∫

d3k

(2π)
3 e

ik·x 4π

k2

∫

d3ye−ik·yρ(y) =

∫

d3y ρ(y)G(x− y),

where G(x) is the Green’s function,

G(x) = −
∫

d3k

(2π)
3 e

ik·x 4π

k2
= − 1

π

∫ ∞

0

dk

∫ π

0

dθ sin θ eik|x| cos θ = − 2

π |x|

∫ ∞

0

dk

k
sin kx = − 1

|x| .

Here we used the known integral
∫ ∞

0

sin z

z
dz =

1

2

∫ +∞

−∞

sin z

z
dz =

1

2
π.

Therefore

φ(x) = −
∫

d3y

|x− y|ρ(y). (73)

One can denote this integral more concisely,

φ = 4π
1

∆
ρ,

where the operator 1
∆ is just a shorthand notation for the integral in Eq. (73).

Note that the function ρ must fall off sufficiently rapidly as |x| → ∞ or else the integral (73) will not converge. It is

sufficient that |ρ(x)| ∼ |x|−2−ε
at large |x| (where ε > 0).

8.4 Metric perturbations 1

An arbitrary 3-vector Xi (such as T 0
i) is decomposed into scalar and vector parts as follows,

Xi = a,i + bi, bi,i = 0.

To determine an explicit expression for a, let us compute the divergence of Xi,

Xi,i = a,ii = ∆a.

Therefore

a(x) = − 1

4π

∫

d3y

|x− y|Xi,i(y).

One can write more concisely

a =
1

∆
Xi,i.
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8.5 Metric perturbations 2

The energy-momentum tensor Tµν is decomposed as

T 0
i = α,i + βi, α ≡ 1

∆
T 0
k,k, βi ≡ T 0

i −
[

1

∆
T 0
k,k

]

,i

;

T i
k = µδik + λ,ik + σi,k + σk,i + T

(T )i
k ,

βi,i = σi,i = 0, T
(T )i
i = 0, T

(T )i
k,i = 0.

We need to verify that the equation

− 1

16πG
(Ṡi − F̈i) = σi, (74)

which represents the vector part of the spatial Einstein equation (here σi is the vector part of the spatial Tij), also follows
from the conservation of Tµν and from the other Einstein equations.

To calculate the components λ, µ of the EMT, we compute

T i
i = ∆λ+ 3µ,

T i
k,i = ∆λ,k + µ,k +∆σk,

T i
k,ik = ∆∆λ+∆µ.

Now we solve this system of equations and find

µ =
1

2

(

T i
i −

1

∆
T i
k,ik

)

, λ =
3

2

1

∆
T i
k,ik − 1

2
T i
i ,

σj =
1

∆
T i
j,i −

1

∆

[

1

∆
T i
k,ik

]

,j

, (T )T i
k = T i

k − µδik − λ,ik − σi,k − σk,i.

Note that the operator 1
∆2 applied to a function f(x) is defined only if the function f has a sufficiently fast decay at

|x| → ∞. It is sufficient that |f(x)| ∼ |x|−3−ε
with ε > 0 at large |x|. This is a faster decay than that required by the

operator 1
∆ .

The Einstein equations are

2∆Ψ = 8πGT 0
0 ,

2Ψ̇,i +
1

2
∆S̃i = 8πGT 0

i = 8πG (α,i + βi) ,

D,ij − δij

(

∆D + 2Ψ̈
)

− 1

2

[

˙̃Si,j +
˙̃Sj,i

]

+
1

2
�hij = 8πGT i

j = 8πG
(

µδik + λ,ik + σi,k + σk,i + T
(T )i
k

)

,

where we have denoted for brevity
S̃i ≡ Si − Ḟi, D ≡ Φ−Ψ+B − Ė,

which are gauge-invariant variables. In the 3+1 decomposition, the Einstein equations become

∆Ψ = 4πGT 0
0 , (75)

Ψ̇ = 4πGα, (76)

∆S̃i = 16πGβi, (77)

D = 8πGλ, (78)

∆D + 2Ψ̈ = −8πGµ, (79)

˙̃Si = −16πGσi, (80)

�hij = 16πGT
(T )i
j . (81)

The conservation law of the EMT in 3+1 decomposition looks like this,

T 0
0,0 + T j

0,j = 0, T 0
i,0 + T j

i,j = 0. (82)

This gives
Ṫ 0
0 = ∆α, α̇,i + β̇i +∆λ,i + µ,i +∆σi = 0,

therefore
Ṫ 0
0 = ∆α, α̇+∆λ+ µ = 0, β̇i +∆σi = 0. (83)

Then it is easy to see that Eqs. (76), (79), and (80) are consequences of Eqs. (75), (77), (78), and the conservation
laws (83). In particular,

˙̃Si = ∂t
1

∆
16πGβi = − 1

∆
16πG∆σi = −16πGσi.
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9 Gravitational radiation II

9.1 Projection of the matter tensor

a) First note that Pab is a projector,
PabPbc = Pac,

and its image has dimension 2, that is, the trace of Pab is 2,

Pii = 3− nini = 2.

Therefore, for any Xab we have

(T )Xii = PiaXabPbi −
1

2
PiiPabXab = PabXab −

1

2
2PabXab = 0.

b) We compute

(T )Xik,i =

(

PiaXabPbk − 1

2
PikPabXab

)

,i

=

(

PiaPbk − 1

2
PikPab

)

,i

Xab +

(

PiaPbk − 1

2
PikPab

)

Xab,i. (84)

Note that the projection kills any component proportional to Ri because PiaRi = 0. At the same time, Xab,i is propor-
tional to Ri because

Xab,i =
[

X(t− |~R|)
]

,i
= −Ri

R
X ′.

Therefore the second term in Eq. (84) vanishes:

(

PiaPbk − 1

2
PikPab

)

Ri = 0.

So only the first term remains,

(T )Xik,i =

(

PiaPbk − 1

2
PikPab

)

,i

Xab.

However, this term contains derivatives of Pab, which are also sometimes proportional to Ri. We compute

Pik,a = −ni,ank − nink,a; ni,a =

(

Ri

R

)

,a

=
Ri,a

R
− Ri

R2
|R|,a =

δia
R

− RiRa

R3
=

1

R
Pia,

Pik,a = − 1

R
(Paink + Pakni) , Pik,i = − 2

R
nk, (note that Paknk = 0)

(

PiaPbk − 1

2
PikPab

)

,i

= Pia,iPbk − 1

2
Pik,iPab + PiaPbk,i −

1

2
PikPab,i

= − 2

R
naPbk +

1

R
nkPab −

1

R
Pia (Pbink + Piknb) +

1

2R
Pik (Painb + Pbina)

=
1

R

(

−2naPbk + nkPab − Pabnk − Paknb +
1

2
Paknb +

1

2
Pbkna

)

= − 1

R

(

3

2
Pbkna +

1

2
Paknb

)

.

This is higher-order in 1/|~R| than Pab, as required.

9.2 Matter sources

The question is to verify the following property,

(T )Xik = (T )Qik,

where

Qik = Xik −
∫

1

3
δik r

2 T 0
0 d

3r.

It is easy to see that Xik differs from Qik only by a term of the form A(t, R)δij . The transverse-traceless part of δij is
zero,

(

PiaPbk − 1

2
PikPab

)

δab = 0.

Therefore the transverse-traceless parts of Xik and Qik are the same.
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9.3 Energy-momentum tensor of gravitational waves

See Hobson-Efstathiou-Lasenby [2006], §17.11.
We need to compute the second-order terms in the Einstein tensor. The idea is to separate the second-order terms

already in the Ricci tensor. We will also try to simplify things by using the fact that hµν is purely transverse-traceless;
h0α = 0, hii = 0, hik,i = 0. It follows that

ηµνhµν = 0, hµν
,µ = 0.

Also, it is given that the EMT of matter vanishes, Tµν = 0, which we will use below.
First we decompose the metric,

gµν = ηµν + hµν , gµν = ηµν − hµν ;

note that now indices are always raised and lowered using ηµν . We need to compute the Ricci tensor to second order.
The Christoffel symbol up to second order is

Γλ
αβ =

1

2

(

ηλµ − hλµ
)

(hµα,β + hµβ,α − hαβ,µ) = Γ
(1)λ
αβ + Γ

(2)λ
αβ ,

Γ
(1)λ
αβ =

1

2
ηλµ (hαµ,β + hβµ,α − hαβ,µ) ,

Γ
(2)λ
αβ = −1

2
hλµ (hαµ,β + hβµ,α − hαβ,µ) .

The Ricci tensor is

Rαβ = Γλ
αβ,λ − Γλ

λα,β + Γλ
λνΓ

ν
αβ − Γλ

βνΓ
ν
αλ = R

(1)
αβ +R

(2)
αβ ,

R
(1)
αβ = Γ

(1)λ
αβ,λ − Γ

(1)λ
λα,β ,

R
(2)
αβ = Γ

(2)λ
αβ,λ − Γ

(2)λ
λα,β + Γ

(1)λ
λν Γ

(1)ν
αβ − Γ

(1)λ
βν Γ

(1)ν
αλ .

Let us now evaluate these expressions and simplify as much as possible, as early as possible:

Γ
(1)λ
αλ =

1

2
ηλµhλµ,α =

1

2

(

ηλµhλµ

)

,α
= 0,

R
(1)
αβ = Γ

(1)λ
αβ,λ − Γ

(1)λ
λα,β =

1

2
ηλµ (hαµ,βλ + hβµ,αλ − hαβ,µλ) = −1

2
�hαβ ,

because of the transverse traceless property of hµν . Now, since R
(1)
αβ is found from the first-order Einstein equation

R
(1)
αβ − 1

2
ηαβR

(1) = 8πGTαβ ,

and it is given that Tαβ = 0. Hence, we have �hαβ = 0.
Let us now evaluate derivatives of the second-order terms in the Christoffel symbols:

Γ
(2)λ
αλ = −1

2
hλµ (hαµ,λ + hλµ,α − hαλ,µ) = −1

2
hλµhλµ,α,

−Γ
(2)λ
αλ,β =

1

2
hλµhλµ,αβ +

1

2
hλµ
,α hλµ,β ,

Γ
(2)λ
αβ,λ = −1

2
hλµ (hαµ,βλ + hβµ,αλ − hαβ,µλ)

(in the last line we used hλµ
,λ = 0). Finally, we tackle the term Γ

(1)λ
βν Γ

(1)ν
αλ . In this term, it helps to write

Γ
(1)λ
αβ =

1

2

(

hλ
α,β + hλ

β,α − h,λ
αβ

)

,

where again the indices are raised via ηµν since we only need this term to first order. Then we can simplify this expression
by grouping together terms where α, β appear in similar positions:

4Γ
(1)λ
βν Γ

(1)ν
αλ =

(

hλ
β,ν + hλ

ν,β − h,λ
βν

)

(

hν
α,λ + hν

λ,α − h,ν
αλ

)

(expand brackets) = hλ
β,νh

ν
α,λ + hλ

β,νh
ν
λ,α − hλ

β,νh
,ν
αλ + hλ

ν,βh
ν
α,λ + hλ

ν,βh
ν
λ,α − hλ

ν,βh
,ν
αλ − h,λ

βνh
ν
α,λ − h,λ

βνh
ν
λ,α + h,λ

βνh
,ν
αλ

(move, rename λ, ν) = h,ν
βλh

,λ
αν + hβλ,νh

λν
,α − hλ

β,νh
,ν
αλ + hλν

,β hαν,λ + hλν
,β hλν,α − hλν

,β hαλ,ν − hλ
β,νh

,ν
λα − hβν,λh

λν
,α + h,ν

βλh
,λ
αν

(gather terms) = 2h,ν
βλh

,λ
αν + (hβλ,ν − hβν,λ)h

λν
,α − 2hλ

β,νh
,ν
αλ + hλν

,β (hαν,λ − hαλ,ν) + hλν
,β hλν,α

(symmetry of hµν) = hλν,αh
λν
,β + 2h,ν

βλh
,λ
αν − 2hλ

β,νh
,ν
αλ.

Finally, we put together the expression for R
(2)
αβ :

R
(2)
αβ =

1

2
hλµ (−hαµ,βλ − hβµ,αλ + hαβ,µλ + hλµ,αβ) +

1

2
hλµ
,α hλµ,β − 1

4

(

hλν,αh
λν
,β + 2h,ν

βλh
,λ
αν − 2hλ

β,νh
,ν
αλ

)

=
1

2
hλµ (−hαµ,βλ − hβµ,αλ + hαβ,µλ + hλµ,αβ) +

1

4
hλµ
,α hλµ,β +

1

2

(

h,ν
αλh

λ
β,ν − h,ν

βλh
,λ
αν

)

. (85)
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The Ricci scalar is

R(2) = ηαβR
(2)
αβ =

1

2
hλµ

�hλµ +
1

4
hλµ
,α h,α

λµ +
1

2

(

h,ν
αλh

αλ
,ν − hαλ,νhαν,λ

)

=
3

4
hλµ,αhλµ,α − 1

2
hαλ,νhαν,λ, (86)

where we again used the transverse traceless property of hµν and also �hαβ = 0. Note that the first-order Ricci scalar
is zero, R(1) = 0, since Tαβ = 0. For this reason we may use ηαβ in Eq. (86), otherwise we would have to write
(η + h)

(

R(1) +R(2)
)

and pick up a second-order term hR(1).

Again, since R(1) = 0, we may use ηµν rather than gµν to compute the Einstein tensor:

G
(2)
αβ = R

(2)
αβ − 1

2
ηαβR

(2).

We do not write the answer explicitly since it is a combination of Eqs. (85) and (86).

Now let us perform an averaging of the quantity G
(2)
αβ over both space and time. In other words, we integrate G

(2)
αβ

over a 4-dimensional region such that hµν = 0 and hµν,α = 0 on the boundary of that region. Then 〈∂µ (...)〉 = 0 and so
we may integrate by parts, for example

〈AµBν,α〉 = −〈Aµ,αBν〉 ,
as long as AµBν contains first powers of hαβ or hαβ,γ , so that boundary terms vanish. Then, for example,

〈

hλµhλµ,αβ

〉

= −
〈

hλµ
,α hλµ,β

〉

, (87)
〈

hλµhαν,βλ

〉

= −
〈

hλµ
,λ hαν,β

〉

= 0,

〈h,ν
αλhβµ,ν〉 = −〈hαλ�hβµ〉 = 0,

by �hαβ = 0 and by the transverse traceless property of hµν . Many terms cancel in this way; for instance,
〈

R(2)
〉

= 0.
Finally, we get

〈

G
(2)
αβ

〉

=

〈

1

2
hλµ (−hαµ,βλ − hβµ,αλ + hαβ,µλ + hλµ,αβ) +

1

4
hλµ
,α hλµ,β +

1

2

(

h,ν
αλh

λ
β,ν − h,ν

βλh
,λ
αν

)

〉

=
1

2

〈

hλµhλµ,αβ

〉

+
1

4

〈

hλµ
,α hλµ,β

〉

= −1

4

〈

hλµ
,α hλµ,β

〉

using Eq. (87). Finally, we obtain the required equation,

(GW)Tµν = − 1

8πG

〈

G
(2)
αβ

〉

=
1

32πG

〈

hλµ
,α hλµ,β

〉

=
1

32πG

〈

hij
,αhij,β

〉

.

9.4 Power of emitted radiation

To derive the relations
∫

nlnm dΩ

4π
=

1

3
δlm,

∫

nlnmnknr dΩ

4π
=

1

15
(δlmδkr + δlkδmr + δlkδmr),

let us consider the generating function

gΩ(ql) ≡
∫

dΩ

4π
exp

[

−inlql
]

,

which is a function of a vector argument ql. After computing gΩ(ql) it will be easy to obtain integrals such as the above:

∫

nlnm dΩ

4π
= i

∂

∂ql
i
∂

qm
gΩ(qj)

∣

∣

∣

∣

qj=0

, etc.

The computation is easy if we introduce spherical coordinates with the z axis parallel to the vector ql, then nlql = |q| cos θ,
where |q| ≡ √

qlql, and then we have

gΩ(ql) =
1

4π

∫ 2π

0

dφ

∫ π

0

dθ sin θ exp [−i |q| cos θ] = 1

4π
2π

−2i sin |q|
−i |q|

=
sin |q|
|q| = 1− 1

3!
qlql +

1

5!
(qlql)

2 − 1

7!
(qlql)

3
+ ...
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We have used the Taylor expansion for convenience of evaluating derivatives at |q| = 0. These derivatives can be found
as follows,

∂gΩ
∂ql

= − 2

3!
ql +

4

5!
ql |q|2 − ... =

(

−1

3
+

1

30
|q|2
)

ql,

∂2gΩ
∂qk∂ql

=

(

−1

3
+

1

30
|q|2
)

δkl +
1

15
qlqk,

∂3gΩ
∂qj∂qk∂ql

=
1

15
(qjδkl + qkδjl + qlδjk) ,

∂4gΩ
∂qj∂qk∂ql∂qm

=
1

15
(δjmδkl + δkmδjl + δlmδjk) .

Now we compute the intensity of radiation. The flux of radiation in the direction nk is (GW )T0kn
k, and we need to

integrate this flux through a sphere of radius R:

dE

dt
= R2

∫

d2Ω (GW )T0kn
k =

R2

32πG

∫

d2Ω
〈

hij
,0hij,k

〉

nk.

The perturbation hij is found from the Einstein equation. It was derived in the lecture that, in the leading order in 1/R,
we have

hij = 2G
(TT )Q̈ij(t− |~R|)

|~R|
,

(TT )Qij ≡
(

PaiPbj −
1

2
PabPij

)

Qab.

The projection tensor Pij is defined in Problem 9.1. The tensor Qij is defined by

Qij(t) ≡
∫

d3x

(

xixj −
1

3
|x|2 δij

)

T00(x, t)

and is by definition trace-free, Qii = 0. Thus we have

hij,k =
16πG

R
(TT )Q̈ij(t− |R|)Rk

R
,

dE

dt
=

G

8π

∫

d2Ω
〈

(TT )
...
Qij

(TT )
...
Qij

〉

.

It remains to compute the average over the sphere of

(TT )
...
Qij

(TT )
...
Qij .

Consider any symmetric, trace-free tensor Aij instead of
...
Qij ; the transverse-traceless part of Aij is defined by

(TT )Aij ≡
(

PaiPbj −
1

2
PabPij

)

Aab.

Since Aii = 0, we have AabPab = −Aabnanb and so

(TT )Aij
(TT )Aij =

(

PaiPbj −
1

2
PabPij

)(

PciPdj −
1

2
PcdPij

)

AabAcd

=

(

PacPbd −
1

2
PabPcd

)

AabAcd =

(

PacPbd −
1

2
nanbncnd

)

AabAcd

= AabAab − 2AacAbcnanb +
1

2
AabAcdnanbncnd.

After integration over the sphere, according to formulas derived above, we have (again note that δabAab = 0 and Aab =
Aba)

1

4π

∫

d2ΩAacAbcnanb =
1

3
AacAbcδab =

1

3
AabAab,

1

4π

∫

d2ΩAabAcdnanbncnd =
1

15
AabAcd (δabδcd + δacδbd + δadδbc) =

2

15
AabAab,

and thus
1

4π

∫

d2Ω (TT )Aij
(TT )Aij = AabAab

(

1− 2

3
+

1

2

2

15

)

=
2

5
AabAab.

45



Finally, substituting
...
Qij instead of Aij , we find

dE

dt
=

G

2

1

4π

∫

d2Ω
〈

(TT )
...
Qij

(TT )
...
Qij

〉

=
G

5

〈...
Qij

...
Qij

〉

. (88)

The angular brackets 〈...〉 indicate that we must perform an averaging over spacetime domains. This means, for us, that
we need to average over time (since Qij is a function only of time). Averaging is performed over timescales larger than
the typical timescale of change in the source. For instance, if the source is a rotating body, then averaging must be
performed over several periods of rotation.

10 Sample exam problems

10.1 Metric and curvature

1. The answer to the torus: ds2 = a2dφ2 + (b+ a sinφ)
2
dθ2.

2. The form ωr = dr.
3. This spacetime is flat and (u, v) are the Rindler coordinates.

10.2 Geodesics

(a) This is a metric of de Sitter spacetime.
(b) Yes, it is a geodesic. uµ = (1, 0, 0, 0);

uνuµ
;ν = uµ

,0 + Γµ
00 =

1

2
gλµ (gµ0,0 + g0µ,0 − g00,µ) = 0. (89)

10.3 Motion in central field

(a) V ′(r) = 0 implies mr2/h2 − r + 3m = 0. This has solutions when 1− 12m2/h2 ≥ 0, in other words h2 ≥ 12m2. One
also has r = 3m+mr2/h2 > 3m. The actual solutions are

r± =
h
(

h±
√
h2 − 12m2

)

2m
.

(b) V ′′(r) > 0 implies 2mr/h2 − 3r+ 12m < 0. Since V ′(r) = 0, this becomes r− 6m > 0. Now r+ > h2/2m > 6m so
it is stable.

(c)
√
h2 − 12m2 ≃ h(1− 6m2/h2) therefore r− ≃ 3m and result follows.

r
2m

3m

1

V

(d) The particle will be captured. There is no infinite centrifugal barrier like in Newtonian gravity.
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10.4 Gravitational radiation

It is sufficient to compute only the time-dependent components of the quadrupole tensor, so we disregard the star and set
ρ(x) = mδ(x− x0(t)), where the trajectory of the planet is x0(t) = (R cosωt,R sinωt, 0) in the x− y plane. The period
T ≡ 2π/ω is found from the Newtonian calculation,

T = 2π

√

R3

GM
, ω =

√

GM

R3
.

Then we compute (omitting constant terms)

Qxx = mR2 cos2 ωt+ const =
mR2

2
cos 2ωt+ const.

Qxy =
mR2

2
sin 2ωt+ const,

Qyy =
mR2

2
cos 2ωt+ const, Qzz = Qxz = Qyz = 0,

∑

ij

...
Qij

...
Qij =

(

8ω3
)2
(

mR2

2

)2
(

2 cos2 2ωt+ 2 sin2 2ωt
)

= 32ω6m2R4,

LGW =
32G

5c5
ω6m2R4.

The initial kinetic energy of the planet is

E0 =
mv2

2
=

1

2

GMm

R
=

1

2
mω2R2,

and this energy will be radiated during the time ∆T ,

∆T =
E0

LGW
.

The dimensionless ratio of ∆T to the period T is

∆T

T
=

ω

2π

5c5

64G

mω2R2

R4m2ω6
=

5

128π

(

R

Rs

)5/2
M

m
.

For the Earth-Sun system, a calculation gives
∆T

T
∼ 7 · 1023. (90)

Part III

Addendum

1 Derivation: gravitational waves in flat spacetime

This is not a solution to any exercise, but a more detailed derivation of the formula for the energy radiated by the
gravitational waves due to a small matter source.

The metric is assumed to be of the form
gµν = ηµν + hµν ,

where ηµν = diag(1,−1,−1,−1) is the Minkowski metric for flat space and hµν is a small perturbation which is assumed
to fall off to zero quickly at infinity. We start with a 3+1 decomposition of the metric perturbation hµν and compute
the Einstein tensor (see Problems 7.2, 7.3, 7.4) in terms of the perturbation variables Φ, Ψ, etc. We also decompose the
matter energy-momentum tensor Tµν and obtain the Einstein equations separately for each component (8.5). The result
is that (a) the variables E, B, Fi can be set to zero by choosing a coordinate system; (b) if there is no matter (vacuum)
the scalar and vector components of the metric perturbation are equal to zero; (c) the tensor component hij satisfies the
wave equation (81).

Solutions of the wave equation in four dimensions with retarded boundary condition can be written using the known
Green’s function. For instance, if

�f(t, r) = A(t, r) ⇒ f(t,R) = − 1

4π

∫

d3r
A(t− |r−R| , r)

|r−R| .

We will use this formula for f ≡ (T )hij and A ≡ 16πG(T )T i
j . Now, we are interested in describing the radiation sent far

away by a matter distribution, so we take the limit |R| ≫ |r|, and then we can approximately set

(T )hij ≈ − 4G

|R|

∫

d3r (T )T i
j (t− |r−R| , r).
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Now we use a trick (See Hobson-Efstathiou-Lasenby, §17.9) to express the components T j
i through T 0

0 ; it is much easier
to compute with T 0

0 because this is just the energy density of matter. Consider first the tensor T i
j rather than its

transverse-traceless part (T )T i
j . The trick is to write the integral (out of sheer luck)

∫

d3r ∂a∂b
(

rirj
)

T ab = 2

∫

d3rT ij .

Then we integrate by parts and use the conservation laws (82),

T i
j,i = −T 0

j,0, T i
j,ij = −T 0

j,0j = T 0
0,00 ≡ T̈ 0

0 ; T ij
,ij = −T̈ 0

0 .

2

∫

d3rT ij =

∫

d3rT ab
,abr

irj = −
∫

d3r rirj T̈ 0
0 .

Now, we need to obtain the transverse-traceless part of the tensor. In principle, we have the formulas for this (see
Problem 8.5). But they are very complicated. A shortcut is to notice that the projection operator Pab does the job
(Problems 9.1 and 9.2), at least in the leading order in 1/|R|. (We are only interested in everything to leading order in
1/ |R| since all smaller terms will not give any flux of radiated energy.) The result is

(T )hik(R, t) =
2G

|R|
(TT )Q̈ik(t− |R|),

Qik(t) ≡
∫

d3rT 0
0 (r, t)

(

rirk − 1

3
r2δik

)

. (91)

The tensor Qik is the quadrupole moment of energy distribution; it is a traceless and symmetric tensor. In principle, we
could just use the integral

∫

d3rT 0
0 (r, t)rirk, (92)

because the transverse-traceless parts of (92) and of Qik are the same, but it is more convenient to use Qik.
Since we found the tensor perturbation (T )hij , now we would like to compute the energy radiated in the gravitational

waves. For this we need the energy-momentum tensor of gravitational waves. This is a rather nontrivial object, since
in general the gravitational field does not have any energy-momentum tensor. In the case of gravitational waves in
flat background spacetime, one can define some quantity (GW )Tµν which looks like the energy-momentum tensor of
gravitational waves (but actually is not even a generally covariant tensor). We will compute this quantity below. This
quantity is useful because it gives the correct value of the energy after one integrates over a large region of spacetime.
The real justification for using this procedure is complicated and is beyond the scope of this introductory course of
General Relativity. We will only show a heuristic justification, which is the following. Gravitation is sensitive to every
kind of energy, because the energy-momentum tensor acts as a “source” for gravity (it is on the right-hand side of the
Einstein equation). So gravitation should be also sensitive to the energy in gravitational waves. One expects that the
energy-momentum tensor for gravitational waves, (GW )Tµν (if we know how to compute it), will act as an additional
source for gravity, like every other energy-momentum tensor for other kinds of matter. We will guess the formula for
(GW )Tµν as follows. We can write the Einstein equation and expand it in powers of the perturbation hµν :

Gα
β [ηµν + hµν ] = G

(1)α
β [h] +G

(2)α
β [h] + ... = 8πGTα

β . (93)

Here G(1) is the first-order Einstein tensor, G(2) is the second-order etc. First we solve only to first-order in h (this is

what we have been doing so far) and then we will get an approximate solution h
(1)
µν :

G
(1)α
β [h(1)] = 8πGTα

β . (94)

This solution disregards the effect of gravitational waves and only takes into account the effect of matter Tα
β . We can

try to get a more precise solution by using the second-order terms in Eq. (93). Then we will get a correction h(2) to the
solution; the solution g = η + h(1) + h(2) will be more precise. From Eq. (93) we find

G
(1)α
β [h(1) + h(2)] +G

(2)α
β [h(1)] = 8πGTα

β .

Now this is similar to Eq. (94), but it looks as if there is an additional term in the energy-momentum tensor, which we
may rewrite as

G
(1)α
β [h(1) + h(2)] = 8πG

{

Tα
β + (GW)Tα

β

}

,

(GW)Tα
β ≡ − 1

8πG
G

(2)α
β [h(1)].

This motivates us to say that the EMT for gravitational waves is given by this formula. But of course this is not a real
derivation because this does not show why the quantity (GW)Tµν has anything to do with the energy carried by waves.
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The second-order terms G
(2)α
β are computed in Problem 9.3. The result is used to compute the power radiated in

gravitational waves (Problem 9.4). Note that the calculation of G
(2)α
β uses averaging over spacetime in an essential way.

Thus, the result is an averaged power radiated during a long time—much longer than the typical time scale of change
in the sources—and averaged over large distances, much larger than the typical length scale of the sources. This kind of
averaging is assumed in Eq. (88). It remains unclear exactly how one performs averaging over space and time; this is not
well explained in any books at the undergraduate level.

The result is that we can use the formula (88) to compute the gravitational radiation emitted by nonrelativistic matter
far away from those places where the matter is contained. The distribution of the energy density, T 0

0 (r, t), should be
given. Then we compute the tensor Qij according to Eq. (91), by integrating over space where the matter is contained.
Finally, we compute the third derivative

...
Qij , the trace, and averages over long times, as indicated in Eq. (88). If we want

to insert factors of c, we replace G by Gc−9.
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copy will remain thus accessible at the stated location until at least one year after the last time you distribute an Opaque
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number of copies, to give them a chance to provide you with an updated version of the Document.
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the Document, thus licensing distribution and modification of the Modified Version to whoever possesses a copy of it. In
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same title as a previous version if the original publisher of that version gives permission.

B. List on the Title Page, as authors, one or more persons or entities responsible for authorship of the modifications
in the Modified Version, together with at least five of the principal authors of the Document (all of its principal authors,
if it has fewer than five), unless they release you from this requirement.

C. State on the Title page the name of the publisher of the Modified Version, as the publisher.
D. Preserve all the copyright notices of the Document.
E. Add an appropriate copyright notice for your modifications adjacent to the other copyright notices.
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F. Include, immediately after the copyright notices, a license notice giving the public permission to use the Modified
Version under the terms of this License, in the form shown in the Addendum below.

G. Preserve in that license notice the full lists of Invariant Sections and required Cover Texts given in the Document’s
license notice.

H. Include an unaltered copy of this License.
I. Preserve the section Entitled “History”, Preserve its Title, and add to it an item stating at least the title, year, new

authors, and publisher of the Modified Version as given on the Title Page. If there is no section Entitled “History” in the
Document, create one stating the title, year, authors, and publisher of the Document as given on its Title Page, then add
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J. Preserve the network location, if any, given in the Document for public access to a Transparent copy of the
Document, and likewise the network locations given in the Document for previous versions it was based on. These may
be placed in the “History” section. You may omit a network location for a work that was published at least four years
before the Document itself, or if the original publisher of the version it refers to gives permission.

K. For any section Entitled “Acknowledgements” or “Dedications”, Preserve the Title of the section, and preserve in
the section all the substance and tone of each of the contributor acknowledgements and/or dedications given therein.

L. Preserve all the Invariant Sections of the Document, unaltered in their text and in their titles. Section numbers or
the equivalent are not considered part of the section titles.

M. Delete any section Entitled “Endorsements”. Such a section may not be included in the Modified Version.
N. Do not retitle any existing section to be Entitled “Endorsements” or to conflict in title with any Invariant Section.
O. Preserve any Warranty Disclaimers.
If the Modified Version includes new front-matter sections or appendices that qualify as Secondary Sections and contain

no material copied from the Document, you may at your option designate some or all of these sections as invariant. To
do this, add their titles to the list of Invariant Sections in the Modified Version’s license notice. These titles must be
distinct from any other section titles.

You may add a section Entitled “Endorsements”, provided it contains nothing but endorsements of your Modified
Version by various parties—for example, statements of peer review or that the text has been approved by an organization
as the authoritative definition of a standard.

You may add a passage of up to five words as a Front-Cover Text, and a passage of up to 25 words as a Back-Cover
Text, to the end of the list of Cover Texts in the Modified Version. Only one passage of Front-Cover Text and one of
Back-Cover Text may be added by (or through arrangements made by) any one entity. If the Document already includes
a cover text for the same cover, previously added by you or by arrangement made by the same entity you are acting on
behalf of, you may not add another; but you may replace the old one, on explicit permission from the previous publisher
that added the old one.

The author(s) and publisher(s) of the Document do not by this License give permission to use their names for publicity
for or to assert or imply endorsement of any Modified Version.

Combining documents

You may combine the Document with other documents released under this License, under the terms defined in section
4 above for modified versions, provided that you include in the combination all of the Invariant Sections of all of the
original documents, unmodified, and list them all as Invariant Sections of your combined work in its license notice, and
that you preserve all their Warranty Disclaimers.

The combined work need only contain one copy of this License, and multiple identical Invariant Sections may be
replaced with a single copy. If there are multiple Invariant Sections with the same name but different contents, make the
title of each such section unique by adding at the end of it, in parentheses, the name of the original author or publisher
of that section if known, or else a unique number. Make the same adjustment to the section titles in the list of Invariant
Sections in the license notice of the combined work.

In the combination, you must combine any sections Entitled “History” in the various original documents, forming
one section Entitled “History”; likewise combine any sections Entitled “Acknowledgements”, and any sections Entitled
“Dedications”. You must delete all sections Entitled “Endorsements.”

Collections of documents

You may make a collection consisting of the Document and other documents released under this License, and replace the
individual copies of this License in the various documents with a single copy that is included in the collection, provided
that you follow the rules of this License for verbatim copying of each of the documents in all other respects.

You may extract a single document from such a collection, and distribute it individually under this License, provided
you insert a copy of this License into the extracted document, and follow this License in all other respects regarding
verbatim copying of that document.

2.4 Aggregation with independent works

A compilation of the Document or its derivatives with other separate and independent documents or works, in or on a
volume of a storage or distribution medium, is called an “aggregate” if the copyright resulting from the compilation is not
used to limit the legal rights of the compilation’s users beyond what the individual works permit. When the Document is
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included an aggregate, this License does not apply to the other works in the aggregate which are not themselves derivative
works of the Document.

If the Cover Text requirement of section 2.2 is applicable to these copies of the Document, then if the Document is less
than one half of the entire aggregate, the Document’s Cover Texts may be placed on covers that bracket the Document
within the aggregate, or the electronic equivalent of covers if the Document is in electronic form. Otherwise they must
appear on printed covers that bracket the whole aggregate.

Translation

Translation is considered a kind of modification, so you may distribute translations of the Document under the terms
of section 2.3. Replacing Invariant Sections with translations requires special permission from their copyright holders,
but you may include translations of some or all Invariant Sections in addition to the original versions of these Invariant
Sections. You may include a translation of this License, and all the license notices in the Document, and any Warrany
Disclaimers, provided that you also include the original English version of this License and the original versions of those
notices and disclaimers. In case of a disagreement between the translation and the original version of this License or a
notice or disclaimer, the original version will prevail.

If a section in the Document is Entitled“Acknowledgements”, “Dedications”, or“History”, the requirement (section 2.3)
to Preserve its Title (section 2.0) will typically require changing the actual title.

Termination

You may not copy, modify, sublicense, or distribute the Document except as expressly provided for under this License.
Any other attempt to copy, modify, sublicense or distribute the Document is void, and will automatically terminate your
rights under this License. However, parties who have received copies, or rights, from you under this License will not have
their licenses terminated so long as such parties remain in full compliance.

Future revisions of this license

The Free Software Foundation may publish new, revised versions of the GNU Free Documentation License from time to
time. Such new versions will be similar in spirit to the present version, but may differ in detail to address new problems
or concerns. See http://www.gnu.org/copyleft/.

Each version of the License is given a distinguishing version number. If the Document specifies that a particular
numbered version of this License “or any later version” applies to it, you have the option of following the terms and
conditions either of that specified version or of any later version that has been published (not as a draft) by the Free
Software Foundation. If the Document does not specify a version number of this License, you may choose any version
ever published (not as a draft) by the Free Software Foundation.

ADDENDUM: How to use this License for your documents

To use this License in a document you have written, include a copy of the License in the document and put the following
copyright and license notices just after the title page:

Copyright (c) <year> <your name>. Permission is granted to copy, distribute and/or modify this document under
the terms of the GNU Free Documentation License, Version 1.2 or any later version published by the Free Software
Foundation; with no Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts. A copy of the license is
included in the section entitled “GNU Free Documentation License”.

If you have Invariant Sections, Front-Cover Texts and Back-Cover Texts, replace the “with...Texts.” line with this:
with the Invariant Sections being<list their titles>, with the Front-Cover Texts being<list>, and with the Back-Cover

Texts being <list>.
If you have Invariant Sections without Cover Texts, or some other combination of the three, merge those two alterna-

tives to suit the situation.
If your document contains nontrivial examples of program code, we recommend releasing these examples in parallel

under your choice of free software license, such as the GNU General Public License, to permit their use in free software.

Copyright

Copyright (c) 2000, 2001, 2002 Free Software Foundation, Inc. 59 Temple Place, Suite 330, Boston, MA 02111-1307, USA
Everyone is permitted to copy and distribute verbatim copies of this license document, but changing it is not allowed.
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