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The nature of the solution of a line charge is discussed using the Already Unified 
Field Theory. It is shown that it is impossible to have charge without mass with this 
symmetry. Approximate solutions valid for either small or large mass per unit length 
are presented and compared with previous work. We show that, if charge is present, 
beyond some critical distance from the axis a neutral test body is repelled instead of 
attracted. 

I. INTR~OUCTI~N 

Among the earliest investigations with general relativity was the study of the 
combined Einstein-Maxwell problem [l]. Several authors [2-41 have, in particular, 
considered the problem of a static charged line mass. These investigations are 
incomplete both in a physical sense and in the acceptable range of the parameters 
they use. Although the formalism presented here can only be solved approximately 
it has several advantages which will be discussed later in this paper. We will con- 
sider the earlier results in some detail in the next section. 

In our approach we will use the Rainich [5] Already Unified Field Theory. In this 
approach the Einstein problem with a stress-tenser due to vacuum nonnull electro- 
magnetic field is equivalent to the following set of fourth-order equations [l]: 

R&R," = ~,~R,,R~T, (1) 

R = 0, (2) 

R,, > 0, (3) 

%?J - %,p = 0, (4) 

where 

a* Ez (-g)"" E~~~~RI\Y;~~/(R~~R"~). (5) 
322 
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(Einstein summation convention is used throughout, the Minkowski metric is 
(1, - 1, - 1, - 1) and in general, we follow the “timelike conventions” of Misner, 
Thorne, and Wheeler [6]. We also choose units such that c, = 16nG = 1.) Since 
the problem is static we can choose a diagonal line element so Eqs. (l)-(5) reduce 
to 

R,,O = Rll, Rz2 = Rs3, Roe = -Rs2 (6) 

and 

a, Et 0, (7) 

where (7) follows from the symmetry of the problem. 
We choose a line element of the general cylindrical form: 

ds2 = @v-2*(&2 - dp2) + p2e-2” d+2 + e21+2u &2 

This puts us into the form used by Witten [7] in his Case III of the Static Cylin- 
drically Symmetric Solutions. Equations (6) which he did not solve become (with ’ 
denoting differentiation with respect to p) 

and 

2#” + pn + $2 + 2#‘$ + 2#/p = 0, 

$2 + pv - 2y’p’ + 4/J’*’ + 2$P - 2y’lp = 0, 

(9) 

(10) 

2*” - y” + 2+/p - f/p - p’lp + 2#‘p.’ - Y’CL’ = 0, (11) 

while the charge density is given by 

Q = &277(Roo)1/2 PC?‘+*-Y, (12) 

an expression which is independent of p by Maxwell’s equations. The nonvanishing 
components of the Maxwell field tenser are 

fol := f(Roo)li2 cv”, (13) 

and the measured gravitational force for an observer at rest is 

g = ($’ - Y’). (14) 

Witten also showed that the problem could be reduced to solving an integrodifferen- 
tial equation for I*. We will consider an approximate solution of this in Section III. 

The line element (8) we have chosen has the advantage of putting the charge 
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effects explicitly into the function II. If p’ = 0, then the solution of (9-10) reduces 
to the uncharged line mass metric [7] 

ds2 = P2e2.t2c(dt2 _ &,2) _ P-2ce2a &#,2 _ p2c+2 dz2. 
(15) 

Thus, all the physical effects of the charge depends upon p 9 0. Other line elements 
which we consider in the next section do not have this advantage. 

II. SOME PREVIOUS SOLUTIONS 

The earliest study of the charged line source was done by Mukherji in 1938 [2]. 
He used a line element of the form, 

ds2 = e2v dt2 - e2@(dr2 + r2 d$2) - ezn dz2. (16) 

His solution was 

where 

e2” = X[l - ~c~X/(~M~)]-~, 

e2a = X[l - ~-E~X/(~M~)]~, 

e2u = X-1/2[1 - .rr~~X/(4M~)]~ (a/r)2, 

X = 1 + 4Mln(r/a) 

(17) 

(18) 

(19) 

and the nonvanishing covariant components of the Maxwell Field tensor are 

fol = -~eu-f+/r. (20) 

Thus, E is a measure of the electric field strength. 
However, in his derivation he assumes that as E + 0 that g,, = 1 - 2L? where 

Sz = -2Mln(r/a) is the classical gravitational potential. Hence, his solution is at 
best only valid to first order in his mass parameter M. There are also other dill+ 
culties connected with his solution. In the limit E -+ 0 e2u + (a/r)” + O(M) so the 
line element [16] is certainly not in a physically obvious form. The reason for this 
behavior can be seen if we look at the physically measured radial component of the 
electric field given by 

E, = ( -goog11)1/2 fol (21) 

and at the gravitational force given by 

g = id/dr(ln g,,). (22) 
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Neither of these are of a simple form for r large; in fact, the gravitational force 
changes sign at r = a exp[(7+ - 4Mz)/(7rG)], unless 4M2 < STEP. 

Bonner in 1952 [3] studied the static charged line source using a line element of 
the form, 

ds2 = e” dt2 - eA dp2 - p2ec0 d$2 - eA dz2. (23) 

His metric only involves two functions instead of the three we used. The trans- 
formation between his and our coordinates is given by 

(24) 

and u is related to y - +!J and X to Q/J + p. Thus, his field equations have less free- 
dom than ours. 

Thorne has shown for a different axial electromagnetic field problem with 
R,O = ---RI1 that p can be chosen zero with no loss of generality [8]. His proof is 
not valid for the problem we are considering (R,” == R,l) as he indicates. 

Bonner shows that his solution corresponds to a line charge along the axis of 
(a) .rrrW where C is one of his constants of integration. If we also calculate the 
gravitational force we find that it is proportional to C. Thus, the solutions he finds 
are such that the mass along the axis is proportional to the charge. This supports 
our contention that the line element he has chosen does not reflect the complete 
freedom possible with axial symmetry. 

Finally, we consider the work of Raychaudhuri in 1960 who also uses the already 
unified field theory approach [4]. He considers the solutions of the line element, 

ds2 = D(x) dt2 - A(x) dx2 - B(x) dy2 - C(x) dt2. P5) 

The solution he finds which corresponds to our problem is of the form (rewritten in 
new notation), 

ds2 = A-l dt2 - A dp2 - P~-~ A dcj2 - pAA dz2, (26) 

where 

A = (Clpo - C2p-o)2 (27) 

with 

u”C,C, > 0 and a2 = (h/2)(2 - A). 

Thus, (T is real and 0 < 0 < 3 for 0 < h < 2 and C, , C, > 0; otherwise, 0 is 
imaginary and no rules are given for making the line element real. The only com- 
ment for u imaginary is that it can be transformed into Bonner’s solution [3]. A 
choice of u imaginary is thus in an unusable form. The real 0 < u < +, which is 
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claimed to be transformable into Mukherji’s solution, gives the physically measured 
electric field as 

202/ZQp~+~o p large 
Er - 2&45/p p small, (28) 

while the radial gravitational force is 

g = +wp)(Gp” + Gp-%Gp” - Gp-T5. (29) 

Thus, (T is not interpretable simply as the mass parameter, but restricting u to the 
range 0 to 4 is the same as restricting the mass parameter. So once again we only 
have understandable solutions for small masses. Another problem is that all the 
gUV’s vanish when p = (C2/C#“. This presents a definite difficulty in interpretation 
since g changes sign at this critical value in addition to its divergence. 

In summary then, Mukherji’s solution is an approximation only valid for small 
masses and charge densities not too large. Bonner’s solution is one which seems to 
assume a proportionality between the charge and mass density. Finally, the physical 
interpretation of Raychaudhuri’s result is not clear. 

III. THE NATURE OF THE SOLUTION 

Witten in his study of this problem [7,9] noted that the substitutions 

and 
y’ = -p’ + (A/p) e+ (30) 

1+4’ = -e-“/(2p) s: dt &” + p/2) e” + (B/p) e-@ (314 

satisfies Eqs. (9) and (11) and that Eq. (10) then becomes a differential-integral 
equation in p (Witten’s equation (9-6.54)[7]). This was about as far as he proceeded. 
We note that instead of the relation (31a) we could also express #’ as 

#’ = e-“/(2p) 1,” d[ .$@” + p/2) e” + (B/p) ecu. @lb) 

At least one integral of (3 1) should be well defined since the space is flat at infinity 
and since 

RI, = p’lp + cg2 + pw. (32) 

If we now make the substitution 

p = In a, (33) 
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we obtain 

and 

y’ = -cd/a + A/&Y) (34) 

where either 

#’ = Wp) - ~‘/cw + U(p), (35) 

or 

2(0 - B) = li+i(pa’ -- a) (364 

2(0 - B) = liiJpa’ -- a), Wb) 

depending upon whether (31a) or (31b) is used. We want solutions in which if there 
is no electric field, TV = 0 and, hence, 01 = 1. Then (34) and (35) should give us the 
metric (15). Thus, we can without loss of generality choose 

and 

o=c+.g 

A = (c + l)“, 

(374 

W’b) 

where c(c + 1) is the mass parameter of the line element (15). The differential 
integral equation for p reduces to 

aa” + 3ad/p - (q + l)(cr + pd>/p” + cx2/(2p2) + af2/2 + (q + 31p2 = 0, (38) 

where we have set q = 2c(c + 1) for simplicity. A final substitution, 

y = pa, 

reduces (38) to the form, 

(39) 

YY” + Y’2/2 - (9 + 1) Y’ + (4 + 3) = 0. (40) 

This is the equation we must solve subject to the requirement of Eq. (3) which 
becomes 

&lo = f/(&J) 2 0. (41) 

An immediate consequence is that we see when the mass parameter vanishes 
(q = 0), the electric field must also vanish. This can be seen by putting y = p + x(p); 
then (40) with q = 0 gives yy” = -(~‘)~/2 which is inconsistant with Eq. (41). 
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However, it is possible that Eq. (40) with q = 0 has solutions which do not satisfy 
Eq. (41). If q # 0 Eq. (40) has a first integral 

Fy” = (y’ - l)/( y’ - 1 - 2q)1t2n (F a constant), 

the integral of which has not been found. 
Since when q = 0 we want the solution y = p, we look for solutions of the form, 

Y = P + F(P), (42) 

subject to the requirement (41) which becomes 

R,, = qx”/2y2 = X’(1 - x’/2)/[2(p/q + x)“] > 0; (43) 

that is, 

0 < x’ < 2, 0 < X”, (44) 

while Eq. (40) becomes 

(p/q + x) xw - X’(1 - x’/2) = 0. (45) 

Since (41) tells us that both x” and x’ are nonnegative, the solution x as well as x’ 
must be monatonically increasing; that is, if p1 >, p2 then x(pl) >, x(p2) and also 
x’(pJ >, x’(p2). This is consistent with the type of solution which was found using 
this metrical form for the line mass (15) or for the other possible static cylindrical 
electromagnetic universes [7, 91. The preceeding being true we expect that 
X, x’, x” + 0 as p -+ 0. An exact series solution of the form, 

o( = 1 + q C Bnknp”“, 
n=l 

exists with k a parameter and 

n-1 

B, = -1/[2(nq + l)(n - l)] C (mq + I>(@ + ~1) q + 1) &J%-I 9 4 = 1. 
,rn=l 

The B, alternate in sign and became successively larger; and the series does not 
converge in mean. The range, if any, for which this series converges has not been 
determined so we are forced to look for approximate solutions. 

The search for approximate solutions is made possible by the restriction (44) and 
by the vanishing of x if the electric field vanishes. If q Q $ then clearly p/q > x. 
This is also true for any q provided p is sufficiently small; but, for p large and 
q > 4 then x > p/q. 
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Iv. SOLUTION FOR 4 << + 

When q < 4, p/q > 2p while (44) implies that x < 2p, hence the first integral of 
(45) is approximately 

x’ == 2k2p@/(k2p* + 2), (46) 

where k2 is an integration constant which we will show is associated with the 
charge per unit length. Equation (46) can be easily integrated by series techniques 
to give either 

x = 2(k2/2)-l/q f C;~l-l’~(- l)“(l + q + nq)pl[(l + 2p-Q/k2)-l-‘+l/g - l] (47) 
n=0 

or 

x = 2(/P/2)-‘/” f C;/q(-l)n(l - nq)-I[(] + ~2p~p)v-~ - 11, 

?l=O 
(48) 

with 

C,” = [m(m - l)(m - 2) *** (m - n + 1)1/n!, 

where the series in (48) terminates with a (- l)N ln(l + k2pq/2) if q = l/N. Both of 
these series converge for all values of k2 and p but (47) is most useful when 
p < (2/k2)l’* and (48) when p > (2/k2)l/q in which cases they have leading terms 

x N k2p1+*/(1 + s) 

and x - 2p - 4p1-*/[k”q(l - q)], respectively. 
The quality of our approximation can be estimated by computing the term xx” 

that we have neglected in the differential equation and comparing it with the domi- 
nate term that we kept. That is when p < (2/k”)‘/“, x’ - 2k2p4 while 

xx” c qk4p2q/P(q + 111 

and when p > (2/k2)l/*, (p/q) x” - 4p-Q/k2 while xx” < 2qp-Q/k”. In both cases, 
these ratios are less than q. Better approximations to the solution can be found by 
successive approximations, however, we will not proceed with this since we are 
already in a position to extract the physical information about charge and gra- 
vitational force. 

We find from (43) that 

R,, = (q2k2/2) p-2-n(k2/2 + p-q)-” (1 + qx/p)-2, (49) 
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while 

#’ - y’ = -(q/2)(1 - x’) p-1(1 + 4x/p)-1. 

Hence, the measured radial gravitational force is 

g = -(q/2) p-W - 2k2/(k2 + 2p-9](1 + qx/p)-1. 

Since qx/p < 1 for q < +, we have approximately 

3) - y = ln[pn/2(k2/2 + p-*)1; 

hence, from Eq. (12) 

(50) 

(51) 

Q = &d\/z n-qk. 

The physically measured component of the radial electric field which is 

(52) 

becomes 

ET = M-googll)1~2 = V4,0)1~2 ee-Y (53) 

& = SW3 p-Y1 + qxlp)-‘, (54) 

where the choice of f is made in accordance with the choice in (52). 
Since q < 4, Eq. (52) enables us to interpret k as the parameter describing the 

strength of the electric source. As expected when q + 0 there can be no electric 
charge or field. The apparent problem is with the radial gravitational force which 
changes sign at p = (2/k)ll*. This force is defined in the sense that it is equal to 
d2 (proper radial distance)/d(proper time)2 for a test mass, provided the proper 
velocity of the test object is small. Our calculations indicate that the presence of 
charge distorts space in the opposite sense as the effect of matter. 

If we calculate the condition for circular orbits by integrating the geodesic 
equations, we obtain (requiring that p and z be constants) 

and 

(Y’ - Pww2 = (gll/g22)2 P2UlP - #‘I e-2r, 

where E and J can be interpreted as the energy, and angular momentum constants 
respectively. For p > (2/k)l/g, (E/J)2 < 0 and there can be no timelike circular 
orbits for a neutral test particle. Equation (51) implies that this is occuring because 
the effective gravitational force is repulsive. A somewhat similar but opposite effect 
occurs in Melvin’s Universe [lo]. A similar change in sign of the ratio (E/J)2 and in 
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the gravitational force occurs in Raychaudhuri’s solution near PRaY = (C,/C,)l/zU; 
however, since his parameters, u, C, and C, , do not have straight forward mass 
and charge interpretation, what is occuring for his solution is not as clear. In any 
event the effect of the charge is to reduce the gravitational force. This effect falls 
off more slowly than the effect of the mass so it finally overpowers and reverses 
the measured gravitational force no matter how small the charge. 

Inserting dimensions into Eq. (52), we obtain 

Q = +r2-1J2G-1J2CL2qk = f2-\/2rrG1J2CLMk = k2.2 x IiPMk, (55) 

where 

q = 4MGIC, = 9.1 x lo--lsM, (56) 

where G is Newton’s Gravitational constant, CL the speed of light, M the mass per 
unit length in kilogram/meter and Q is the charge in Coulombs/meter. The distance 
at which the gravitational force changes from attractive to repulsive is (in meters 
if Q is in C and M in kg/m) (4.4 x 104M/Q)(1.1x1018~) which is extremely large 
for any experimentally reasonable values of Q and M. The restriction of q < + 
means that M < 5.5 x 1017 kg/m, and hence probably includes all approximations 
to real physical systems. The matching of external solutions of cylindrical systems 
has been discussed elsewhere [S, 11-131 and presents no problem. We expect that 
the charge could either reside on the surface or be distributed within the interior of 
the source. 

V. SOLUTION FOR q> 3 

For q > 4 the approximations to Eq. (45) must be made differently depending 
upon rather p < ((q + l)/(qP))l/g or > ((q + l)/(qk”))‘l”. In the former case 
assuming p/q > x leads to a solution for x’ as (46) and hence on x of the form (47). 
The ratio x/@/q) N qk2Q/(q + l), which is small when 

p < ((4 + 1>/(&“)>“” - W2Y’*. 

On the otherhand, when p is large we cannot neglect x as compared to p/q. If we 
neglect p/q compared with x and assume k f 0 so the range of interest for p is non- 
trivial, we obtain 

x’ = 2(1 - k2x1/2), (57) 

and, hence, 

x + 2x11”k-* + 2k-4 In(d? - k-4) := 2p + const, (58) 
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where the constant cannot be determined since (58) is valid only when 
p > (l/k2)l/g and the choice of k has been made such that Qak. Equation (58) 
gives us approximately 

x - 2p - 2k-4((2p)1/? + gln(2p)) + O(k-*), (59) 

where we have made the expansion in k-4 since we are most interested in k large. 
In this approximation (43) becomes 

R,, = q2k2(2pF1’2 p-V + (qxlp))F2, (60) 

while $J’ - y’ given by (50) becomes 

3L’ - y’ - ww + 29)-l p-l - 1/(4p). 

Thus the measured radial gravitational force for a test particle at rest is 

g = (q/(2 + W) p-l. (61) 

Again from (12) we obtain 

Q = f2514rqk, (62) 

while the physically measured radial component of the electric field given by (53) 
becomes 

E, = f(q/(l + 2q)) k2-1’4/p 

- *2-5/4k/p, (63) 

where the choice of i is made in accordance with the choice of + in (62). 
We see again that for large q the gravitational field reverses direction for large p 

becoming repulsive; however, since our approximation in this case is not good near 
the change over point in the direction of g, we cannot explicitly indicate the be- 
havior of this point upon the mass parameter q but it is clear that it continues to 
move closer to p = 0 as q increases. 

VI. CONCLUSIONS 

We have shown explicitly that we must have some mass per unit length to have 
charge which has been shown previously [2]. Our proof is exact and shows that it is 
the positive energy density (R,, > 0) requirement of the Already Unified Theory 
formulation which assumes this. 

We also show that a neutral test body is repelled if it is located at a distance 
greater than some critical radius (which decreases as the charge per unit length 
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increases). This is just the opposite of the effect present for a charged point mass 
where a neutral body is repelled if it is too close to the charge. Murkherji’s approxi- 
mation [2] is sufficiently poor that he obtains (but did not note) this result only for 
small values of the charge per unit length. Raychaudhuri’s solution [4] although 
exact for some small mass parameters has vanishing metric and diverging gravita- 
tional field at a critical distance; however, he did not discuss this effect which we 
have done by presenting Eq. (29). Since Raychaudhuri’s metric vanishes and since 
the gravitational force diverges at the critical distance, the nature of the space is not 
obvious. Our approximate solutions show that all that is happening at this distance 
is a change from gravitational attraction to gravitational repulsion. Both charged 
and uncharged particles are able to cross from the region of gravitational attraction 
to that of gravitational repulsion and conversely provided the initial conditions 
are appropriate. Charged particles initially at rest will be either or repelled in a 
simple fashion easily calculated from the modified geodesic equation, 

m(d2p/ds2) = #’ - y’ - efol, 

where m is the mass and e the charge of the test body. 
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