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L. INTRODUCTION

General Relativity is the theory of space, time, and gravity
formulated by Einstein in 1915. It is widely regarded as a
very abstruse, mathematical theory and, indeed, until re-
cently it has not generally been regarded as a suitable subject
for an undergraduate course. In actual fact, the mathematical
material (namely, differential geometry) needed to attain a
deep understanding of general relativity is not particularly
difficult and requires a background no greater than that pro-
vided by standard courses in advanced calculus and linear
algebra. (By contrast, considerably more mathematical so-
phistication is needed to provide a rigorous formulation of
quantum theory.) Nevertheless, this mathematical material is
unfamiliar to most physics students and its application to
general relativity goes against what students have been
taught since high school (or earlier): namely, that “space” has
the natural structure of a vector space. Thus, the mathemati-
cal material poses a major challenge to teaching general
relativity—particularly for a one-semester course. If one
takes the time to teach the mathematical material properly,
one runs the risk of turning the course into a course on dif-
ferential geometry and doing very little physics. On the other
hand, if one does not teach it properly, then one is greatly
handicapped in one’s ability to explain the major conceptual
differences between general relativity and the prerelativistic
and special-relativistic notions of spacetime structure.

The purpose of this Resource Letter is to provide a brief
guide to the issues and pitfalls involved in teaching general
relativity at both the undergraduate and graduate levels. The
main focus will be on how to introduce the mathematical
material necessary for the formulation of general relativity.
By contrast, I shall not devote much attention to how to
teach the various topics that normally would be included in a
general-relativity course after one has formulated the theory,
such as the “weak-field” limit, tests of general relativity,

471 Am. J. Phys. 74 (6), June 2006 http://aapt.org/ajp

gravitational radiation, cosmology, and black holes. This Re-
source Letter also will be relatively light on the enumeration
of published “resources.”

I will begin by briefly outlining the major new conceptual
ideas introduced by general relativity. I will then describe the
mathematical concepts that are needed to formulate the
theory in a precise manner. Finally, I will discuss strategies
for dealing with this mathematical material in courses on
general relativity.

II. GENERAL RELATIVITY

Prior to 1905, it was taken for granted that the causal
structure of space-time defines a notion of simultaneity. For a
given event A (i.e., a “point of space at an instant of time”),
we can define the future of A to consist of all events that, in
principle, could be reached by a particle starting from event
A. Similarly, the past of A consists of all events such that, in
principle, a particle starting from that event could arrive at A.
The events that lie neither to the future nor the past of event
A were assumed to comprise a three-dimensional set, called
the events simultaneous with A. This notion of simultaneity
defines a notion of “all of space at an instant of time,” which,
in essence, allows one to decompose the study of space-time
into separate studies of “space” and “time.” It is important to
emphasize to students the key role of this assumption in
prerelativistic notions of space-time structure.

The major revolution introduced by special relativity rests
largely on the premise that the assertions of the preceding
paragraph concerning the causal structure of space-time are
wrong. Most strikingly, the set of events that fail to be caus-
ally connected to an event A comprise much more than a
three-dimensional region. In a space-time diagram, the future
of an event A looks like the interior of a “‘cone” with vertex
A, where the boundary of this cone corresponds to the tra-
jectories of light rays emitted at event A. Thus, in special
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relativity, the causal structure of space-time defines a notion
of a “light cone” of an event, but it does not define a notion
of simultaneity.

It is important to focus on the “invariant structure” of
space-time, i.e., the aspects of space-time structure that are
well defined, independently of which observer makes the
measurements. In prerelativity physics, the time interval be-
tween any pair of events is such an invariant; the space in-
terval between simultaneous events is also an invariant.
However, in special relativity neither time intervals nor space
intervals are invariants. In special relativity, the only invari-
ant quantity related to a pair of events, A and B, is their
space-time interval, given in any global inertial coordinate
system by the formula

I(A,B)=—(A1)* + lz[(Ax)2 +(Ay)* + (A2)?]. (1)

All features of space-time structure in special relativity can
be derived from the space-time interval.

It is remarkable that—except for the key minus sign in
front of (At)>—the space-time interval has exactly the same
mathematical form as the Pythagorean formula for the square
of the distance between two points in Euclidean geometry.
This was first realized by Minkowski in 1908, but its deep
significance was not appreciated by Einstein until several
years later, as he began to develop general relativity. It en-
ables one to understand special relativity as a theory of flar
Lorentzian geometry. In special relativity, space-time is de-
scribed in a manner that is mathematically identical to Eu-
clidean geometry, except for the changes that result from the
presence of a term with a minus sign on the right-hand side
of Eq. (1). In particular, the global inertial coordinates of
special relativity are direct analogs of Cartesian coordinates
in Euclidean geometry, and the worldlines of inertial observ-
ers are direct analogs of the straight lines (geodesics) of Eu-
clidean geometry.

This understanding of special relativity as a theory of flat
Lorentzian geometry is a key step in the progression toward
general relativity. General relativity arose from the attempt to
formulate a theory of gravity that is compatible with the
basic ideas of special relativity and also fundamentally
builds in the equivalence principle: All bodies are affected
by gravity and, indeed, all bodies fall the same way in a
gravitational field. The equivalence principle strongly sug-
gests that freely falling motion in a gravitational field should
be viewed as analogous to inertial motion in prerelativity
physics and special relativity. Gravity is not a “force” at all,
but rather a change in space-time structure that allows iner-
tial observers to accelerate relative to each other. Remark-
ably, after many years of effort, Einstein discovered that this
idea could be implemented by simply generalizing the flat
Lorentzian geometry of special relativity to a curved Lorent-
zian geometry—in exactly the same way as flat Euclidean
geometry can be generalized to curved Riemannian geom-
etry. General relativity is thereby a theory of the structure of
space and time that accounts for all of the physical effects of
gravitation in terms of the curved geometry of space-time.

In addition to the replacement of a flat space-time geom-
etry by a curved space-time geometry, general relativity dif-
fers radically from special relativity in that the space-time
geometry is not fixed in advance but rather evolves dynami-
cally. The dynamical evolution equation for the metric—
known as Einstein’s equation—equates part of the curvature

472 Am. J. Phys., Vol. 74, No. 6, June 2006

of space-time to the stress-energy-momentum tensor of
matter.

I11. DIFFERENTIAL GEOMETRY

The geometry required for an understanding of general
relativity is simply the generalization of Riemannian geom-
etry to metrics that are not positive-definite. Fortunately,
there are few significant mathematical changes that result
from this generalization. Consequently, much of the intuition
that most people have for understanding the Riemannian ge-
ometry of two-dimensional surfaces encountered in everyday
life—such as the surface of a potato—can usually be ex-
tended to general relativity in a reliable manner. However,
two significant cautions should be kept in mind: (1) Much of
the intuition that most people have about the curvature of
two-dimensional surfaces concerns the manner in which the
surface bends within the three-dimensional Euclidean space
in which it lies. This extrinsic notion of curvature must be
carefully distinguished from the purely intrinsic notion of
curvature that concerns, e.g., the failure of initially parallel
geodesics within the surface itself to remain parallel. It is the
intrinsic notion of curvature that is relevant to the formula-
tion of general relativity. (2) A new feature that arises for
non-positive-definite metrics is the presence of null vectors,
i.e., nonzero vectors whose “length” is zero. Attempts to ap-
ply intuition from Riemannian geometry to null vectors and
null surfaces (i.e., surfaces that are everywhere orthogonal to
a null vector) often result in serious errors.

When I teach general relativity at either the undergraduate
or graduate level, I emphasize to the students that one of
their main challenges is to “unlearn” some of the fundamen-
tal falsehoods about the nature of space and time that they
have been taught to assume since high school (if not earlier).
I have already discussed above one such key falsehood,
namely the notion of absolute simultaneity. Normally, stu-
dents taking general relativity have had some prior exposure
to special relativity, and thus they are aware—at least at
some level—of the lack of a notion of absolute simultaneity
in special relativity. However, very few students have any
inkling that, in nature, the points of space and the events in
space-time fail to have any natural vector-space structure.
Indeed, the concept of a “vector” is normally introduced to
students early in their physics education through the concept
of “position vectors” representing the points of space. Stu-
dents are taught that, given the choice of a point to serve as
an “origin,” it makes sense to add and scalar multiply points
of space. The only significant change introduced by special
relativity is the generalization of this vector-space structure
from space to space-time: In special relativity, the position
vector X representing a point of space is replaced by the
“4-vector” x* representing an event in space-time. One can
add and scalar multiply 4-vectors in special relativity in ex-
actly the same way as one adds and scalar multiplies ordi-
nary position vectors in prerelativity physics.

This situation changes dramatically in general relativity,
since the vector-space character of space and space-time de-
pends crucially on having a flat geometry. In general relativ-
ity, it does not make any more sense to “add” two events in
space-time than it would make sense to try to define a notion
of addition of points on the surface of a potato.

How does one go about giving a precise mathematical
description of the geometry of a space-time in general
relativity—or, for that matter, of the geometry of a surface of
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a potato? The notion of a “distance function” between (fi-
nitely separated) points can be defined for the surface of a
potato, and, similarly, the notion of a “space-time interval”
could be defined for (finitely separated, but sufficiently
close) events in general relativity, but it would be extremely
cumbersome to base a geometrical description of these enti-
ties on such a notion. A much better idea is to work infini-
tesimally, using the idea that, on sufficiently small scales, a
curved geometry looks very nearly flat. These departures
from flatness can then be described by differential calculus.
To do so, one begins by introducing the notion of a tangent
vector to describe an infinitesimal displacement about a point
p. The collection of all tangent vectors at p can be given the
natural structure of a vector space, but in a curved geometry,
a tangent vector at p cannot naturally be identified with a
tangent vector at a different point g. One then uses basic
constructions of linear algebra to define the more general
notion of tensors at p. A particularly important example of a
tensor field (i.e., a tensor defined at all points p) is a metric,
which is simply a (not necessarily positive-definite) inner
product on tangent vectors (see below). When a metric (of
any type) is present, it gives rise to a natural notion of dif-
ferentiation of tensor fields. This notion of differentiation
allows one to define the notion of a geodesic (as a curve that
is “as straight as possible”) and curvature—which can be
defined in terms of the failure of initially parallel geodesics
to remain parallel, or, more directly, in terms of the failure of
successive derivatives of tensor fields to commute.

Let me now explain in more detail what is actually needed
in order to introduce the above basic concepts of differential
geometry in a mathematically precise manner. First, one
needs a mathematically precise notion of the “set of points”
that constitute space-time (or that constitute a surface in or-
dinary geometry). The appropriate notion is that of a mani-
fold, which is a set that locally “looks like” R” with respect
to differentiability properties, but has no metrical or other
structure. The points of an n-dimensional manifold can
thereby be labeled locally by coordinates (x!,...,x"), but
these coordinate labels are arbitrary and could equally well
be replaced by any other coordinate labels (x'',...,x") that
are related to (x', ... ,x") in a smooth, nonsingular manner. A
precise definition of an n-dimensional manifold can be given
as a set that can be covered by local coordinate systems that
satisfy suitable compatibility conditions in the overlap re-
gions.

Unfortunately, it is not as easy as one might think to give
a mathematically precise notion of a “tangent vector.” The
most elegant and mathematically clear way of proceeding is
to define a tangent vector to be a “derivation” (i.e., direc-
tional derivative operator) acting on functions; derivations
can be defined axiomatically in a simple manner. This defi-
nition has the virtue of stating clearly what a tangent vector
is, without introducing extraneous concepts like coordinate
bases. Essentially all modern mathematics books define tan-
gent vectors in this way. However, most students do not find
this definition to be particularly intuitive.

A more intuitive way of proceeding is to consider a curve,
which can be locally described by giving the coordinates
x*(t) of the point on the curve as a function of the curve
parameter ¢. One can identify the tangent to the curve at the
point x*“(r) with the collection of 7n numbers,
(dx'/dt, ...,dx"/dt), at the point on the curve labeled by 7.
The coordinate lines themselves are curves, and the tangent
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to the uth coordinate line would be identified with the num-
bers (0,...,0,1,0,...,0), where the “1” is in the uth place. One
may therefore view the tangents to the coordinate lines at
each point as comprising a basis for the “tangent vectors” at
that point. For an arbitrary curve x*(f), one then may view
(dx'/dt, ...,dx"/dt) as the components of the tangent to this
curve in this coordinate basis. Of course, if we chose a dif-
ferent coordinate system, the components of the tangent to
this curve would “transform” by a formula known as the
“vector-transformation law,” which is easily derived from the
chain rule.

A somewhat more direct way of proceeding in accord with
the preceding paragraph is to define a tangent vector at a
point to be a collection of n numbers associated with a co-
ordinate system that transforms by the vector-transformation
law under a change of coordinates. This approach allows one
to define a tangent vector in one sentence and thereby move
on quickly to other topics. This definition can be found in
most mathematics books written prior to the mid-20th cen-
tury as well as in most treatments of general relativity writ-
ten by physicists. However, it is not particularly intuitive.
Furthermore, by tying the notion of a tangent vector to the
presence of a coordinate system, it makes it extremely diffi-
cult for students to think about tangent vectors (and
tensors—see below) in a geometrical, coordinate-
independent way.

After tangent vectors have been introduced, the next step
is to define tensors of arbitrary rank. This is done by a stan-
dard construction in linear algebra. Linear algebra is quite
“easy” compared with many other mathematical topics, and
students taking a general-relativity class will normally have
had a course in linear algebra or considerable exposure to it.
Unfortunately, however, the way students are normally
taught linear algebra does not mesh properly with what is
needed for general relativity. The problem is that in the con-
text in which students have been exposed to linear algebra, a
(positive-definite) inner product is normally present. One
then normally works with the components of tensors in an
orthonormal basis. One thereby effectively “hides” the role
played by the inner product in various constructions. One
also hides the major distinction between vectors and dual
vectors (see below). In general relativity, the key “unknown
variable” that one wishes to solve for is the metric of space-
time, which, as mentioned above, is simply a (non-positive-
definite) inner product on tangent vectors. It is therefore es-
sential that all of the basic linear-algebra constructions be
done without assuming an inner product, so that the role of
the metric in all subsequent constructions is completely ex-
plicit.

To proceed, given a finite-dimensional vector space,
V—which, in the case of interest for us, would be the tangent
space at a point p of space-time—we define its dual space,
V", to be the collection of linear maps from V into R. It
follows that V" is a vector space of dimension equal to V,
but, in the absence of an inner product, there is no natural
way of identifying V and V*. However, given a basis of V,
there is a natural corresponding basis of V. Since V" is a
vector space, we also can take its dual, thereby producing the
“double dual,” V**, of V. It is not difficult to show explicitly
that there is a natural way of identifying V** with V.

With this established, a tensor of type (k,I) can then be
defined as a multilinear map taking k copies of V* and [
copies of V into R. On account of the isomorphism between
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V and V™, tensors of a given type may be viewed in other
equivalent ways. For example, tensors of type (1,1) are iso-
morphic to the vector space of linear maps from V to V and
also are isomorphic to the linear maps from V" to V*. There
are two basic operations that can be performed on tensors:
contraction and taking outer products. All familiar operations
can be expressed in terms of these; for example, the compo-
sition of two linear maps can be expressed in terms of the
outer product of the corresponding tensors followed by a
contraction.

All of the assertions of the preceding two paragraphs are
entirely straightforward to establish. However, most students
are not used to distinguishing between between vectors and
dual vectors. Indeed, in the familiar context where one has a
positive-definite metric, not only can V and V" be identified,
but the components of a vector in an orthonormal basis are
equal to the components of the corresponding dual vector in
the corresponding dual basis. Students feel that they “know”
linear algebra, and they become bored and impatient if one
takes the time to carefully explain the above ideas. After all,
they took the course to learn about Einstein’s revolutionary
ideas about space, time, and gravity, not to learn why a vec-
tor space is isomorphic to its double dual. But if one does not
carefully explain the above ideas, the students are guaranteed
to become quite confused at a later stage. In 30 years of
teaching general relativity at the graduate level, I have not
found a satisfactory solution to this problem, and I have al-
ways found the discussion of tensors to be the “low point” of
the course.

Many treatments of general relativity effectively bypass
the above treatment of tensors by working only with the
components of tensors in bases associated with coordinate
systems. Given the “transformation law” for components of
tangent vectors under a change of coordinates, the corre-
sponding transformation law for the components of dual vec-
tors can be obtained, and the more general ‘“tensor-
transformation law” for a tensor of type (k,) can be derived.
One can then define a tensor of type (k,I) at a point p on an
n-dimensional manifold to be a collection of n** numbers
associated with a coordinate system that transform by the
tensor-transformation law under a change of coordinates.
This approach is taken in many mathematics books written
prior to the mid-20th century and in many current treatments
of general relativity. It has the advantage that one can then
quickly move on to other topics without spending much time
talking about tensors. However, it has the obvious disadvan-
tage that although students may still be trained to use tensors
correctly in calculations, they usually end up having abso-
lutely no understanding of what they are.

A metric, g, on a vector space V can now be defined as a
tensor of type (0,2) that is nondegenerate in the sense that the
only v e V satisfying g(v,w)=0 for all w e V is v=0. A met-
ric is then seen to be equivalent to the specification of an
isomorphism between V and V. If the metric is positive
definite, it is called Riemannian, whereas if it is negative
definite on a one-dimensional subspace and positive definite
on the orthogonal complement of this subspace, it is called
Lorentzian. (My sign convention on the definition of Loren-
tian metrics corresponds to that used by most general rela-
tivists; however, most particle physicists use the opposite
sign convention, i.e., they take a Lorentzian metric to be
positive definite on a one-dimensional subspace and negative
definite on the orthogonal complement of this subspace.)
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Riemannian metrics describe ordinary curved geometries
(like the surface of a potato), whereas curved spacetimes in
general relativity are described by Lorentzian metrics.
During the past half-century, a major cultural divide has
opened up between mathematicians and physicists with re-
gard to the notation used for tensors. The traditional
notation—which is still used by most physicists—is to de-
note a tensor, 7, of type (k,l) by the collection of its com-

ponents T*1#%, . where the “up” indices correspond to
vector indices, and the “down” indices correspond to dual
vector indices. This notation has the advantage that basic
operations on tensors—Ilike taking outer products or per-
forming contractions—are expressed in a clear and explicit
way. The isomorphism between vectors and dual vectors that
is provided by the presence of a metric can also be nicely
incorporated into this notation by using the metric to “raise
and lower indices.” However, the notation effectively forces
one to think of a tensor as a collection of components rather
than an object with legitimate status in its own right that does
not require the introduction of a basis. In reaction to this,
essentially all modern mathematics books adopt an “index-
free” notation for tensors. This notation makes manifest the
proper basis/coordinate-independent status of tensors, but it
makes it extremely cumbersome to denote even a moderately
complicated series of operations. In my view, an excellent
compromise is to employ an ‘“abstract-index notation,”
which mirrors the component notation, but where a symbol
like T’”""*"VIWVZ would now stand for the tensor itself, not its

components.

After tensors over an arbitrary vector space have been in-
troduced, one can return to the manifold context and define a
tensor field of type (k,l) to be an assignment of a tensor of
type (k,I) over the tangent space of each point of the mani-
fold. The next key step is to formulate a notion of differen-
tiation of tensor fields. The notation of differentiation of ten-
sor fields is nontrivial because on a manifold M, there is no
natural way of identifying the tangent space at a point p with
the tangent space at a different point g, so one cannot simply
take the difference between the tensors at p and ¢ and then
take the limit as g approaches p. In fact, if we had no addi-
tional structure present beyond that of a manifold, there
would be no unique notion of differentiation; rather there
would be a whole class of possible ways of defining the
derivative of tensor fields. These can be described directly by
providing axioms for a notion of a derivative operator, or,
equivalently, it can be done by introducing a notion of “par-
allel transport” along a curve. In mathematical treatments,
the notion of parallel transport is usually introduced in the
more general context of a connection on a fiber bundle. The
general notions of fiber bundles and connections have many
important applications in mathematics and physics (in par-
ticular, to the description of gauge theories), but it would
normally require far too extensive a mathematical excursion
to include a general discussion of these topics in a general-
relativity course, even at the graduate level.

Although there is no unique notion of differentiation of
tensors in a completely general context, when a metric is
present a unique notion of differentiation is picked out by
imposing the additional requirement that the derivative of the
metric must be zero. In Euclidean geometry (or in special
relativity), this notion of differentiation of tensors corre-
sponds to the partial differentiation of the components of the
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tensors in Cartesian coordinates (or in global inertial coordi-
nates). However, in nonflat geometries, this notion of
differentiation—referred to as the covariant derivative—
does not correspond to partial differentiation of the compo-
nents of tensors in any coordinate system.

Once differentiation of tensors has been defined, a geode-
sic can be defined as a curve whose tangent is parallel trans-
ported along the curve, i.e., the covariant derivative of the
tangent in the direction of the tangent vanishes. It is not
difficult to show that, in Riemannian geometry, a curve with
given endpoints is a geodesic if and only if it is an extremum
(though not necessarily a minimum) of length with respect to
variations that keep the endpoints fixed. Similarly, in Lorent-
zian geometry—i.e., in general relativity—a timelike geode-
sic (i.e., a geodesic whose tangent has everywhere negative
“norm” with respect to the space-time metric) can be char-
acterized as an extremum of the proper time, 7, elapsed along
the curve. If the curve is described in coordinates x* by
specifying x*(r), then 7 is given by

dx* dx

dt dt

E Sy

After the above notions have been introduced, curvature
may be defined by any of the following three equivalent
ways: (1) The failure of successive covariant derivatives on
tensor fields to commute; (2) the failure of parallel transport
of a vector around an infinitesimal closed curve to return the
vector to its original value; (3) the failure of initially parallel,
infinitesimally nearby geodesics to remain parallel. Curva-
ture is described by a tensor field of type (1,3), called the
Riemann curvature tensor. After the Riemann curvature ten-
sor has been defined, all of the essential mathematical mate-
rial needed for the formulation of general relativity is in
place.

2)

IV. TEACHING GENERAL RELATIVITY AT THE
UNDERGRADUATE LEVEL

Fortunately, there are not many other courses that are es-
sential prerequisites for an undergraduate general-relativity
course. It is, of course, necessary that students have some
prior exposure to special relativity, since the conceptual
hurdles will be too large for a student with no prior familiar-
ity with special relativity. However, it should suffice to have
seen special relativity as normally introduced at the level of
first-year introductory-physics courses. It is important that
students have taken classical mechanics at the undergraduate
level, and thereby have had exposure to “generalized coordi-
nates” and Euler-Lagrange variations. It also is useful (but
not essential) for students to have taken an undergraduate
electromagnetism course, since one should understand what
an electromagnetic wave is before trying to learn what a
gravitational wave is.

Teaching general relativity at the undergraduate level
poses major challenges, particularly if the course is only one
semester (or, worse yet, one quarter) in length. In a one-
semester undergraduate course, there is simply not enough
time to introduce and properly explain the mathematical ma-
terial described in the preceding section. Indeed, even in a
year-long course, it clearly would be inadvisable to “front
load” all of this mathematical material; if one did so, there
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would not likely be many students left in the course by the
time one got to the interesting physical applications of gen-
eral relativity.

Clearly, it makes sense to begin an undergraduate relativ-
ity course with a discussion or review of special relativity,
preferably emphasizing the geometrical point of view de-
scribed in Sec. II above. It also would make sense to try to
explain some of the fundamental ideas and concepts of gen-
eral relativity at a qualitative level at the beginning of the
course, as also described in Sec. II. To proceed further, how-
ever, it is necessary to introduce some of the mathematical
material discussed in Sec. III. In my view, the minimal
amount of mathematical material needed to teach a respect-
able undergraduate course would include (i) A clear explana-
tion that space-time in general relativity does not have the
structure of a vector space and that coordinates, x*, are
merely labels of events in space-time—devoid of any physi-
cal significance in their own right. (ii) The introduction of
the notion of a tangent vector to a curve, as described in Sec.
III above. (iii) The introduction of the notion of a space-time
metric as a (Lorentzian) inner product on tangent vectors,
and its use for determining the elapsed proper time, 7, along
a timelike curve [see Eq. (2) above]. (iv) The introduction of
the notion of a timelike geodesic as a curve that extremizes
7. The geodesic equation (for timelike geodesics) can then be
derived using Euler-Lagrange variation. (The geodesic equa-
tion for null geodesics could then be introduced by a limiting
procedure after one has derived the equation for timelike
geodesics.) It is worth noting that the same relation between
symmetries and conservation laws that one has in Lagrang-
ian mechanics (namely, Noether’s theorem) then automati-
cally applies to geodesics, so in a space-time with a suffi-
ciently high degree of symmetry, one can actually solve the
geodesic equation (or, more precisely, “reduce it to quadra-
tures”) using only constants of motion.

The above will give students the necessary tools to inter-
pret what a space-time metric is and what its physical con-
sequences are, since the key things one needs to know are (a)
how to calculate elapsed time along arbitrary timelike curves
and (b) how to determine the timelike geodesics (which rep-
resent the possible paths of freely falling particles) and null
geodesics (which represent the possible paths of light rays)
in a space-time. However, they will not have the necessary
tools to understand Einstein’s equation, so it will be impos-
sible to derive any solutions, i.e., the students will have to
accept on faith that the space-times studied do indeed arise as
solutions to Einstein’s equation.

After the above mathematical material has been presented,
one will be in a good position to discuss the Schwarzschild
solution (representing the exterior gravitational field of a
spherical body) and the Friedmann-Lemaitre-Robertson-
Walker (FLRW) solutions (representing spatially homoge-
neous and isotropic cosmologies). With regard to the
Schwarzschild solution, one can solve the timelike and null
geodesic equations and thereby derive predictions for the
motion of planets and the bending of light. For the FLRW
metrics, one can derive the general form of a metric having
homogeneous and isotropic symmetry in terms of an un-
known “scale factor,” a(z), and explain how a change in a
with time corresponds to the expansion or contraction of the
universe. Although one cannot, of course, derive the equa-
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tions for the scale factor that result from Einstein’s equation,
one can simply write these equations down and derive their
cosmological consequences.

Even in a one-semester undergraduate course, there should
still be some time left to discuss some other key topics, such
as gravitational radiation and its detection, the black-hole
nature of the (extended) Schwarzschild solution, other topics
in the theory of black holes, and topics in modern cosmol-
ogy. In a year-long undergraduate course, one should be able
to cover all of these topics and also present the mathematical
material related to curvature, so that Einstein’s equation may
be obtained.

V. TEACHING GENERAL RELATIVITY AT THE
GRADUATE LEVEL

In contrast to undergraduates, graduate students will not
be satisfied if they are asked to accept a major component of
a theory on faith, particularly if they are not even told in a
precise and complete way what that component is. Thus, one
simply cannot teach a graduate course in general relativity
without a full discussion of Einstein’s equation. Conse-
quently, it is necessary to introduce the mathematical mate-
rial needed to define curvature.

When I have taught general relativity at the graduate level,
I have spent the first two weeks with a discussion or review
of special relativity from the geometrical point of view and a
qualitative discussion of the fundamental concepts underly-
ing general relativity. I have then launched into a complete
exposition of all of the mathematical material described in
Sec. III above, ending with a derivation and discussion of
Einstein’s equation. This mathematical portion of the course
normally occupies approximately 5 weeks. In a one-semester
(or, worse yet, a one-quarter) course, this leaves enough time
only for a “bare-bones” treatment of the following essential
topics: (i) “weak-field” properties of general relativity (New-
tonian limit and gravitational radiation), (ii) the FLRW met-
rics (see above) and their key properties (cosmological red-
shift, “big-bang” origin, horizons), and (iii) the
Schwarzschild solution (planetary motion, the bending of
light, and the black-hole nature of the extended Schwarzs-
child metric). I believe that a course of this nature provides
students with a solid introduction to general relativity. By
providing the key conceptual ideas and the essential math-
ematical tools, it leaves students well prepared to continue
their study of general relativity. However, a course of this
nature has the serious drawback that a high percentage of the
effort is spent on mathematical material, and some students
are justifiably frustrated with the minimal discussion of
physical applications of the theory.

In a one-semester course, the only way one could add
significantly more discussion of such physically interesting
and relevant topics as gravitational radiation, black holes,
relativistic astrophysics, and cosmology would be to signifi-
cantly cut down on the time spent on the mathematical ma-
terial. If one introduces coordinates at the outset and works
exclusively with the components of tensors in coordinate (or
other) bases, then, as described above in Sec. III, one can
bypass much of the mathematical discussion of tensors by
defining tensors by the tensor-transformation law. One then
can define differentiation of tensors by introducing the
Christoffel symbol as the “correction term” that needs to be
added to the “ordinary derivative” to produce a tensor ex-
pression (i.e., to produce a collection of components that
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transforms by the tensor-transformation law under coordinate
changes). One can then introduce the Riemann curvature ten-
sor as an object constructed out of the Christoffel symbol and
its ordinary derivative that—rather magically—can be shown
to transform as a tensor. The main price paid by presenting
the mathematical material in this way is a sacrifice of clarity
in explaining the fundamental conceptual basis of general
relativity—particularly its difference from all prior theories
with regard to the nonexistence of any nondynamical back-
ground structure of space-time—since this conceptual basis
is very difficult to understand if one does not formulate the
theory in a coordinate-independent way. In addition, students
will not have the necessary mathematical tools to advance
their study of general relativity to topics involving “global
methods”—such as the singularity theorems and the general
theory of black holes—where it is essential that the concepts
be formulated in a coordinate-independent way. Neverthe-
less, by proceeding in this manner, one can easily reduce the
time spent on mathematical material by a factor of 2 or more,
thereby allowing significantly more course time to be spent
on physical applications.

VI. RESOURCES

A. Resources for introductory discussions of general
relativity

1. Relativity: The Special and the General Theory, The Masterpiece
Science Edition, A. Einstein (Pi Press, New York, 2005). This reprint of
one of Einstein’s early, nontechnical expositions of special and general
relativity contains an introduction by R. Penrose and commentary by R.
Geroch and D. Cassidy. (E)

2. Flat and Curved Space-Times (2nd edition), G. F. R. Ellis and R.
Williams (Cambridge U. P., Cambridge, 2000). This book provides a
discussion of special relativity from a geometrical point of view and an
introduction to the basic ideas of general relativity. (E)

3. General Relativity from A to B, R. Geroch (University of Chicago
Press, Chicago, IL, 1978). This book presents an excellent introduction
to the basic ideas of general relativity from a thoroughly geometrical
point of view. (E)

4. Gravity from the Ground Up, B. Schutz (Cambridge U. P., Cambridge,
2003). This book provides a very readable discussion of the nature of
gravitation in general relativity and its implications for astrophysics and
cosmology. (E)

5. Exploring Black Holes: Introduction to General Relativity, E. F. Tay-
lor and J. A. Wheeler (Addison Wesley Longman, San Francisco, 2000).
This book provides a very physically oriented introduction to general
relativity and black holes. (E)

6. Black Holes and Time Warps: Einstein’s Outrageous Legacy, K. S.
Thorne (W. W. Norton, New York, 1994). This book provides a very
well-written account of some of the most fascinating ideas and specula-
tions to arise from general relativity. (E)

7. Space, Time, and Gravity: The Theory of the Big Bang and Black
Holes (2nd edition), R. M. Wald (University of Chicago Press, Chicago,
1992). (E)

8. Was Einstein Right?: Putting General Relativity to the Test (2nd
ed.), C. M. Will (Basic Books, New York, 1993). This book provides an
excellent account of the observational and experimental tests of general
relativity. (E)

=

Resources for differential geometry

9. Geometry of Manifolds, R. L. Bishop and R. J. Crittenden (American
Mathematical Society, Providence, RI, 2001). This concise book pro-
vides an excellent, high-level account of differential geometry. (A)

10. Tensor Analysis on Manifolds, R. L. Bishop and S. Goldberg (Dover,
New York, 1987). (I)

11. Riemannian Geometry, L. P. Eisenhart (Princeton University Press,
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12.

13.

14.

15.

16.

17.

18.

19.

20.

21.
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Princeton, NJ, 1997). This is a reprint of the 1925 classic monograph,
which gives an excellent presentation of the coordinate-based approach
to differential geometry taken by mathematicians prior to the middle of
the 20th century and still used by most physicists today. (LA)
Foundations of Differential Geometry, volumes 1 and 2, S. Kobayashi
and K. Nomizu (Wiley, New York, 1996). This book is an excellent,
high-level reference on differential geometry. (A)

Riemannian Manifolds: An Introduction to Curvature, J. H. Lee
(Springer-Verlag, New York, 1997). (I)

Tensors, Differential Forms, and Variational Principles, D. Lovelock
and H. Rund (Dover, New York, 1989). (I)

A Comprehensive Introduction to Differential Geometry, volumes
1-5, 3rd ed., M. Spivak (Publish or Perish Inc., Houston, 1999). (I)
Tensors and Manifolds: With Applications to Mechanics and Rela-
tivity, R. H. Wasserman (Oxford U. P., Oxford, 1992). This book pro-
vides an extremely clear and complete treatment of the basic definitions,
constructions, and results associated with tensor fields on manifolds. (I)

Undergraduate level texts

Gravity: An Introduction to Einstein’s General Relativity, J. B.
Hartle (Addison Wesley, San Francisco, 2003). The philosophy on teach-
ing general relativity to undergraduates expounded in this Resource Let-
ter is adopted directly from the approach taken by Hartle in this text. (I)
General Relativity: A Geometric Approach, M. Ludvigsen (Cam-
bridge U. P., Cambridge, 1999). (I)

Relativity: Special, General, and Cosmological, W. Rindler (Oxford
U. P, Oxford, 2001). (I)

A First Course in General Relativity, B. Schutz (Cambridge U. P,
Cambridge, 1985). (I)

Relativity: An Introduction to Special and General Relativity, 3rd
edition, H. Stephani (Cambridge U. P., Cambridge, 2004). (I)

D.

22.

23.

24.

25.

26.

27.
28.

29.

Graduate level texts and monographs

Spacetime and Geometry: An Introduction to General Relativity, S.
Carroll (Addison Wesley, San Francisco, 2004). This book provides a
well-written, pedagogically oriented introduction to general relativity. (I)
The Large Scale Structure of Space-time, S. W. Hawking and G. F. R.
Ellis (Cambridge U. P., Cambridge, 1973). This book is a true master-
piece, containing a complete exposition of the key global results in gen-
eral relativity, including the singularity theorems and the theory of black
holes. It is not light reading, however. (A)

Relativity on Curved Manifolds, F. de Felice and C. J. S. Clarke (Cam-
bridge U. P., Cambridge, 1990). (I,A)

The Classical Theory of Fields, L. D. Landau and E. M. Lifshitz
(Elsevier, Amsterdam, 1997). This very clear and concise discussion of
general relativity from a coordinate-based point of view occupies only
about 150 pages of this book. (I, A)

Gravitation, K. S. Thorne, C. W. Misner, and J. A. Wheeler (W. H.
Freeman, San Francisco, 1973). This book, which remains very widely
used, was the first text to present general relativity from a modern point
of view. It places a strong emphasis on the physical content of the
theory. (I,A)

Advanced General Relativity, J. Stewart (Cambridge Monographs on
Mathematical Physics, Cambridge U. P., Cambridge, 1991). (A)
General Relativity, R. M. Wald (University of Chicago Press, Chicago,
1984). (LA)

Gravitation and Cosmology: Principles and Applications of the Gen-
eral Theory of Relativity, S. Weinberg (Wiley, New York, 1972). This
book takes an antigeometrical approach and some of the discussion of
cosmology is out of date, but it remains one of the best references for
providing the details of calculations arising in the applications of general
relativity, such as to physical processes occurring in the early universe.
(LA)

SPACE AND TIME

To Isaac Newton, space and time simply were—they formed an inert, universal cosmic stage on
which the events of the universe played themselves out. To his contemporary and frequent rival
Gottfried Wilhelm von Leibniz, ‘‘space’” and ‘‘time’” were merely the vocabulary of relations
between where objects were and when events took place. Nothing more. But to Albert Einstein,
space and time were the raw material underlying reality. Through his theories of relativity,
Einstein jolted our thinking about space and time and revealed the principal part they play in the
evolution of physics. They are at once familiar and mystifying; fully understanding space and time
has become physics’ most daunting challenge and sought-after prize.

Brian Greene, The Fabric of the Cosmos: Space, Time, and the Texture of Reality (Knopf, 2004), p. 6.
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