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A Spinor Approach to General Relativity 
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A calculus for general relativity is developed in which the basic role of ten- 
sors is taken over by spinors. The Riemann-Christoffel tensor is written in a 
spinor form according to a scheme of Witten. It is shown that the curvature of 
empty space can be uniquely characterized by a totally symmetric four-index 
spinor which satisfies a first order equation formally identical with one for a 
zero rest-mass particle of spin two. However, the derivatives used here are co- 
variant, so that on iteration, instead of the usual wave equation, a nonlinear 
“source” term appears. The case when a source-free electromagnetic field is 
present is also considered. (No quantization is attempted here.) 

The “gravitational density” tensor of Robinson and Be1 is obtained in a 
natural way as a striking analogy with the spinor expression for the Maxwell 
stress tensor in the electromagnetic case. It is shown that the curvature tensor 
determines four gravitational principal null directions associated with flow of 
“gravitational density”, which supplement the two electromagnetic null di- 
rections of Synge. The invariants and Petrov type of the curvature tensor are 
analyzed in terms of these, and a natural classification of curvature tensors is 
given. 

An essentially coordinate-free method is outlined, by which any analytic 
solution of Einstein’s field equations may, in principle, be found. As an ele- 
mentary example the gravitational and gravitational-electromagnetic plane 
wave solutions are obtained. 

1. INTRODUCTION 

An essentially coordinate-free attitude to general relativity will be adopted 
here. The tensors and spinors occurring are best thought of not as sets of com- 
ponents, but as geometric objects subject to certain formal rules of manipula- 
tion. A spinor formalism will be used instead of the usual tensor one, spinors 
appearing to fit in with general relativity in a remarkably natural way. This 
adds to a belief that spinors are basically simpler and perhaps more deep-rooted 
than tensors. 

The usual correspondence between tensors and spinors (1, 2) is obtained by 
the use of a mixed quantity? ulrAB’ satisfying the equation 

* Present address: Palmer Physical Laboratory, Princeton University, Princeton, New 
Jersey. 

t For each of the four values of N, dB’ is a (2 x 2) Hermitian matrix. 
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BC' = gfiVeAB, 
(1.1) 

where gAB, together with CAB , t A’B’, and ~A’B’ is a skew-symmetric “metric” 
spinor for the 2-dimensional complex spin space. The components of the e’s may 
be taken as fl, 0. (To raise or lower a spinor index, one of the e’s must be used, 
e.g., tA = eAB,$B , [B = PeAB .) Primed indices* refer to the complex conjugate 
spin space. Roman capitals are used here for spinor indices and Greek letters 
for tensor indices. The spinor equivalent of any tensor is a quantity which has 
an unprimed and a primed spinor index replacing each tensor index. For example, 
for a tensor X”‘, , we have 

XX”, H XAB'CD' 
EF' , 

where 

and 

XAB'CD' 
EF' = q AB' a, CD'XAPyfJ"EF' 

(with u”AB, = #‘ayCD’~~A~D~B*). We have 
AB' 

QAB'CD' = BACCB'D' , &Dl = s$s$ 
', gAB'CD' = 6ACEB'D'. 

(1.2) 

The algebraic tensor operations can now all be interpreted as spinor operations. 
Also the notions of reality of tensors, and of complex conjugate, are interpreted 
in spinor form with 

X -Xpy *~A'Bc'D~,~ 

so that the roles of primed and unprimed indices are interchanged.’ Thus reality 
of tensors is expressed as a Hermitian property of the corresponding spinors. 

In addition to the usual correspondence between tensors and spinors given 
above, there is also a well-known correspondence between real skew-symmetric 
second rank tensors and symmetric second rank spinors (2). Thus if F,, is real 
and skew-symmetric, we have 

F AB'CD' = %{+A~~B'D~ + eAC$B'D'), (1.3) 

where +AB is a uniquely defined symmetric spinor. The right-hand side of (1.3) 
expresses FABtCD# as the sum of the part symmetric in A, C (and therefore skew 
in B’, D’) and the part skew in A, C (and symmetric in B’, D’). (Any skew 

* Primed indices are used here rather than the more usual dotted indices, for typographi- 
cal reasons. 

1 Many authors would omit the bar on the right-hand side. The choice here here is made 
for reasons of clarity. 
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pair of spinor indices may be split off as an e-spinor.) A corresponding procedure 
can be applied to any skew-symmetric pair of tensor indices. A tensor with r 
skew-symmetric pairs of indices thus gives rise to 2’ spinors each with r sym- 
metric pairs of indices in a decomposition similar to (1.3). If the tensor is real, 
these spinors are paired off as complex conjugates. For an example, see (2.2). 

If the tensor H,, “dual” to F,, is defined by 

H,, = 34 d~FP*e,ivp., (1.4) 

we have 

since if 

then 
AB’CD’ , , 

EEF~GH’ = is$gd:: - &&s”,,s,“, . (1.6) 

(Actually, formulas (1.5) and (1.6) are only correct for one class of choices of 
aWAB satisfying ( 1.1). If up AB had been chosen from the other class of solutions, 
the signs of the right-hand sides of (1.5) and (1.6) would be reversed. It will be 
supposed that the uP AB have, in fact, been selected from the appropriate class.) 
In a similar way any tensor possessing a pair of skew-symmetric indices may be 
“dualized” with respect to that pair of indices. The spinor decomposition of the 
“dualized” tensor then diiers from that of the original tensor in that the rele- 
vant eAC and eB<Df are, respectively, multiplied by i and by -i. This again fol- 
lows from (1.6). For an example, see (2.6). 

General relativity requires, in addition to algebraic properties of tensors, the 
notion of covariant derivative. The symbol a, , or correspondingly aABP , will be 
used here to denote covariant differentiation. The covariant derivatives of glrv 
and of aPAB’ are both required to be zero.’ This implies that 

ar(“AB’C’D’) = 0 

(see 2). The stronger conditions 

ar’AB = 0 and a@‘ArB’ = 0 (1.7) 

will be adopted here (3). This enables one to raise and lower spinor indices under 
the derivative symbol, but it precludes the use of phase transformations of the 
spinors to generate the electromagnetic field. However, the electromagnetic field 

* “Spin affinities” I?%,, , FA’a,, are introduced to deal with the spinor indices. The con- 
ditions (1.7) imply that these spin affinities can be expressed explicitly in terms of U/B’ 
and its coordinate derivatives (see Ruse (3)). 
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will appear here as being associated with spinor transformations in a different 
way (see 3.13). These two procedures do not appear to combine in an altogether 
natural way. The simplest formalism, when charges are not present, seems to be 
obtained when such phase transformations are not permitted. 

The point of view adopted here is nearer to that of Rainich (4) and of Misner 
and Wheeler (5) in which the electromagnetic field is obtained from the curva- 
ture of space-time alone. These phase transformations would not be related in 
any way to the geometry of the space-time. 

2. THE CURVATURE SPINORS 

Since the symbol a, here stands for covariant differentiation, we have 

ad, # ad, , 

the commutation of two 8’s giving rise to the Riemann-Christoffel tensor RN”,,., . 
In fact, we have 

(a,& - &a,}X, = R,X. (2.1) 

The tensor Rlrvpr is skew-symmetric in P, v and in p, u. Thus, following Witten 
(6), we can apply the procedure outlined in Section 1 and obtain 

RAwBFJcG~DHJ = /2 XABCD~EE'F'CG,H' + ECD~ABG~WEE~F~ l'l 

+ ~AB~E'F'CD~G%' + ~AB%D~E'F'G'H' 1. 
(2.2) 

The spinors xABCD and 4AnCH are the uniquely defined curvature spinors. How- 
ever, this differs from Witten’s form by a factor $5 which is included here for 
reasons of convenience. From the symmetries of R,,, , it follows that 

XABCD = XBACD = XABDC = XCDAB 

and 

+ABC'D' = ~BAc~D' = +ABDJcJ = ~WD,AB. 

Let the right dual ScIVPs of R,,, be defined by 

S lrvw = 35 1/-gU’@wpa . 

Then from ( 1.6), we have 

S AE'BF'CG'DH' = i ( -XABCDEE'F'CG'H' + ECD+ABG'H'~EE'F' - ~ABtiEE'P'CDCG'A' 

+ eAB%DXE'F'G'H'}* 

Now, the symmetry relation Rlrvpa + R,,,,, + R,,6yP = 0 is equivalent to 

(2.3) 

(2.4) 

(2.5) 

(2.6) 
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so that multiplying (2.6) by ~~~6~‘~’ should give zero (see 1.2). Hence, 

-XABCB%G' - +ACGJE* + OE'G'CA + ~AC~E~~F'G~ F' = 0 

The C$ terms cancel by (2.4), so we have 

XABC B = h,&c , (2.7) 

where X is real and given by 

x = $SXABAB = y&tF’*‘F’. (2.8) 

The reality of X is, in fact, the only thing new we get out of this identity since 
(2.7) is implied by (2.3) in any case. 

The relations (2.3), (2.4), and (2.8) are the only algebraic relations neces- 
sarily satisfied by XABCD and $ABCtnt for a general Riemannian space, since they 
imply that an RPvpo given by (2.2) has the required symmetry properties. These 
relations are all to be found in Witten’s paper. However, XABCD and 4ABc~D? also 
satisfy a differential relation obtained from the Bianchi identity 

arRpVpC8 + dpRpvcr + &Rpu,p = 0. 

This is equivalent to 

aQSpvpr = 0, 

i.e., (by 2.6) 

dDC’XABCDtirF’ - &H’+ABG’Hr~E’F’ + EABaDG&‘FfCD - EAB&H’jiErF’GIH’ = 0. 

Separating this into the two equations obtained by, respectively, symmetrizing 
and skew-symmetrizing with respect to A, B, we get 

aD G'XABCD = aCH'$ABG% (2.9) 

and its complex conjugate. The Bianchi identity is therefore equivalent to (2.9). 
There are also relations connecting XABCD and 4ABGfHr with covariant second 

derivatives of spinors, corresponding to the vector relation (2.1). Let ,$A be an 
arbitrary spinor field and define 

X PR’QS’ = ~P~QER~S, . (2.10) 

Now (2.1) generalizes to (and in fact implies) 

{apa, - a,a,)x,, = R,,,,X*, + Rvlrro;Xpol. (2.11) 

But a,a, - &a,, is skew-symmetric in IL, v so that the decomposition (1.3) can 
be applied : 

+ %hB{kdED’ + aEDdEC’j. 

(2.12) 
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Thus, (2.11) can be split into two equations each of which must hold separately, 
one symmetric in A, B (and skew in C’, D’) and the other skew in A, B (and 
symmetric in C’, D’) . Also, any skew pair of indices can be split off as an e-spinor 
and these may be cancelled throughout the equation. Hence by (2.2)) the equa- 
tion symmetric in A, B is 

i aAFlaBF’ + aBFtaAF’l tPtQfR5f = ~~~~~~~~~~~~~~ 

+ X.4BQc~PEC%3~ - hiBR’C’SPSQ~;r + hB8’C4P5QGL 
(2.13) 

The cp terms cancel and, because of (1.7)) the eRt8’ term may be divided out. 
Also, 

whence 

t aAF’aBF’ + aBFtaAF’l @PEQ) = ~P@AF’aBF + &dAF’jtQ 

+ tQ@AFhF’ + dBFraAF’jtP 

= tPxABQ& + tQxASP& 

by (2.13). Multiplying this equation by qPqQ where qA is chosen arbitrarily, we 

get 

2hPtP)b?QiaAF&F’ + aBF’aAF’jtQ) = 2hPtP) ~I~XA~~~~)~ 

Since qA is arbitrary, we may divide by 2(71p5r) and obtain 

i aAFhF’ + aBF’aAF’]tQ = XABQ@. (2.14) 

Also the equation obtained from (2.11) which is skew in A, B and symmetric 
in C’, D’ gives rise to 

i aEctaEDT + aED’aEC’]fQ = ~QAC’D’~* (2.15) 

in an exactly similar way. The corresponding results for a primed spinor {A’ are 
obtained by taking the complex conjugates of (2.14) and (2.15). Thus, 

( aEcfaEDf + aEDlaECp]lAt = gCrD’A’Br{B’ (2.16) 

and 

( aAFbF’ + aBF’aAF’]h = 4ABCtD’cD’. (2.17) 

The corresponding relations for spinors with more than one index can be ob- 
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tained from (2.14), . . ., (2.17) since any spinor can be expressed as a linear 
combination of products of one-index spinors. Spinors with upper indices present 
no extra problem because the derivative of an E-spinor is zero. As an example, 
we have 

(aAFlaBF‘ + aBFtaAF’lhDE’ = xABCpPE' + x~~D~P~PE' + 4ABE’Qlik?Q’. 

In particular, by applying this to a “vector” XDE’, and using (2.12) and (2.2)) 
we can get back to (2.1). (It is not so easy to obtain (2.14), . . ., (2.17) directly 
from (2.1) rather than from (2.11), since the fact that the c-spinors are con- 
stant must be used somewhere in the argument.) 

The geometry of a Riemannian space (with signature + - - - ) can thus be 
described entirely in spinor terms, with the role of the curvature tensor being 
taken over by spinors XABCD , $ABE~F~ satisfying (2.3)) (2.4)) (2.8)) (2.9)) (2.14)) 
(2.15), (2.16), and (2.17). 

3. THE EINSTEIN CONDITIONS 

The theory of Section 2 will now be specialized to two cases of particular 
note, namely empty space-time and source-free electromagnetic field. 

The Ricci tensor R,,” = R<,,,, has the spinor form 

R AC’BD’ = %{XEA~B~~D - &ABc’D’ + 
F’ 

EABkF’C’ D’j 

= XCABEcD - (PABC’D’ 

by (2.2), (2.7), (2.8). The scalar curvature R = R”, is given by 

R = 4X 

because of the symmetry of @PABolD’ . The Einstein tensor GNy = RNy 
takes the form 

G AC’BD’ = --XEAB~~ID~ - +*B~*JJ~ . 

Einstein’s equations G,, = 0 for empty space clearly give 

4J ABC’D’ = 0 

and 

x = 0. 

(3.1) 

WswR 

(3.2) 

(3.3) 

On the other hand, if it is required to include a cosmological term in Einstein’s 
equations, we have only 4ABefD’ = 0, the cosmological constant being equal to 
X by (3.1). 

Supposing for the moment that the cosmological constant is zero, (2.7) gives 

xABCB = 0, 
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that is, xABCD is symmetric in B and D. But by (2.3)) it is also symmetric A, 
B and in C, D. It is therefore completely symmetric in all its indices. 

It is a remarkable and perhaps significant fact, that only for a manifold with 
the apparently arbitrary + - - - signature of our space-time, and which satis- 
fies the Einstein equations for empty space, can its curvature be characterized 
by so natural an object as a totally symmetric four-index spinor. The geometry 
of this spinor will be dealt with in Section 3. 

If a cosmological term (or matter) is present, we can write 

x 
XABCD = J/ABCD f 3 (CACCBD + ~AD~BC) (3.4) 

and then #ABCn will be totally symmetric even if X # 0. The spinor tiABCD de- 
fined by (3.4) will be called here the gravitational spinor (even in cases where 
4ABcfnf # 0). It corresponds uniquely to Weyl’s conformal tensor CPvpr . 

Relation (2.9) gives (with +.&Bcrnf = 0) 

,gDE' 
ti ABCD = 0 (3.5) 

and of course aDE’X = 0 also. Equation (3.5) has the suggestive appearance of 
being formally identical with a spinor equation for a zero rest-mass particle of 
spin two. (See Dirac (7) and compare (3.10).) However, the differentiation 
used here is covariant, so that derivatives do not commute. Hence, new features 
arise with second and higher derivatives. In particular, it is not true that Eq. 
(3.5) leads to the covariant wave equation upon iteration with aFE, . We have 

aFEtaDE’ = +${aFEfaDE’ + aDE&E'j + %%DnT (3.6) 

where 

0 3 apap E aFEz+. 

Also, 

1 aFdD*’ + aDE’aFE’ ) tA = tiFDABtB - f (tDcFA + &I~DA~ (3.7) 

by (2.14) and (3.4). Now (3.6) gives 

0 = &&DE'+ABCD = %@FEtaDE f aDEtaFE'j!hABCD - %n#ABCF. 

By (3.7), this leads to 

LI~/ABCD = $*BEF~D~~ + ~~ACEF$DB~~ + $ADEF#BC~~ - ~X$ABCD 

= 3 #(ABEF!k~)~~ - ~A~~ABCD 
(3.3) 
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where the indices between the brackets are to be symmetrized.3 Thus, even when 
x = 0 there is the nonlinear term on the right. This shows that the #-field can 
perhaps be thought of as acting as its own source to a certain extent. If tiABCD 
is small we have 

since X is small in any case. Equation (3.8) indicates that we can only expect 
to have exact solutions for plane gravitational waves moving with the velocity 
of light when X = 0 and $(ABEF#CD)EF = 0. This question will be returned to 
in Section 4 where this condition will be interpreted geometrically and in Section 
5 where such an exact solution will be given. 

The tensor Tlrvpo whose spinor equivalent is given by 

T AE'BF~CG'DH' = +ABCD$E~F,G*H' (3.9) 

is of considerable interest. It has the properties of complete symmetry in its 
tensor indices, vanishing traces (as easily follows from (3.9)) and vanishing 
covariant divergence (with or without X-term in Einstein’s equations), since by 

(3.5) 

a=‘( I) ABCD$E'F'G'H') = 0. 

It would therefore appear that Tlrvps is a multiple of the “gravitational density” 
(or “super-energy”) tensor due independently to I. Robinson (unpublished 
seminars) and to Be1 (8, 9) .4 As is easily verified, T,,,, is, in fact, proportional 
to the Robinson-Be1 tensor. Equation (3.9) bears a striking resemblance to the 
corresponding Eq. (3.11) for the electromagnetic case. 

Let us now suppose that there is a source-free electromagnetic field present. 
The field tensor F,, can be expressed according to (1.3) in terms of a symmetric 
spinor 4AB . This spinor can be used instead of F,, to represent the electromag- 
netic field (2)) and the Maxwell field equations (in covariant form) become 

aAC’4AB = 0. 

3 The tensor form of this relation is 

(3.10) 

4 This tensor was also found by R. Sachs (IO) working with the group at Hamburg, and 
by A. Komar. However, only Robinson noticed the total symmetry of the tensor expression. 
It is not hard to see in the spinor formalism that, if R, = 0, any four-index tensor, quad- 
ratic and homogeneous in RWP,, and with vanishing divergence, must be totally symmetric. 
Robinson’s tensor expression (with (S,,, as in (2.5)) is 
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The energy-momentum tensor T,,” for the electromagnetic field is given by 

T AC’BD’ = ?~~AB?&D~ (3.11) 

(see 10). Now Einstein’s equations with cosmological t,erm are 

G,, + Xg,w = -L&w . 

The X defined by (2.8) is still the cosmological constant, because T’, = 0 and 
by (3.1)) 4X = R = -G’, . Choosing units suitably so that K = 2 (or absorb- 
ing the constant into the definition of 4AB) we have, from (3.2), (3.11) 

~ABC’D’ = +AB&D~ . 

Equation (2.9) now gives 

a”cY #ABCD = &H&~‘$AB (3.12) 

by (3.4) and (3.10) since A is necessarily constant. Thus the &field appears as 
a kind of source term to the #-field (here in the first-order equation). 

From (2.17) we have 

l aFElaDE’ + dDE’dFE’}&V = @D&W{= (3.13) 

and (3.7) still holds. The second order equation arising from (3.10) turns out 
to be 

so that even the Maxwell field does not exactly satisfy the covariant wave equa- 
tion (compare Eddington, 11, Section 74). Also, (3.5) leads to 

c] #ABC= = 3#(ABEFhD)EF - 2hhBCD - 2ih’aAG’aBH’kD 

4. THE GEOMETRY AND INVARIANTS OF +ABCD 

It is known that a general electromagnetic field determines two real principal 
null directions at each point (12). These are given in the general case by the 
real eigenvectors of the field tensor F”, considered as a matrix. (There are also 
two complex null directions given by the complex eigenvectors, but these add 
nothing to the geometry as they are determined by their orthogonality with the 
real ones.) An alternative method of obtaining these principal null directions is 
to use a spinor approach. Any null vector x’ corresponds to the product of a 
dotted with an undotted spinor 

If 2’ is real, BB’ is a multiple of GB’, positive if x” points to the future. Any direc- 
tion along the light cone therefore corresponds uniquely to a one-index spinor 
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ray (set of spinors proportional to a given spinor). Now F,, corresponds uniquely 
to 4AB (by 1.3) and we have 

F AC’ 
BD' = -~{C$A&l + &&Y). 

It is easily verified from this that the eigenvectors of FAC’BDf are qAiB’, r”f”’ 
(corresponding to the real null vectors) and vAfB’, {“ij”’ (corresponding to the 
complex null vectors) where 

+AB = ?4{9~lB + %$A~ = ~J(A~B) - (4.1) 

See also Witten (IS). A decomposition exactly analogous to (4.1) exists for the 
gravitational spinor. We have 

#*mm = QCAPBY~~D) 7 (4.2) 

which expresses the gravitational spinor uniquely (except for scale factors) as a 
symmetrized product of one-index spinors. The bracket here denotes symmetriza- 
tion as before, so that written out in full, there would be 24 terms on the right- 
hand side. The existence and uniqueness of (4.2) follows from the fundamental 
theorem of algebra: 

GABCDS~~"P~~ = (~~A~")(PB~">(~CE")(~D~~) (4.3) 

expresses the general binary quartic form as a product of linear factors. These 
factors are essentially unique, and equating coefficients gives (4.2). 

Now the spinors a! A , &, , yc , 6D determine fOUr directions along the light cone. 
These are uniquely determined by 1c, ABoD and will be called the gravitational 
principal null directiom5 They supplement the two electromagnetic principal 
null directions corresponding to VA and j-A . The gravitational principal null 
directions are only undefined if J/ABCn = 0 but they may coincide in special 
cases. In particular, for the case of the Schwarzschiid solution, it follows from 
the symmetry that they must coincide in pairs at every point, one pair pointing 
towards the origin along the light cone and the other pair pointing away from 
it. (Time reversal symmetry shows that they cannot all four coincide or coin- 
cide three and one.) The coincidence of the two electromagnetic null directions 
is the condition for the electromagnetic field to be null. (The electromagnetic 
directions are, of course, only undetermined if +AB = 0.) Thus, for an electro- 
magnetic plane wave, the principal null directions coincide and, naturally enough, 

point in the direction of motion of the wave. Similarly, it turns out that for a 
gravitational plane wave, all the gravitational null directions coincide. This 

6 These four null directions are implicit in the work of Ruse (14). They correspond to the 
self-conjugate lines of the Riemannian complex. Note added in proof: They have been 
further exploited by Debever (18, 16). 
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question will be returned to later. Gravitational radiation is sometimes analysed 
in terms of the invariants of the Riemann tensor (17) and it will be useful first 
to relate these invariants to the null directions defined above. 

The number of independent invariants of the Riemann tensor in empty space 
is well known to be four. These may be interpreted as the real and imaginary 
parts of two independent complex invariants of gABeD , e.g., 

1 = tiABcD tiABCD, J = #““CD tiCDmtiEFziB (4.4) 

(see Witten, 6, p. 359). These may be thought of as invariants of the binary 
quartic form (4.3). According to the theory of invariants of binary forms, I and 
J are independent and any invariant of the quartic form (4.3) is a function of 
them (see Grace and Young, 18). Thus the real and imaginary parts of I and 
J are a complete set of curvature invariants for empty space. The invariants 
I and J take the following tensor form if R,, = Xg,, : 

with X = XR. These relations are obtained from (2.2), (2.5)) (2.6), and (3.4). 
For a general curvature tensor,6 the tensor Rpvps in the above expressions must 
be replaced by 

Binary forms have a geometrical interpretation as sets of points on a complex 
projective line. The equation 

#ABCD~*~~F%~ = Cl 

is satisfied if and only if at least one of the factors ffAf*, 6BtB, y&C, &ED vanishes, 
each of the conditions LvAp = 0, . . . , 6D.$D = 0 representing a point on the line. 
Thus J/ABCD corresponds to four points A, B, C, D on a complex projective line 
the coordinates of these points being the components of (Y* , fiA , yA , SA , respec- 

6 It is perhaps worth remarking that a general method of converting expressions involv- 
ing $ABCD into the corresponding expressions for RPPpr would be to use the formula 

$ABCD = ~~RAE~BF,cQ~DH~~~‘~‘EQ’H’ - ,%~R{EACCBD + QLXBC) 

but the conversion of spinor contractions to an equivalent tensor form is sometimes com- 
plicated. 
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tively. Now any four collinear points have a projective invariant, namely, their 
cross-ratio 

(aAbB)(yBaB) 

p = (w?m(rDPD) * 

This cross-ratio is the only independent invariant of the four points and is there- 
fore the only independent invariant of #ABCD which is unchanged if J/ABCn is 
multiplied by a non-zero complex number. Thus, the four real invariants of the 
curvature of empty space can be interpreted as a complex cross-ratio,7 and a 
phase and a magniture’ for +ABCn . 

This phase is associated with duality rotations of the curvature tensor (sug- 
gested to me first by I. Robinson) which are exactly analogous to electromag- 
netic duality rotations (5). In each case the duality rotation invariance of the 
first-order equation (3.5)) (3.10) is broken only when sources are present. Let- 
ting 

J/ ABCD + ~"+ABCD, 

where 8 is a real constant, we have, assuming for simplicity that 4ABC*nt and X 
both vanish, 

R ,,vor ---f cos 0 R,,VPs - sin B SlrVPo 

by (2.2) and (2.6), SWvpr being the right (or equivalently the left) dual of RrVPo 
defined by (2.5). This is exactly analogous to 

4 AB 3 ete4AB 

giving 

F,, -+ cos 0 F,, - sin 0 H,, 

where the dual H,,” of F,, is given by (1.4). Unlike the electromagnetic case, 
however, duality rotations of the J/-field of an empty space solution do not in 
general give rise to new exact solutions of the field equations. (See, for example, 
Eq. (3.8).) 

It will be observed that the Robinson-Be1 tensor #ABCD&F~G~~* determines 
$ABCD up to a duality rotation in the same way that +A&Q~ determines 4AB 

7 The idea of using a complex cross-ratio as an invariant defined by four null rays has 
also been independently suggested by I. Robinson (unpublished). 

8 This phase and magnitude of #AnCn can be interpreted in an invariant way as the argu- 
ment and modulus of, say, d/I. This is not really satisfactory, however, since I may van- 
ish. It might be better to use the argument and modulus of the K which is defined by the 
relations (4.5). This only need vanish if I = J = 0, the condition for three of the null 
directions to coincide. Its definition depends on an arbitrary ordering of the null directions, 
however, as does the definition of c. 
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up to a duality rotation. The principal null directions are therefore associated 
even more closely with these “energy” expressions than with the field quantities 
themselves. These expressions are completely characterized by the principal null 
directions, apart from their actual magnitude. It might be expected that the 
gravitational null directions are in some way associated with flow of ‘(gravita- 
tional density.” There does appear to be such a connection, as may be seen from 
the following argument. 

Let x,, be any null vector pointing into the future, so that 

XAB' = SAEB~. 

Then by (3.9) and (4.3) 

Tpv,,,,~'~v~p~" = (~AB~~EAfB~C~D)(~~~~~~~~~fE'~F'~GG'EH') 

= (%X'> @J") (q2") (dd), 

aAB' = CXA~&*, GAB! = BA/~B', CAB' = yA?BJ, dABI = bAbBt . 

The vectors a, , b, , c,, , d, are null vectors, pointing into the future, correspond- 
ing to the gravitational principal null directions. Thus T~Vp~“xvx”x” only vanishes 
for null vectors x’ which point in one of the gravitational principal null directions. 
Otherwise it is positive. But for any time-like vector l”, the expression 

(4.5) 

measures the gravitational density for an observer whose time axis is t’ (see Be1 
(8, 9)). It is positive (for empty space) unless Rpvpa = 0. Thus the gravitational 
principal null directions are characterized by the fact that for observers travelling 
with a given velocity infinitessimally less than C, the gravitational density will 
be a minimum for those observers who travel approximately along a principal 
null direction. 

It is convenient, from a geometrical point of view, to represent null directions 
as points on a sphere. This sphere may be thought of as the field of vision of some 
observer. It may also be interpreted as a realization of the complex projective 
linementionedabove. (A complex projectivelineis, topologically, a real 2-sphere.) 
This sphere is the Argand sphere of the ratio of the two components of a one- 
index spinor (see Penrose, 19, p. 138). Any Lorentz transformation corresponds 
to a bilinear transformation of this ratio and therefore to a projective (conformal) 
transformation of the sphere, which sends circles into circles. 

Four points on the sphere are concyclic if and only if their cross-ratio is real. 
A particular case of this is harmonic points for which the cross-ratio is - 1, 2, or 
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x according to the order in which the points are taken. The symmetry of a har- 
monic set is best exhibited when the points are equally spaced around a great 
circle. The symmetries are then just the symmetries of a square. Any harmonic 
set can be brought into this form by a suitable projective (Lorentz) transforma- 
tion, since any three points on the sphere can be transformed into any three 
others. Harmonic sets are of interest here because they have a greater symmetry 
than a general set of four points. They correspond to the vanishing of the in- 
variant J (see Grace and Young, 18, p. 206). Also of interest is the equianhar- 
manic set which has an even greater symmetry. The cross-ratio here is -w or 
-W’whereo =e i2*‘3. By a suitable projective transformation these four points 
can be made the vertices of a regular tetrahedron. Equianharmonic points cor- 
respond to the vanishing of the invariant I (18, p. 206). 

In the case of a general cross-ratio p the symmetry is given by the Klein 4-group 
(except that there are also some reflectional symmetries if CL is real or has modu- 
lus unity). There is a unique projective transformation (involution) which in- 
terchanges any pair of the points with the remaining pair. These and the identity 
constitute the complete projective symmetry group provided that P is different 
from -1, 2,>& -w, -u”, 0, 1, or 00, the cases 0, 1, and co occurring when a pair 
of points coincide. The value of p can be obtained from 13/J2 sinceit can be shown 
that 

I = ~K’(P + w) (CL + co”>, J = 64~ + l>b - $5) (II - 2) (4.6) 

for some K (see (16) p. 205). There are in general six values of P for a given value 
of 13/J2. They correspond to different orders in which the four points can be 
taken. The values are P, 1 - P, l/p, 1 - (l/p), l/(1 - CL), P/(P - 1). The 
symmetries in the general case can also be realized as rotational symmetries of 
the sphere similarly to the two cases considered above. By a suitable projective 
transformation the four points, A, B, C, D can be transformed into the vertices 
of a tetrahedron which has opposite edges equal in pairs (a disphenoid). Such a 
tetrahedron has three orthogonal dyad axes of symmetry. These axes are the 
joins of the midpoints of opposite edges. If the cross-ratio is real, the tetrahedron 
is flattened into a rectangle but the three symmetry axes remain. 

To see that such a transformation exists consider the three pairs (E,F), 
(G,H), (K,L) of united points for the three involutions which send (A,B,C,D) 
into (B,A,D,C), (C,D,A,B) and (D,C,B,A), respectively. Now the involu- 
tion which sends (A,B,C,D) into (B,A,D,C) transforms the other involutions 
into themselves. It therefore sends G into H and K into L. Hence, (E,F) is 
harmonic with respect to (G,H) and also with respect to (K,L). Similarly 
(G,H) is harmonic with respect to (K,L). Now, E, G, F, H can be transformed 
(as above) into four points equally spaced, in that order, around the equator. 
K and L will then be the north and south poles, so that the six points form the 
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vertices of a regular octahedron. The three involutions are then represented as 
rotations through r about the three axes EF, GH, KL. The point A is rotated 
into B, C, D by means of these involutions giving the symmetrical tetrahedron 
described above. 

This symmetrical representation of the points A, B, C, D is of interest because 
it is related to Petrov’s canonical representation of the Riemann tensor with 
R,,” = 0 (17, 20). The rest frame in which the gravitational principal null direc- 

tions appear to have this symmetrical form determines the canonical time axis, 
the three canonical space axes arising from the three axes of symmetry. These 
four axes are orthogonal to each other and are called the Riemann principal di- 
rections. They are uniquely defined provided that A, B, C, D are all distinct. If 
A, B, C, D coincide in pairs they can still be considered to exist but they are 
not uniquely defined. 

The rotational symmetries of the tetrahedron A B C D in the general case give 
rise to the corresponding symmetries for Rlrvpr , since being dyad axes the only 
other possibility would be Rpyp,, + -R#yp,, (a duality rotation of r).” Such an 
alternative is easily ruled out as impossible. It follows that, for the canonical 
choice of axes, 

Rijkl = 0 whenever i = k and j # 1 

as is required in Petrov’s canonical form. Conversely, the above condition is 
sufficient for the Riemann principal directions to be the axes. 

The usual definitions of the Riemann principal directions is in terms of the 
intersections of certain planes which are determined by the ‘Leigenbivectors” of 
R pvpa , i.e., from the nonzero (complex) skew tensors x”” which satisfy a relation 

Rpvp$‘” = ,&“. (4.7) 

Writing this in a spinor form with 
, ZAC’BD’ = M{ ,,ABeC’D’ + EABfC’D } 

(see 1.3) tlAB and lAB being symmetric, (4.7) becomes 

$ AB 
EFT 

EF&D’ + e*B $C’D’E,F,[ -E’F’ = a{ ?ABeC’D’ + ,ABfC’D’) 

(since +~nC’n’ = 0, X = 0) so that 

,)ABEF,,EF = &B, #ABBFj-EF = .{AB. 

One or the other of qAB, lAB may be zero. The eigenbivectors of R’“,, are thus 

s In the special cases where the set of points A, B, C, D has an additional rotational sym- 
metry, this does not always lead to a corresponding symmetry of R,,, , although it does 
for the case when A, B, C, D coincide in pairs. In particular, in the equianharmonic case, 
the triad axes of symmetry give rise to duality rotations through angles 2zr/3,47r/3. 



SPINOR APPROACH TO GENERAL RELATIVITY 187 

expressible in terms of “eigenspinors” of tiABCD , the eigenvalues of R’“@, being 
being those of #*“c,-, and their complex conjugates. Witten (6) also considers 
these eigenspinors. 

Now if the eigenvalues of tiABcn are cyl , 01~ , a3 (the space of symmetric fAB 
being three-dimensional) we have 

QI + a2 + a3 = #*"AB = 09 

With the expressions for I and J given in (4.6), it is easily verified that these 
relations are satisfied by 

(Yl = K(2ji - l), CY2 = K(2 - CL), Cl3 = K(--l - /L). (4.8) 

The six eigenvalues of R’“,, are therefore these three numbers and their complex 
conjugates. It will be seen that the vanishing of just one of the eigenvalues (4.8) 
is the condition for the principal null directions to form a harmonic set. If two 
of them vanish they must all vanish and I = J = 0. This is the condition for at 
least three of the principal null directions to coincide (since they form both a 
harmonic and an equianharmonic set). If two of the eigenvalues (4.8) coincide, 
this is the condition I( = 0, 1, or 00 for a pair of principal null directions to coin- 
cide. This is the case I3 = 6J2 (18, p. 198). 

The three eigenspinors qAB, l**, eAB of # ““CD will next be considered. They 
are symmetric and therefore each is expressible as a symmetrized product of a 
pair of one-index spinors (see 4.1). Each of qAB, lAB, eAB corresponds to a pair of 
points on the projective line considered earlier, so in the general case we have 
six points on this line determined by A, B, C, D. These can only be E, F, G, H, 
K, L since a general quartic form has only one sextic covariant (18, pp. 92, 94). 
This sextic covariant is 

whence 

choosing the scale factor suitably. The vanishing of this expression is the condi- 
tion for A, B, C, D to coincide in pairs, since E, F, G, H, K, L are not then de- 
fined uniquely. It does not vanish if just two of A, B, C, D coincide, or if they 
coincide three and one. 

The planes determined by the eigenbivectors of R”:, are those determined by 
9 AB 

,l, * AB eAB They are therefore the three planes of the pairs of null directions 
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corresponding to EF, GH, KL and the three orthogonal complements of these 
planes. Their intersections give the Riemann principal directions defined here, as 
is required. This is easily seen from the symmetrical representation of A, B, C, D 
given above. 

These considerations have so far been essentially only concerned with Petrov’s 
tensors R,,, of Type I. This is the case when the eigenbivectors of R’g, span 
the six-dimensional space of bivectors. In special cases these eigenbivectors span 
only a four-dimensional space (Type II) and in very special cases, a two-dimen- 
sional space (Type III). In spinor terms, this means that Type I occurs when 
the eigenspinors of +ABCn span a three-dimensional space, Type II when they 
span a two-dimensional space and Type III when they span only a one-dimen- 
sional space. Thus, Type II can only occur when at least two of the eigenvalues 
(4.8) are equal and Type III when they are all equal (and therefore all zero). 
We have seen that equality of eigenvalues implies coincidences among A, B, C, 
D so the cases where such coincidences occur must now be considered. 

There are six different cases to be distinguished including the general case [ill l] 
where the null directions are all distinct. There is the case [211] where exactly 
two of them coincide, [22] where they coincide in pairs, [31] where they coincide 
three and one, and [4] where all four directions are the same. Finally, there is 
the case [-] when (tABCD = 0 and the null directions are undefined. This gives us 
a natural classification of Riemann tensors in empty space into six types (see 
also GBh&riau (21) for a closely related procedurelo). In each case, the eigen- 
spinors can be obtained by observing what happens to E, F, G, H, K, L when 
A, B, C, D are specialized. However, this must be done with care so that possible 
limiting positions of E, F, G, H, K, L are not omitted. Figure 1 shows how the 
different special cases arise from one another. The vertical specializations can 
be carried out keeping the positions of E, F, G, H, K, L fixed, but in the diagonal 
specializations, further pairs of them are forced to coincide. (For example, 
in the case [llll] + [211] if B + X and A -+ X, we have (G, H -+ (X, X), 
(K, L) -+ (X, X> and 0% W -+ (X, Y) where Y is the harmonic conjugate of 
X with respect to the limiting positions of C and D.) The Petrov type for each 
case may be obtained in this way and the results are shown in Fig. 1. Each column 
corresponds to a particular type. Thus, [llll], [22], and [-] are Type I, [211] 
and [4] are Type II, while [31] is Type III. The different rows can be distinguished 
by the invariants I and J (or by the eigenvalues). Hence the invariants and 
Petrov type together serve to characterize #AABc= . 

It is of interest to see how this classification is in accord with that given by the 
classical canonical form of $“*on considered as a (3 X 3) matrix. These corre- 
sponding canonical forms are given in Fig. 2. 

The various algebraic conditions for each case (or one of its specializations) 

10 Note added in proof: See also, more explicitly, Debever (16, 16). 
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[Ill11 13 # 6JP 
J 1 

[2111 --$ [221 13 = 6JS f  0 
did1 

[311 -+ 141 --+ L-1 I= J =0 

FIG. 1. Classification scheme for $ABCD in terms of coincidences between principal null 
directions. 
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FIG. 2. Classification in terms of matrix canonical form of +ABCn. 

to occur may be collected together as follows: 

[211]: I3 = 6J2, [22]: #PQRCA#PQBC tiR,,EFj = 0, [31]: I = J = 0, 

[41: !k4BEF !~D)EF = 0, t--l: q.413~~ = 0. 

The only case that has not already been dealt with is the condition for [4] to 
occur. The quartic form #ABEF$cD&*tBtCtD is the Hessian of the form 

# ABCDtAtBtCtD 

and its vanishing is known to be the condition for the latter form to be a perfect 
fourth power (18, p. 235). The interest of this condition lies in the fact that 
#(AB~~!&D)EF is precisely the term (in the case X = 0) which prevents Eq. (3.8) 
from being a covariant wave equation” for #ABCD . Thus, plane wave solutions 
can only reasonably be expected in case [4].” This is Petrov’s Type II with van- 
ishing invariants and is apparently the case characteristic of a “pure” gravita- 
tional radiation field (8, SL?, and $3). The other cases which might conceivably 
also be considered as “pure gravitational radiation” are [211] and [31] (see 17). 

I1 Case [4] therefore appears to be the only case (apart from [-I) in which the gravita- 
tional field has no “gravitational mass”. See also Bondi et al. (.%Y), p. 532. 

12 However, a point perhaps worth mentioning is that in case [22], $ABCD and $&FI&~,EF 
are proportional. 
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Case [211] would seem to be wrong since [22], which is a special case of it, would 
also have to be considered as pure gravitational radiation. But we have seen 
that the Schwarzschild solution is [22]. 

Case [31] is, however, worthy of consideration in this respect since it shares 
with Case [4] the property that the gravitational density (4.5) can be made as 
small as we please by a suitable choice of time axis (“following the wave”). If 

and 

t,, = a, + a:, , aAB’ = (11~8~’ , bAB’ = @A,!&,~ , 

where E > 0 is small and xN is time-like pointing to the future, we have 

T,,,,t”tYtPtb 
; t3 ( ,8Ad 1’ (a~hc~x~~‘)~ 

(t&r)2 1 
, 

4e2(a,xr)2 

= E Ow’>(ayxY>3 
16(a,zr)2 * 

If PA = ffA , the right-hand side would be of order e2 instead of e. Thus, the gravi- 
tational density tends to zero for observers, whose velocity approaches the multi- 
ple principal null direction, both in Case [31] and in Case [4], but it tends to zero 
more rapidly in Case [4]. It would appear to be correct to call Case [4] “pure” 
radiation fieldn but not Case [31]. Case [4] is like a null electromagnetic field 
(“pure” electromagnetic radiation field) in that it determines only one null di- 
rection, and in that it is the general limiting case obtained as a result of a high- 
velocity Lorentz transformation (see also 24). (However, it is worth remarking 
that for a null electromagnetic field, the energy T,d’t’/(t,t’) can only be made 
to tend to zero to order E by “following the wave”, like Case [31] above. ) 

The invariants of #ABon have been treated in considerable detail above. It now 
remains to give a brief discussion of the combined system $ABon , 4AB for the 
case when electromagnetic field is present. We expect to find just three more 
complex invariants, since $A= is determined by its phase and magnitude, and 
by the positions relative to A, B, C, D of the two complex points Y and 2 on 
the argand sphere, corresponding to the electromagnetic principal null direc- 
tions. There is the obvious invariant 

K = '#'ABd'AB 

of +AB alone. This is the discriminant of the binary form 4AntAtB, the condition 

la It is probably preferable, however, to call case [4] simply a nuZE gravitational field (as 
suggested by Robinson) analogously to the electromagnetic case. 
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K = 0 being necessary and sufficient for the points X and Y to coincide, that is, 
for the field to be nu11.13e The list is completed by the two independent invari- 
ants 

L = ~JAB#~~CD~~~, M = ~~~~~~~~~~~~~~~~ 

The fact that I, J, K, L, M are in general independent is most easily seen if 
cABon is thought of as a matrix and q%AB as a “vector” which may then be ex- 
panded in terms of the eigenspinors of tiAB CD with arbitrary coefficients. K, L, 
and M then become independent linear functions of the squares of these coefh- 
cients. 

However, I, J, K, L, and M do not form a complete system of invariants in 
the sense of invariant theory (18). That is, not every algebraic invariant of 
$ABon and 4AB can be expressed as a polynomial in I, . . . , M. The invariant 

clearly is not even a rational function of I, . . . , M since every such functions is of 
even order in c$AB . Also N does not vanish identically. On the other hand, N 
is algebraically dependent on I, . . . , M, there being the syzygy 

N* = XJKLM - gJL3 - $$M3 - g12KL 

- $@JK2L - $&J2K3 + gIKM* + $iIL2M. 

The system I, J, K, L. M, N does, in fact, form a complete system of invariants 
for $ABcD and 4AB . 

The condition for an electromagnetic principal null direction to coincide with a 
gravitational principal null direction is that the resultant of the quartic and 
quadratic forms should vanish. Expressed in terms of invariants this condition 
turns out to be 

2K21 - 4KM + L2 = 0. 

The condition for both electromagnetic null directions to lie along a gravitational 
null direction is therefore 

K = 0, L = 0. 

The electromagnetic and gravitational fields together have ten independent 
real invariants, namely the real and imaginary parts of I, J, K, L, M. However, 
only nine of these are determined by the curvature R,,yPI since it is unaffected by 
duality rotations of the electromagnetic field. These are the nine independent 

‘aThe real and imaginary parts of K are the usual invariants F,,,Frv and l/2 cg 
F”“F~Q~,~ respectively, of F,.. 



192 PENROSE 

real invariants of #ABCD and +ABCIDr = c$&&,~ . The phase of 4AB is undeter- 
mined by ~~~~~~~ , so we can take for these invariants14 

1, J, I K I, I L I, I M I 
and the arguments of the two ratios 

K:L:M. 

(The invariants 1 K 1’) 1 L I’, [ M I’, KE, LG, Ml? are easily expressible in terms 
of $ABCD and&~C~~~.) 

5. ANALYTIC SOLUTIONS OF EINSTEIN’S EQUATIONS 

Let W be an analytic (connected) Riemannian manifold. Then starting from 
any point 0 on 3n at which the curvature tensor RNVPC and all its covariant de- 
rivatives are known, it is possible to calculate the curvature tensor (and its 
derivatives) at any other point by means of a power series: 

The point x is that point on 3n whose geodesic distance from 0 is ~/(xJJ~) and 
which lies on the geodesic through 0 which starts off in the direction of x”(Rie- 
mannian coordinates). (If x0! is null this has to be interpreted suitably.) The 
R,,, at the point x is referred to axes which are those at 0 transferred in parallel 
along this geodesic. If the power series does not converge, the point, x may be 
reached in several steps, using intermediate points, in the manner of analytic 
continuation. This power series expression and its convergence is considered by 
Thomas (25, p. 234). 

Equation (5.1) is a special case of the more general situation, whereby any 
analytic tensor field may be calculated from a knowledge of the tensor and all its 
covariant derivatives at the point 0 alone: 

Cf.. .I% = Cf.. . >o + x”(a,j.. .)ll + & x”x%3&f.. .)o + * * * 

= [exp(x”&)f.. .I0 = lim 1 + -1 x”f3 [*+- ( n Jf...lo. (5*2) 

I4 When the electromagnetic field is null there still remain the seven real invariants given 
by I, J, / L 1, 1 M 1 and the argument of L/M. Thus Witten (6) is mistaken when he claims 
that there remain only the four real invariants of $ABCD in this case. For example, the in- 
variant ~ABE,F,**B~~~‘~‘G,H,~~~‘~’ = 1 L )* need not vanish when K = 0. Such an invariant 
could appear as a quotient of invariants built up from Witten’s list. 
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The 13,‘s are to be taken as acting only on f. . . and not on x~. (This last expression 
can be used to obtain the power series expression since 

which may be applied 12 times with E = l/n, giving (f. . . )% correct to order l/n). 
These power series can be used as the basis for a coordinate-free approach to 

Riemannian geometry. Instead of specifying a space by giving the metric tensor 
gccv as a function of some coordinates, the space may be determined (except pos- 
sibly for some of its topological properties in the large) by specifying Rlrvpa , 
a,R,,,, , &d~R,wpc , . . . at a point 0. To specify a set of tensors at a point does 
not require coordinates since their algebraic tensorial properties need only be 
given. The metric tensors gPV , g ” and the alternating tensor Z/&g+..., are also 
supposed to be specified at the point 0. They are an essential part of the tensor 
algebra at 0. 

A difficulty about specifying a space in this way is that Rrvpr, daRPvpa , 
d&&w , . . . are not algebraically (tensorially) independent of one another. 
Relation (2.1) implies identities (Ricci) connecting second derivatives with the 
curvature tensor, and also there is the Bianchi identity which is the consistency 
condition for (2.1). The Bianchi identity is in fact the only consistency condition 
required (26, pp. 131, 132). Applying these two types of identity to the higher 
derivatives of RPvpr a host of relations is obtained. It is therefore of importance to 
be able to single out a set of tensors which are algebraically independent (in the 
general case) and from which RPvpr and all its derivatives are obtainable by alge- 
braic operations. It is possible to show that the following set of tensors, in fact, 
has all these properties: 

Each Q. . . has the symmetry given by a Young tableau operator corresponding 
to a partition (T - 2, 2). That is to say, we have 

Qpvpr. ..B = Q(,N(~~. ..,T) and Qpppr...m = 0. 

Apart from these symmetries and from certain considerations of convergence, 
the Q’s may be chosen arbitrarily.15 Unfortunately, however, if it is required to 
impose a condition such as Einstein’s RPYPr = 0 (or = XgyC) on the space, this 
implies a condition not only on QPyPs , but also on QFvPCa , QPvpCa~ , etc. These con- 
ditions are all linear, but they appear to be somewhat complicated. It seems for 
this reason t,hat an approach based explicitly on these Q’s would not be usually 
very convenient for general relativity. (However, in a later paper it is proposed 

16 These Q’s are somewhat analogous to (but different from) the “normal tensors” (see 

Thomas 26, p. 102). 
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to give a class of special solutions using this method.) On the other hand, if a 
spinor approach is used, these linear conditions take on a particularly simple form. 
This approach will now be described in more detail. 

Suppose that 311 has four dimensions and signature (+ - - - ), and that 
R“,, = Xgw . Then we have seen that Rpvps can be represented uniquely by a 
totally symmetric spinor lLABCD (X being known). We wish to find a set of alge- 
braically independent spinors from which 

* ABCD , a2’ tiABCD , G’apQ’ tiABCD , . . - (5.3) 

(at the point 0) can be constructed by means of algebraic spinor operations. 
The identities relating the spinors (5.3) arise from the equivalent of the Bianchi 
identity, namely (3.5) : 

a*” !bABCD = o or gEAaEP’ gABCD = 0 (5.4) 

and the equivalent of (2.1), namely, (2.14), (2.15), (2.16), and (2.17): 

eR/Sr(aGR’aHs’ + aHR’aGs’}tA = $bGHABEB - ’ 3 {tG%A + beGA}, 

EEtB,{aGR'aH8' + aER'aGs']jP' = 0 

EGH( aGR'aHs' + aGS'aHR'j tA = 0, 

(5.5) 

eGH(aGR’aHS’ + aGffaHR’}#” = ~‘S’P’~,~Q’ _ x_ 
3{ 

tlR’eS’P’ + ,f,R’P’} 
(5.6) 

(see 3.7 and 3.3) applied to +.&Bon and its derivatives. 
The various derivatives of (5.4) must all hold identically also. Hence the alge- 

braic relations on the spinors (5.3) arising from (5.4) are 

?*(aEp ’ ’ . aGR’aEs’$ABcD) = 0. (5.7) 

This expresses a condition on (namely, the vanishing of) the part of aEp * + * 
a2 $ABCD which is skew in H, A and says nothing about the part symmetric in 
H, A. Moreover the relations (5.5) connect 

eR’s’( aEP’ ’ ’ . aGR’aES’ . ’ . aKv’ tiABCD) + cR’s’ ( aR P’ . ’ ’ aHR’aGs’ ’ . ’ aKv’ tiABcD) 

with lower derivatives of #ABCD , while (5.6) connect 

p(aEp' . . - aGR'aHS' .-. axV'+ABcD) + PH(aEP' ..- aGs'aHR' . . . aKv'tiABcD,) 

with lower derivatives of #ABCD . These express conditions only on parts of 
aEP’ . . . axV’ #ABCD which are skew in a pair of primed indices or in a pair of un- 
primed indices. Thus the algebraic relations arising from (5.4), (5.5), and (5.6) 
connecting the spinors (5.3) are all concerned with parts of aEp' . . - aKv' $ABcD 
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which are skew in at least one pair of indices. They imply no conditions on the 
parts totally symmetric in all primed indices and in all unprimed indices. (It 
might, perhaps, be thought that other relations could be obtained by expanding 
skew parts of aEp’ . . . aKv’ $ABCD in two different ways. However, these all lead 
back to (5.7) which is the only consistency condition implied.) Hence the spinors 

+ ABCD , +ABCDEP’ = a(EP’#ABcD) , tiABCDEFP’Q’ = b’P’aFQ’)tiABCD) , . . . (5.3) 

are all algebraically independent and can therefore be specified arbitrarily (apart. 
from convergence considerations) at the point 0. 

The problem is now to show, conversely, tha.t all the spinors (5.3) can be 
obtained algebraically from the spinors (5.8). For then #ABeD , $ABeDEp , 

# ABCDEFP’Q’ , ’ ’ ’ will be a complete set of algebraically independent spinors 
at 0, which can be used to generate the space 312. In order to show that they form 
such a complete set, an argument by induction will be used. We wish to express 
aRP’ . . . aKV’ tiABCD in terms of J/ABcDE...KP”“V’ and lower order derivatives of 
#ABeD since it may be supposed as the inductive hypothesis that all these lower 
derivatives have already been expressed algebraically in terms of symmetrized 
derivatives $..,B...GP’...R’. Now, if we add together all the spinors obtained from 
aEpf . . . aKv' #ABCD by permuting P’, . . . , V’ in all possible ways and A, B, C, 
D, E, . . . , Ii in all possible ways, we get a multiple of #AB...KP”‘.V’. Thus, if it 
can be shown that each of the spinors obtained by such permutations differs from 
aRp’ ’ . ’ aKV’ gABCD by expressions involving only lower derivatives of $ABCD 
the result will be proved. The spinor aEp’ 1.. dKV’tiABCD will then be seen to 
differ from #AB...KP”” v’ by a spinor built up from lower derivatives of J/ABCD . 

Any two spinors obtained by such a permutation of indices from 

aEp’ ’ . ’ aKv’ tiABCD 

will be called equivalent (denoted by -) if they differ from each other by expres- 
sions built up from lower order derivatives of #ABoD . This is clearly an equiva- 
lence relation. It is required to show that all such spinors are, in fact, equivalent 
to one another. Now since 

awx‘ayz' - ayZ'aWX' s ~~BX'z'eM,N,(aWM'ayN' + aYM'awN') 

+ ~jewyeST(asX'aTZ' + asz'aTx'] 

(see 2.12)) we have, applying (5.5) and (5.6) 

. . . awx’ayz’ -” tiABCD - -” ayz‘aWx’ ‘-’ #ABC,,. 

Hence any permutation of the aMN’ symbols gives rise to an equivalent spinor. 
(Any permutation can be expressed as a product of transpositions of adjacent 
elements.) That is, any permutation of P’, . . . , V’ can be applied to 
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aEP’ . . . &V tiABCD provided that the same permutation is applied to E, . * * , K 
and an equivalent spinor is obtained. It remains to show that E, * . . , K, A, B, 
C, D can be permuted independently and an equivalent spinor is still obtained. 
The symmetry of #*non implies that A, B, C, D can be permuted without change. 
Furthermore, from 5.7, K and A can be interchanged in aEp‘ . *. anv’tiABCD . 
Also, 

. . . ayZ’ . . . 
a&kABCD- "' aK 

V' . , . ayZ' 
# ABCD, 

- . . . aK V' ' ' ' aAz' tiYBcD - ' . ' aAZ' ' ' ' axV' !bYBCD 

so that A can be interchanged with any other unprimed index and an equivalent 
spinor is obtained. It follows that any pair of unprimed indices can be inter- 
changed since 

. . . a, X’ . . . ayZ’ . . . CABCD - . . . awX’ . . . aAZ’ . . . q+.BCD, 

N . . . ay X’ , . . aAZ’ . . . tiWBCD - . . . ayX’ . . . awZ’ . . . +ABCD. 

Hence all the spinors are equivalent and the result is proved. 
As examples of the above, we have 

~P'+AB~D = #ABCDE~' > 

aE 
P' ' 

a2 $ABCD = #ABCDEF "" + EEF~~'~'{~~~AB~~~~D)GH - %~#ABCDJ 

+ gP'Q'( $(ABC~$D)EFG + ?@&~(ABcED)F + ?~~#F(ABC~D)EJ- 

Higher derivatives involve $Afnro*nf , $A~n~o~n~E~p , . . * also. We have from 
(5.1), with #ABCD = (#ABcD)O , etc., 

(+ABCD)z = #ABCD + xEP'aEPf#ABCD + & xEP'xFQ'a~p,aFQ,**~~D + . . . . 

Hence 

(#ABCD)Z = #ABCD + ~~~~~~~~~~~~ + 3tiXEP'XFQ'$~~~~~~~~~~ 

+ ~(~~p~XEP')~~/4~~~GH~~~)~~ - %X#ABCD) + 0(X3). 

It is possible to obtain a class of exact solutions for gravitational plane waves 
using this method. Such solutions, obtained using more conventional methods, 
have been known for some time (for references, see Bondi et al., 23). Let 

+ ABCD = ~O~FATB~MD, $ABCDEP' = W?FA~B?TC~D~E*P*, 

(5.9) 

* ABC,,EFP'Q' = (YZr.4 . . ’ PFiip’fQ’ , * . ’ 

at the point 0, where =A is a spinor corresponding to the null direction giving the 
direction of motion of the wave and CYO , LY~ , . . . are complex numbers. Suppose 
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h = 0. It will now be shown that the unsymmetrized derivatives of $ABCD are 
all equal to the symmetrized derivatives, so the situation is much simplified in 
this case. As an inductive hypothesis we assume that all the derivatives of 

+ ABCD of lower order than aEp’ . * . dKV’tiABCD are already symmetric and there- 
fore equal to the corresponding expressions 5.9. The argument given above shows 
that asp’ . . . aKV’+ABCD differs from #ABCDE...KP““V’ by expressions obtained 
by applying rule (5.5) and (5.6) to (t ABC,, and derivatives of tiABCD , and per- 
haps differentiating further. Since X = 0, this leads to terms of the form 

9 
T’...V’ 

XAG...K *” B...FP’-.S’ or ~y,P’T’...~‘G...K~A...F~‘~‘...~’ 

only. (By the inductive hypothesis all the derivatives of $ABCD which occur are 
equal to the #...“’ ‘s.) These terms all involve contractions between the $...““s. 
But with #...“’ ‘s given by (5.9)) any contraction must clearly vanish (since 
uxux = 0). Hence 

as required. 
The curvature at points other than 0 can now be calculated: 

(#ABCD,; = CYOUAUBU~UD + CQXEP’U~ 

1 . . . ?rJ#p’ + - cYZXEP 
2! 

‘2 PQGrA * . * 7rFjiP’ifQ, + . . . 

= j(x%r*jip~) TATB~MD = f(X'pfil~~~~~c~D7 

where 

j(s) = a0 + cqs + 1 a!,2 + 1 cY3s3 + . ’ . 
2! 3! (5.10) 

and PAW = BA%B~ . Thus the curvature is a function of the one parameter xfipp, 
only. It is constant along the (null) 3-spaces x’p, = constant. Furthermore, by 
(5.21, 

(aEp'#ABCD)2 = (dEP'$ABCD)O + xFQ'(a~Qf(a~p'~ABCD))O 

+ ' xFQ'xGR'(aFQ'aGR'[dEP'~ABCD})O + " ' 
2! 

etc.Hence $ABCD, IJ/ABCDEpf , +ABcDEFP~Q*, *** are all constant along the S-space 
$‘p# = 0. It follows that the whole space %Z admits the three-parameter group of 
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translation8 in the directions lying in this 3-space. The space ~TI thus represents 
a plane wave which moves uniformly with the velocity of light in the direction 
represented by p, . The intensity and polarization of the wave are determined 
by the modulus and argument of the function f(s). 

Particular cases of interest are: 
(i) the constant gravitational field with #ABCD constant everywhere. 

Heref(s) = constant, i.e., (Y~ = a2 = . * . = 0, and nZ admits additional transla- 
tional motions. 

(ii) Sinusoidal waves ; 

f(s) = aein8 + beins, i.e., (Y, = a(in)’ + b( -in)‘. 

In this case 3n admits an additional discrete group of translations. 
(iii) Gravitational pulse; for example, 

f(s) = b exp ( 
--- 
s ” a 

c 
) sta 

if -a<s<a 

0 ifs 5 -aors 2 a. 

Case (iii) is not strictly an analytic manifold. YJ?Z has to be constructed from three 
analytic pieces (two of which are flat). The middle piece fits on smoothly to the 
other two pieces, the join being C”. The space is exactly flat before the pulse ar- 
rives and is again exactly flat after the pulse has departed (23, p. 523). 

An advantage of a method such as this for obtaining spaces satisfying Einstein’s 
equations is that the usual problem of deciding whether an effect is real or merely 
due to a bad choice of coordinates simply does not arise. The curvature at any 
point is found directly. However, it will naturally be convenient to be able to 
introduce coordinates into a space defined in this way, if desired. A coordinate 
system on %Z may be thought of as a set of four scalar fields u(;) (i = 0, . . . 3). 
The symmetric derivatives d(, . * + &U(Q of each u(i) may be specified arbitrarily 
at the point 0. The values of the coordinates UC;) and their derivatives at any 
other point may then be calculated using (5.2)) after some of the unsymmetrized 
derivatives have been obtained using (2.1). The expression for the metric at 
each point can be obtained from the first derivatives of the u(i) at that point. 
This method will be described in detail in a later paper. 

The case when an electromagnetic field is present in the space can be treated 
by an extension of the coordinate-free method for empty space described above. 
The spinors 

c ABCDE...G 
P”“R’ = &P’ . . . GR’) 

#ABCD) 

16 3n also admits a two parameter group of rotational (Lorentz) symmetries given by the 
unimodular matrices t% satisfying t*wr B = fn*, and disconnected from these, the rota- 
tions for which t%pB = fia *. There may also be some reflectional symmetries in special 
cases. This five parameter group of motions serves to characterize the plane wave solu- 
Cons (see Bondi et al., (25)). 
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are defined as before and spinors &B , ~$~no*‘, $ABCDP’Q’, . * * are introduced, 
defined similarly by 

9 ABC...E 
*““R’ = a($” . . . aER’)4AB) . 

By the same kind of argument as before, it follows that 4AB , 4ABop’, * . . , 
ti ABCD, #ABCDEP', ’ *. are all algebraically independent. Instead of (5.4) we have 

eCAaeP’+AB = 0 and - cEAaEp’ tiABCD = $p’Q’aDQ’$Bc 

from (3.10) and (3.12). The first of these states the symmetry of 

ac P' -.- aER'4AB 

in E, A, while the second expresses the part of 

aEP' ..a aGR'tiABCD 

skew in G, A in terms of derivatives of r$~ AB of at most the same order. They 
imply no condition on the symmetrized derivatives of 4AB or J/ABeD . Nor do the 
equivalents of (5.5) and (5.6), which differ from them only in that the second 
relation (5.5) is replaced by 

eRtst{ aGR’aRs’ + aHR’aGs’} tp’ = 4GH&P’QrvQ’ 

(see 3.13) and the first relation (5.6) by 

CGH( aGR’aHS’ + aGs’aHR’) tA = ~$“‘“‘t$~~f” 

The argument to show that the unsymmetrized derivatives can be expressed 
algebraically in terms of the symmetrized derivatives is exactly analogous to 
that for pure gravitational case. The derivative &*’ . * * &R’@AAA differs from 

4 ABC...E P”“R’ by expressions constructed from lower order derivatives of +AB and 

+ ABCD , while &” * * . aGR’ #ABCD differs from #AB~DE...G*““~’ by expressions 
constructed from derivatives of C$ AB of the same order or lower and from lower 
order derivatives of $ABCD . Thus, we can construct &*‘.&B , aE*‘*ABCD, 
aCp'aDQ'+AB, dEP'aFQ'#ABCD, "' , in that order, from the symmetrized deriva- 
tives. The symmetric spinors +AB , @ABC*‘, +ABcD*'~', . * * , +ABcD , $ABCDB*', . * . 

can therefore be specified arbitrarily at a point 0 (apart from convergence con- 
siderations) and +AB , #ABoD at any other point can be determined from them 
by (5.2). 

A simple example is the case of a combined gravitational-electromagnetic 
wave (see also 2%‘). Here #AneD , #AB~DJzP~ , * . . are given by (5.9) and 

+AB = PO~ARB, +ABCP = Pi~A~~~cff*J 7 

~ABCDP~Q~ = ,&!?rA?rB~c?rDiip~iiQ~ , * ' ' 

at the point 0. As was the case, considered earlier, with the pure gravitational 
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TABLE I 

SUMMARY OF SOME OF THE RESULTS OF THIS PAPER ON THE COMPARISONS 
BETWEEN ELECTROMAGNETIC AND GRAVITATIONAL FIELDS IN SPINOR FORM 

Tensor-spinor 
correspon- 
dence 

First order 
equation 

(Super-)energy 
tensor 

Duality rota- 
tions 

Canonical rep- 
presentation 

Classification 
scheme 

Plane wave 

Maxwell field 

F PY ++ %~+AABWD' + eAB&D,) 

Maxwell equations: W’+AB = 0 Bianchi identities: aAE’+Ar,cn = 0 

Maxwell stress tensor +-+ Robinson-Be1 tensor tt 
%@AB&,D, $ABCD$E,F~G~H* 

$AB * e%AB +ABCD' e"'+ABCD 

'$AB = $(A~B) 

[ll] K # 0 

d1 
[2]-[-] K = 0 

[lllll 13 # 652 

J I 
[2111+ [22] 13 = 6JZ # 0 

/I /I 
J Id -1 

[31] + [4] --f [-] I = J = 0 
$ABCD(~~) = f(~PPJTA~WK~ 

- 

wave, the unsymmetrized derivatives of + AB and $ABoD turn out to be equal to 
the symmetrized derivatives provided that X = 0. Hence 

(+A& = g(~‘?$hA% , ($ABCD)z = f(~Pp~)~A~B?TC~D, 

where 

and f(s) is given by (5.10) as before. The discussion given in the pure gravita- 
tional case applies here also. The function g(s) determines the intensity and 
polarization of the electromagnetic part of the wave and f(s) the “purely gravi- 
tational” part. The electromagnetic field is null everywhere and the gravitational 
field is [4]. All six principal null directions coincide and point in the direction p, 
giving the motion of the wave. 

Table I summarizes some of the many analogies between the electromagnetic 
and gravitational fields, that are brought out by the spinor formalism. 

I should like to offer my thanks to Dr. D. W. Sciama for his early encouragement and 
for many invaluable discussions. 

RECEIVED: September 16, 1959 
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