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sis new terms must be added to the Lagrangian function L. If we add
terms of type

- Ops Os aPs a¢s E’I’s a¢:>
| e e e
the left-hand side of equation (3) must be replaced by
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and a term

must be added to the right-hand side of equation (2). Thus in a non-uni-
form flow there may be forces on a constituent which arise from diffusion.

1 An appropriate form of the principle was suggested by the author in a physical
seminar at the California Institute of Technology in 1938 and also in a review of H.
Ertel’s “Methoden und Probleme der Dynamischen Meteorologie,” Zentralblatt fiir
Mathematik und ihre Grensgebiete, 18, 311 (1938). The analysis for the case of a single
gas has been given in detail by H. Ertel, Meteorologische Zeit., 105-108 (1939).

2 Bernard Lewis and Guenther von Elbe, “Combustion, Flames and Explosion of
Gases,” Cambridge Univ. Press (1938). See also J. B. Zeldovich and D. A. Frank-
Kameneckij, “On the Theory of Uniform Flame Propagation,” Compt. rend. (Doklady)
de Pacad. des sciences de ’'U. R. S. S., 19, 693-697 (1938).
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I.—The following question, which provides an illuminating application
of general relativity to electrodynamics, has been put to me by Professor
Oppenheimer. Comnsider two concentric spheres with equal and opposite
total charges uniformly distributed over their surfaces. When the spheres
are at rest, the electric and magnetic fields outside the spheres vanish.
When the spheres are in uniform rotation about an axis through their
center, the electric field outside vanishes, while the magnetic field does not,
since the magnetic moment of each of the spheres is proportional to the
square of its radius. Suppose that the spheres are stationary; then an
observer traveling in a circular orbit around the spheres should find no
field, for since all of the components of the electromagnetic field tensor
vanish in one coérdinate system, they must vanish in all co6rdinate systems.
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On the other hand, the spheres are rotating with respect to this observer,
and so he should experience a magnetic field.!

Before discussing the resolution of this apparent paradox, we shall pre-
sent some general remarks on the relativity of rotational motion.

II.—TIt is clear in the above arrangement that an observer 4 at rest with
respect to the spheres does not obtain the same results from physical experi-
ments as an observer B who is rotating about the spheres. The very funda-
mental difference between coordinate systems in which 4 and in which B
are at rest is ascribed, in the general theory of relativity, to the effect of
distant masses (extragalactic nebulae), which are at rest with respect to
A, but in violent motion with respect to B. That this is a plausible ex-
planation was shown by Thirring’s? calculation of the motion of a free par-
ticle inside a thin spherical shell of matter in uniform rotation about an
axis through its center. He found that forces very similar to centrifugal
and Coriolis forces appeared, but that they were too small to represent the
forces acting on a particle rotating with the same angular velocity as the
shell, by a factor of the order of the ratio of the gravitational radius to
the actual radius of the shell.

From this relatively simple calculation, one infers that if the gravitational
field equations could be solved in a codrdinate system in which the actual
distribution of matter in the universe is in uniform rotation, one would ob-
tain exactly the usual centrifugal and Coriolis accelerations for a particle.
The far simpler procedure that is usually followed is to take the approxi-
mately Galilean metric (neglecting local masses) that we know gives the
experimentally correct equations of motion of a particle in the codrdinate
system in which the distant masses are at rest, transform it to the rotating
codrdinate system, and use this transformed expression for the metric to
compute the motion of a particle. Because of the covariance of the gravita-
tional field equations, one feels sure that the two calculations would give
identical results. Thirring’s direct calculation, however, has the advan-
tage of providing some insight into the effect of rotating distant masses in
warping the expression for the metric from its Galilean form.

Similarly, we know experimentally that the fields outside the charged
spheres vanish in system 4 (in which the spheres and the distant masses are
at rest), and so the covariance of Maxwell’s equations guarantees that the
fields will also vanish outside the spheres in system B. It is of interest,
however, to see by direct calculation how it is that the spheres, which are
rotating with respect to system B, do not give rise to a magnetic field out-
side. To see this, we must of course know the expression for the metric in
system B, and we shall obtain this by transformation from the (approxi-
mately) Galilean metric of system 4. The warping of the expression for
the metric thus obtained for system B can be ascribed to the rotation of the
distant masses in this system.
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III.—The covariant formulation of Maxwell’s equations?® is:

bF oF,,

= 0, 1
+.x“ bx’ (1)

z%,(x/_—gF"')=x/_-gf“. ®)

The coérdinate transformation from system A (subscript 0) to system B
rotating with angular velocity w can be taken as (velocity of light set equal
to unity):

X = %o COS wly + Yo sin wly,

Yy = —xg sin wly + Yo COS why,

Z = 2 (3)
I =1,

1'2

=x*+ 3+ 22 = x’ + 0’ + 2%

so that if the metrical tensor has its Galilean form in system 4, it assumes
in system B the form:*

gn=gn=gs=—1 gu=1-—wx?+y), )
u = ga = WY, 8u = g = —wX,
and all other g,, vanish. Since the determinant g = —1, the electromag-

netic field equations (1) and (2) are unaltered by the transformation (3).
But the connections between the covariant and contravariant components
of the field tensor depend on the metrical tensor:

p=gmg’ﬁFaﬁ’ (5)

and so the field equations are different in the two coérdinate systems when
written entirely in terms of either the covariant or the contravariant com-
ponents.

The calculations can be made in terms of any one set of components: co-
variant, contravariant or mixed.® We shall use here the covariant form
of the tensor since the field equations (1) then have their usual structure,
and the extra terms in equations (2) can be put in the form of an additional
current. If we define:

an:Hz’ F81=Hy’ Fl2=I-{z: (6)
Fl4=Ezy F24=Eyy F34=Ety

we find from (4) and (5) that:
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F3 = (1 — o%Y)H, — wxyH, — wxE,

Ft = (1 — w)H, — wyH, — wyE,

F2 = (1 — w? — o) H, + wxE, + wyE,, )
F4Y = E, — wxH,,

F% = E, — wyH,,

F$ = E, + wxH, + wyH,.

Then equations (1) have their usual form:®

divH = 0, curlE+gTH=0, ®)
while equations (2) may be written:
divE —p=o, curlH—%E-:—]=j, 9)
where we define:
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For any spherically symmetrical distribution of charge that is stationary
in system 4 (in particular for our two charged spheres), we have in system
B:

J.=wyp, J, = —wxp, J,=0. (11)
Substituting (10) and (11) into (9), one can either guess a solution or, more

satisfyingly, obtain one directly by treating terms in w as a perturbation,
in which case it is possible to carry the perturbation calculation to arbi-
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trarily high orders. The unperturbed solution (w = 0) that satisfies the
boundary conditions (no singularities and vanishing at infinity) is:

H=0 E-= ‘*rla‘ fo p(O)578. (12)

To obtain the fields to first order in w, we notice that H is at most of order
«E, so that to this order we may write equations (10):

=10
o= —wE, — wxb—E‘ + waE — wy divE,
oy Ox
Jy = wE, — wx,b—E” + wya—E-l’ + wx div E, (13)
dy ox
i = wybE, _ bE
‘ dx by

Putting the unperturbed fields (12) into (13), we obtain:

je= —wydivE = —wyp = —J,
Ty wxdivE = wxp = —J, (14)
jz = 0’

and equations (9) are satisfied by the fields (12) to the first order. This
result is readily extended to arbitrarily high orders in w, and it is seen that
the fields (12) are an exact solution of the field equations (9) and (10) with
the current (11). Since for our two oppositely charged spheres, the inte-
gral in (12) vanishes for values of 7 greater than the radius of the larger
sphere, both the electric and magnetic fields vanish outside the spheres in
system B, in agreement with the result obtained by transformation from
system 4.

It is of interest to note that the vanishing of the fields in this calculation
is due to the cancellation of the actual current J with other terms (right
side of (9)) that behave in this respect like a current. The appearance of
this extra current (10) is due to the action of the rotating distant masses,
via the metric, on the electromagnetic fields.

1 From these remarks it is evident, for example, that one cannot calculate the mag-
netic field about a single charged rotating sphere by transforming the electrostatic field
of such a sphere at rest.

2 Thirring, Phys. Zeits., 19, 33 (1918); 22, 29 (1921).

3 Tolman, Relativity, Thermodynamics and Cosmology (Oxford, 1934), p. 259.

4 The indices 1, 2, 3, 4 refer to %, ¥, 2, ¢, respectively.

5 Tt is the mixed tensor that gives the acceleration of a charged particle (cf. Tolman,
reference 2, p. 260); however, any one form is readily obtained from any other.

¢ Bold-face symbols indicate ordinary three-dimensional vectors.



