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A Spinor Approach to General Relativity
RoGER PENROSE

St. John’s College, Cambridge, England*

A calculus for general relativity is developed in which the basic role of ten-
sors is taken over by spinors. The Riemann—Christoffel tensor is written in a
spinor form according to a scheme of Witten. It is shown that the curvature of
empty space can be uniquely characterized by a totally symmetric four-index
spinor which satisfies a first order equation formally identical with one for a
zero rest-mass particle of spin two. However, the derivatives used here are co-
variant, so that on iteration, instead of the usual wave equation, a nonlinear
“source’’ term appears. The case when a source-free electromagnetic field is
present is also considered. (No quantization is attempted here.)

The ‘‘gravitational density’ tensor of Robinson and Bel is obtained in a
natural way as a striking analogy with the spinor expression for the Maxwell
stress tensor in the electromagnetic case. It is shown that the curvature tensor
determines four gravitational principal null directions associated with flow of
“gravitational density’’, which supplement the two electromagnetic null di-
rections of Synge. The invariants and Petrov type of the curvature tensor are
analyzed in terms of these, and a natural classification of curvature tensors is
given.

An essentially coordinate-free method is outlined, by which any analytic
solution of Einstein’s field equations may, in principle, be found. As an ele-
mentary example the gravitational and gravitational-electromagnetic plane
wave solutions are obtained.

1. INTRODUCTION

An essentially coordinate-free attitude to general relativity will be adopted
here. The tensors and spinors occurring are best thought of not as sets of com-
ponents, but as geometric objects subject to certain formal rules of manipula-
tion. A spinor formalism will be used instead of the usual tensor one, spinors
appearing to fit in with general relativity in a remarkably natural way. This
adds to a belief that spinors are basically simpler and perhaps more deep-rooted
than tensors.

The usual correspondence between tensors and spinors (I, 2) is obtained by
the use of a mixed quantity} ¢,4% satisfying the equation

* Present address: Palmer Physical Laboratory, Princeton University, Princeton, New
Jersey. '
t For each of the four values of g, ¢2B is a (2 x 2) Hermitian matrix.
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¢+ BC' ’ A A
UﬂAC gy © + UVAC UuBC = Gur€ B’ (11)

where €AB, together with e,5, ¢*'®, and exp is a skew-symmetric “metric”’
spinor for the 2-dimensional complex spin space. The components of the €'s may
be taken as =1, 0. (To raise or lower a spinor index, one of the ¢’s must be used,
e.g., t* = APy, kg = £ .) Primed indices* refer to the complex conjugate
spin space. Roman capitals are used here for spinor indices and Greek letters
for tensor indices. The spinor equivalent of any tensor is a quantity which has
an unprimed and a primed spinor index replacing each tensor index. For example,
for a tensor X, , we have

x r 14
X l‘” R XAB CD EF »
where
? * ? ? X v
XAB'OD' o = AR g OD'XM 7

and

’

A by “w ’ ’
X vy = 0 AB'C CD’XAB cp EF'O'vEF ’

-« 14
(Wlth U“AB’ = g“d'yCD GCAeD'B’)' We have

AB’ AB’ AB’CD’ AC B'D’
JAB'CD' = €ace€B'D’ , Ocp’ = Ocdp’, ¢ = € € . (1.2)

The algebraic tensor operations can now all be interpreted as spinor operations.
Also the notions of reality of tensors, and of complex conjugate, are interpreted
in spinor form with

A 7 A/ ’
X L, & XA BC DE’F

so that the roles of primed and unprimed indices are interchanged.' Thus reality
of tensors is expressed as a Hermitian property of the corresponding spinors.

In addition to the usual correspondence between tensors and spinors given
above, there is also a well-known correspondence between real skew-symmetric
second rank tensors and symmetric second rank spinors (2). Thus if F,, is real
and skew-symmetric, we have

Fapopr = %{¢AC€B’D' + GACJ’B’D’}, (13)

where ¢,5 is a uniquely defined symmetric spinor. The right-hand side of (1.3)
expresses Fag-cp’ as the sum of the part symmetric in A, C (and therefore skew
in B’, D') and the part skew in A, C (and symmetric in B’, D). (Any skew

* Primed indices are used here rather than the more usual dotted indices, for typographi-
cal reasons.

1 Many authors would omit the bar on the right-hand side. The choice here here is made
for reasons of clarity.
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pair of spinor indices may be split off as an e-spinor.) A corresponding procedure

can be applied to any skew-symmetric pair of tensor indices. A tensor with r

skew-symmetric pairs of indices thus gives rise to 2" spinors each with » sym-

metric pairs of indices in a decomposition similar to (1.3). If the tensor is real,

these spinors are paired off as complex conjugates. For an example, see (2.2).
If the tensor H,, “dual” to F,, is defined by

Ho = 5 V' —gF 0, (14)
we have
Hypcp: = Y —idacenn + tesctperl, (L.5)
since if
& = vV =geraut™d”,
then
Shpons = DRdGoR-Op — 1GDEOPOR- . (1.6)

(Actually, formulas (1.5) and (1.6) are only correct for one class of choices of
o, AP satisfying (1.1). If ¢,*® had been chosen from the other class of solutions,
the signs of the right-hand sides of (1.5) and (1.6) would be reversed. It will be
supposed that the ¢,A® have, in fact, been selected from the appropriate class.)
In a similar way any tensor possessing a pair of skew-symmetrie indices may be
“dualized” with respect to that pair of indices. The spinor decomposition of the
“dualized” tensor then differs from that of the original tensor in that the rele-
vant esc and epp are, respectively, multiplied by ¢ and by —1. This again fol-
lows from (1.6). For an example, see (2.6).

General relativity requires, in addition to algebraic properties of tensors, the
notion of covariant derivative. The symbol 9, , or correspondingly 3,5, will be
used here to denote covariant differentiation. The covariant derivatives of gy,
and of ¢,A® are both required to be zero.” This implies that

au{GAnfc'D'} =0
(see 2). The stronger conditions
BueAB =0 and a"EAIB' =0 (17)

will be adopted here (3). This enables one to raise and lower spinor indices under
the derivative symbol, but it precludes the use of phase transformations of the
spinors to generate the electromagnetic field. However, the electromagnetic field

2 “8pin affinities’’ I'g, , TA's+, are introduced to deal with the spinor indices. The con-

ditions (1.7) imply that these spin affinities can be expressed explicitly in terms of 4,28’
and its coordinate derivatives (see Ruse (3)).
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will appear here as being associated with spinor transformations in a different
way (see 3.13). These two procedures do not appear to combine in an altogether
natural way. The simplest formalism, when charges are not present, seems to be
obtained when such phase transformations are not permitted.

The point of view adopted here is nearer to that of Rainich (4) and of Misner
and Wheeler (5) in which the electromagnetic field is obtained from the curva-
ture of space-time alone. These phase transformations would not be related in
any way to the geometry of the space-time.

2. THE CURVATURE SPINORS
Since the symbol 9, here stands for covariant differentiation, we have
9,0, # 9,9, ,

the commutation of two 8’s giving rise to the Riemann—Christoffel tensor Ry, .
In fact, we have

(0,0, — 3,34X, = RyppoX’. (2.1)

The tensor R,,,, is skew-symmetric in g, v and in p, o. Thus, following Witten
(6), we can apply the procedure outlined in Section 1 and obtain
Rie'sroepn = }é{XABCDeE’F’fG’H’ + ecpPasern’ e ¥

(2.2)

+ eandrwcepecn’ + €anecoXewon)-

The spinors xascp and ¢ascu are the uniquely defined curvature spinors. How-
ever, this differs from Witten’s form by a factor 14 which is included here for
reasons of convenience. From the symmetries of Ry, , it follows that

XABCD = XBACD = XaBDC = XCDAB (2.3)
and
$aBo'D’ = PBacD’ = Pap'cr = PoDraB - (2.4)
Let the right dual S,.,, of Ry, be defined by
Suse = 25 V'~ gRu"Peagr - (2.5)

Then from (1.6), we have

™,

Sar'prcepr = 5 { —Xapcpeerecn + €cpPapcrnénr — €anburcopéern’

(2.6)
+ eABECDXE'F'G'H'}-
Now, the symmetry relation Rue + Ruper + Ry = 0 is equivalent to
Swe = 0,
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so that multiplying (2.6) by 8Pe* ¥ should give zero (see 1.2). Hence,
—xancPewe — bacow + Pwaea + eackere” =0
The ¢ terms cancel by (2.4), so we have

XABCB = Neéac (2-7)

where \ is real and given by

AB

N = Yoxan®® = M (28)

-

B
The reality of A is, in fact, the only thing new we get out of this identity since
(2.7) is implied by (2.3) in any case.

The relations (2.3), (2.4), and (2.8) are the only algebraic relations neces-
sarily satisfied by xapcop and ¢apcrn: for a general Riemannian space, since they
imply that an Ry, given by (2.2) has the required symmetry properties. These
relations are all to be found in Witten’s paper. However, xapcp and ¢apcrps also
satisfy a differential relation obtained from the Bianchi identity

0:Ruvpe + 9. Rwor + Ry, = 0.
This is equivalent to
3" Supe = 0,
ie., (by 2.6)
3% xanonte'r — 0T daowerw + €sdPobrwep — eardc” Xwrow = O.

Separating this into the two equations obtained by, respectively, symmetrizing
and skew-symmetrizing with respect to A, B, we get

(9DG'XABCD = aCH,¢ABG’H' (2-9)

and its complex conjugate. The Bianchi identity is therefore equivalent to (2.9).

There are also relations connecting xapcp and ¢apecrar With covariant second
derivatives of spinors, corresponding to the vector relation (2.1). Let £, be an
arbitrary spinor field and define

Xerrqe = fpfqen's' - (2.10)
Now (2.1) generalizes to (and in fact implies)
{al‘ay - a"a“}XW = RvupﬂXav + RvmraXpa- (211)

But 9,8, — 9,0, is skew-symmetric in p, v so that the decomposition (1.3) can
be applied:

6AC’aBD' - aBD’aAC’ = }éeC’D'{aAF’aBF + 6BF’aAF}

. . L. (212)
+ }ZGAB{GEC'a p’ + Orpd c’}-
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Thus, (2.11) can be split into two equations each of which must hold separately,
one symmetric in A, B (and skew in C’, D’) and the other skew in A, B (and
symmetric in C’; D’). Also, any skew pair of indices can be split off as an e-spinor
and these may be cancelled throughout the equation. Hence by (2.2), the equa-
tion symmetric in A, B is

{aAF'aBF, + aBF'aAFl}EPEQfR'S' = XABPCEqufR's'
+ xanqctptCer'sr — ¢'ABR'C'EP$Q5SC" + ¢ABS’C’EP£Q51§;-

The ¢ terms cancel and, because of (1.7), the ez:s term may be divided out.
Also,

(2.13)

3,0, (Eekq) = Epdudibq + Eadsdife + (D) (Buba) + (Buka) (Buke),
whence
{0:0, — 0,0, (£pkq) = Ep{0ud, — 0B} Eq + o049, — .0,}6p -
It follows that
{0ar08" + Opr0a™ ) (fpka) = £p{0ardn® + dprdaT }éq
+ £o{dardn” + OnpoaT }ip
= fexanact® + Eqxanrot®

by (2.13). Multiplying this equation by #*nQ where »* is chosen arbitrarily, we
get

2(n%tp) (1°{0ar- 08" + Opr0aT }Ea) = 2(1%%p) (1°Xanct®).
Since 5* is arbitrary, we may divide by 2(4%%p) and obtain
{3AF'313F’ + 6BF’6AF’}EQ = XABQCEC- (2-14)

Also the equation obtained from (2.11) which is skew in A, B and symmetric
in C’, D’ gives rise to

{0rc0Fpr + Oep9%c'}Eq = dqacrprEr (2.15)

in an exactly similar way. The corresponding results for a primed spinor {,. are
obtained by taking the complex conjugates of (2.14) and (2.15). Thus,

{aEC’aED' + aED'aEc'}fA' = iC'D’A’B’g-B' (2-16)
and
[0ar 35" + dmrda™}icr = banont® - (2.17)

The corresponding relations for spinors with more than one index can be ob-
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tained from (2.14), ..., (2.17) since any spinor can be expressed as a linear
combination of products of one-index spinors. Spinors with upper indices present
no extra problem because the derivative of an e-spinor is zero. As an example,
we have

{0ar 08" + 9w 02" }BcP® = xanceBTP® + xanPrBc™® + $an® o8P

In particular, by applying this to a “vector’” XP*'  and using (2.12) and (2.2),
we can get back to (2.1). (It is not so easy to obtain (2.14), .. ., (2.17) directly
from (2.1) rather than from (2.11), since the fact that the e-spinors are con-
stant must be used somewhere in the argument.)

The geometry of a Riemannian space (with signature +— — —) can thus be
described entirely in spinor terms, with the role of the eurvature tensor being
taken over by spinors xapcp , daper satisfying (2.3), (2.4), (2.8), (2.9), (2.14),
(2.15), (2.16), and (2.17).

3. THE EINSTEIN CONDITIONS

The theory of Section 2 will now be specialized to two cases of particular
note, namely empty space-time and source-free electromagnetie field.
The Ricei tensor Ry, = Ry, has the spinor form

Ricsp = Y{xza®recn’ — 20amcn + GABf(F'c'F’D'}
= Néapécp — Panc'p’
by (2.2), (2.7), (2.8). The scalar curvature R = R’, is given by
R = 4\ (3.1)

because of the symmetry of ¢ pcn’ - The Einstein tensor G, = R, — 14g.R
takes the form

Gac'sp’ = —Neapec'p’ — Pancip - (3.2)

Einstein’s equations G,, = 0 for empty space clearly give

¢asc'p’ = 0 (3.3)
and
A =0
On the other hand, if it is required to include a cosmological term in Einstein’s
equations, we have only ¢,ne'p: = 0, the cosmological constant being equal to
X by (3.1).

Supposing for the moment that the cosmological constant is zero, (2.7) gives

XABCB = 0,
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that i, xapep is symmetric in B and D. But by (2.3), it is also symmetric A,
B and in C, D. It is therefore completely symmetric in all its indices.

It is a remarkable and perhaps significant fact, that only for a manifold with
the apparently arbitrary 4+ — — — signature of our space-time, and which satis-
fies the Einstein equations for empty space, can its curvature be characterized
by so natural an object as a totally symmetric four-index spinor. The geometry
of this spinor will be dealt with in Section 3.

If a cosmological term (or matter) is present, we can write

A
Xapop = ¥amop T 3 {€acenp T €spénc (3.4)

and then yY,pcp will be totally symmetric even if A = (. The spinor y¥,pgcp de-

fined by (3.4) will be called here the gravitational spinor (even in cases where

dapco # 0). It corresponds uniquely to Weyl’s conformal tensor C,,., .
Relation (2.9) gives (with ¢,perpr = 0)

3% Yupep = 0 (3.5)

and of course 3°F'A = 0 also. Equation (3.5) has the suggestive appearance of
being formally identical with a spinor equation for a zero rest-mass particle of
spin two. (See Dirac (7) and compare (3.10).) However, the differentiation
used here is covariant, so that derivatives do not commute. Hence, new features
arise with second and higher derivatives. In particular, it is not true that Eq.
(3.5) leads to the covariant wave equation upon iteration with dgp . We have

e dp™ = 15{8rsdp™ + dpwdr™} + Lgern[, (3.6)
where
[ = 8,0 = 9ppd¥% .
Also,

{Ope 0" + Opp'0s® }Er = Yrpant® — % {Epepa T Erepal (3.7)

by (2.14) and (3.4). Now (3.6) gives
0 = drwdp™ Yanc® = 15{dredp® + dpmdr™} ¥anc® — 15[ ¥ascr-
By (3.7), this leads to
Cl¥anco = ¥aser¥on™  + Yacer¥os™" + Yaper¥sc®™ — 2A¥apco

= 3¢ s  ¥emrr — 2MYanco

(3.8)



SPINOR APPROACH TO GENERAL RELATIVITY 179

where the indices between the brackets are to be symmetrized.’ Thus, even when
A = 0 there is the nonlinear term on the right. This shows that the y-field can
perhaps be thought of as acting as 1ts own source to a certain extent. If Yapcp
is small we have

[ J¥ancp =0

since X is small in any case. Equation (3.8) indicates that we can only expect
to have exact solutions for plane gravitational waves moving with the veloeity
of light when A = 0 and Yas®F Yomer = 0. This question will be returned to
in Section 4 where this condition will be interpreted geometrically and in Section
5 where such an exact solution will be given.

The tensor T,.,, whose spinor equivalent is given by

Tae'srcape = VascpVevan’ (3.9)

is of considerable interest. It has the properties of complete symmetry in its
tensor indices, vanishing traces (as easily follows from (3.9)) and vanishing
covariant divergence {with or without A-term in Einstein’s equations), since by
(3.5)

aDH'{ YaBcD ‘ZE’F'G'H’} = 0.
It would therefore appear that T,,,, is a multiple of the “gravitational density”
(or “super-energy’’) tensor due independently to I. Robinson (unpublished
seminars) and to Bel (8, 9).* As is easily verified, Ty,,o is, in fact, proportional
to the Robinson-Bel tensor. Equation (3.9) bears a striking resemblance to the
corresponding Eq. (3.11) for the electromagnetic case.

Let us now suppose that there is a source-free electromagnetic field present.
The field tensor F,, can be expressed according to (1.3) in terms of a symmetric
spinor ¢, s . This spinor can be used instead of ¥, to represent the electromag-
netic field (2), and the Maxwell field equations (in covariant form) become

IApap = 0. (3.10)
3 The tensor form of this relation is

ORuwse = Ru®Rasee + 4R*w51,RP000 — 20R 00

¢+ This tensor was also found by R. Sachs (10) working with the group at Hamburg, and
by A.Komar. However, only Robinson noticed the total symmetry of the tensor expression.
It is not hard to see in the spinor formalism that, if R,, = 0, any four-index tensor, quad-
ratic and homogeneous in R”,,, and with vanishing divergence, must be totally symmetric.
Robinson’s tensor expression (with (S, as in (2.5)) is

T;wpa = an-ﬂRpavB -+ szxvﬂspuvﬂ-
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The energy-momentum tensor T,, for the electromagnetic field is given by
Tac'sp: = Ydanden (3.11)
(see 10). Now Einstein’s equations with cosmological term are
Gu + M = —Ty, .

The A defined by (2.8) is still the cosmological constant, because T, = 0 and
by (3.1), 4» = R = —G’,. Choosing units suitably so that x = 2 (or absorb-
ing the constant into the definition of ¢,5) we have, from (3.2), (3.11)

$aBc'n’ = Ganborp -
Equation (2.9) now gives
0% ¥ancp = Go'udc” dan (3.12)

by (3.4) and (3.10) sinee A is necessarily constant. Thus the ¢-field appears as
a kind of source term to the y-field (here in the first-order equation).
From (2.17) we have ’

{3rm0p™ + Oppdr® }{o' = dprPorai™ (3.13)

and (3.7) still holds. The second order equation arising from (3.10) turns out
1o be

[léas = ¥ancod®™ — 440Mdan

so0 that even the Maxwell field does not exactly satisfy the covariant wave equa-
tion (compare Eddington, 11, Section 74). Also, (3.5) leads to

(I¥ascp = 3¥ue" Yomimr — 2A¥anop — 260'm:9a% 9s™ dop
4. THE GEOMETRY AND INVARIANTS OF yapcp

It is known that a general electromagnetic field determines two real principal
null directions at each point (12). These are given in the general case by the
real eigenvectors of the field tensor F¥, considered as a matrix. (There are also
two complex null directions given by the complex eigenvectors, but these add
nothing to the geometry as they are determined by their orthogonality with the
real ones.) An alternative method of obtaining these principal null directions is
to use a spinor approach. Any null vector z* corresponds to the produet of a
dotted with an undotted spinor

xAB’ AGB'

="

If 2" is real, 6% is a multiple of 7%, positive if z* points to the future. Any direc-
tion along the light cone therefore corresponds uniquely to a one-index spinor
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ray (set of spinors proportional to a given spinor). Now I, corresponds uniquely
to ¢ap (by 1.3) and we have

F*'pp = —%{iﬁABag: + 53'50'1)'}.

It is easily verified from this that the eigenvectors of FAC pp are 9%, (A7
(corresponding to the real null vectors) and »*f®’, ¢43®" (corresponding to the
complex null vectors) where

dan = Y8{nats + melal = n@ln - (4.1)

See also Witten (13). A decomposition exactly analogous to (4.1) exists for the
gravitational spinor. We have

Yasop = e@ulpYcip) , (4.2)

which expresses the gravitational spinor uniquely (except for scale factors) as a
symmetrized product of one-index spinors. The bracket here denotes symmetriza-
tion as before, so that written out in full, there would be 24 terms on the right-
hand side. The existence and uniqueness of (4.2) follows from the fundamental
theorem of algebra:

YanopE ERECED = (auf?) (ﬁBgB) ('YCEC) (5DED) (4-3)

expresses the general binary quartic form as a product of linear factors, These
factors are essentially unique, and equating coefficients gives (4.2).

Now the spinors a, , 88, Yc , 8p determine four directions along the light cone.
These are uniquely determined by ¢,scp and will be called the gravitational
principal null directions.” They supplement the two electromagnetic principal
null directions corresponding to 5, and {, . The gravitational principal null
directions are only undefined if Ysscp = 0 but they may coincide in special
cases. In particular, for the case of the Schwarzschild solution, it follows from
the symmetry that they must coincide in pairs at every point, one pair pointing
towards the origin along the light cone and the other pair pointing away from
it. (Time reversal symmetry shows that they eannot all four coincide or coin-
cide three and one.) The coincidence of the two electromagnetic null directions
is the condition for the electromagnetic field to be null. (The electromagnetic
directions are, of course, only undetermined if ¢, = 0.) Thus, for an electro-
magnetic plane wave, the principal null directions coincide and, naturally enough,
point in the direction of motion of the wave. Similarly, it turns out that for a
gravitational plane wave, all the gravitational null directions coincide. This

8 These four null directions are implicit in the work of Ruse (14). They correspond to the
self-conjugate lines of the Riemannian complex. Note added in proof: They have been
further exploited by Debever (15, 16).
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question will be returned to later. Gravitational radiation is sometimes analysed
in terms of the invariants of the Riemann tensor (17) and it will be useful first
to relate these invariants to the null directions defined above.

The number of independent invariants of the Riemann tensor in empty space
is well known to be four. These may be interpreted as the real and imaginary
parts of two independent complex invariants of Yapen , €.2.,

I= KI/ABCD‘//ABCDyJ = EI/ABCD CDEF'PEFAB (4-4)

(see Witten, 6, p. 359). These may be thought of as invariants of the binary
quartic form (4.3). According to the theory of invariants of binary forms, I and
J are independent and any invariant of the quartic form (4.3) is a function of
them (see Grace and Young, 18). Thus the real and imaginary parts of I and
J are a complete set of curvature invariants for empty space. The invariants
I and J take the following tensor form if R, = Agu :

4

I 32
3 ?

i

| NI

R,,,,p,RWM + 2 \/:’_Q_RuvaﬁfaﬂpaRum -

J = A}

Ol o

{RW"" + %\/—;_ngaﬁfaﬁpa} RPU"/“RWW — 2 —

N1

with A = 14R. These relations are obtained from (2.2), (2.5), (2.6), and (3.4).
For a general curvature tensor,’ the tensor R,,. in the above expressions must
be replaced by

By
YR + 1/89Ra v €afuv€ydpo -

Binary forms have a geometrical interpretation as sets of points on a complex
projective line. The equation

¢ABCD§AEBECED =0

is satisfied if and only if at least one of the factors a,£*, Bat®, YotC, 0pt® vanishes,
each of the conditions a,8* = 0, - - -, 8pE® = 0 representing a point on the line.
Thus ¥.scp corresponds to four points A, B, C, D on a complex projective line
the coordinates of these points being the components of a, , 84 , va , 64 , Fespec-

6 It is perhaps worth remarking that a general method of converting expressioﬁs involv-
ing ¥ascp into the corresponding expressions for Ry, would be to use the formula

Yasep = 4 RapsrconaeE Ted ' — 1{,R{escenn + eapenc)

but the conversion of spinor contractions to an equivalent tensor form is sometimes com-
plicated.
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tively. Now any four collinear points have a projective invariant, namely, their
cross-ratio

o (048®) (ra®)
(ac®) (voB®)

This cross-ratio is the only independent invariant of the four points and is there-
fore the only independent invariant of yY,pep which is unchanged if Yapop is
multiplied by a non-zero complex number. Thus, the four real invariants of the
curvature of empty space can be interpreted as a complex cross-ratio,” and a
phase and a magniture® for ¥,p0p .

This phase is associated with duality rotations of the curvature tensor (sug-
gested to me first by I. Robinson) which are exactly analogous to electromag-
netic duality rotations (§). In each case the duality rotation invariance of the
first-order equation (3.5), (3.10) is broken only when sources are present. Let-
ting

Yascp — e” Vasep 5

where 6 is a real constant, we have, assuming for simplicity that ¢sscp’ and A
both vanish,

Ruus — cos 0 Ryype — sin 6 S,

by (2.2) and (2.6), S,,,, being the right (or equivalently the left) dual of Ry,
defined by (2.5). This is exactly analogous to

Pss — eia¢AB
giving
Fu —cos6F, —sin 6 H,,

where the dual H,, of F,, is given by (1.4). Unlike the electromagnetic case,
however, duality rotations of the y-field of an empty space solution do not in
general give rise to new exact solutions of the field equations. (See, for example,
Eqg. (3.8).)

It will be observed that the Robinson—Bel tensor ¥ ,pcp ¥ re'm determines
Yancop Up to a duality rotation in the same way that ¢, pdcp determines ¢ p

7 The idea of using a complex eross-ratio as an invariant defined by four null rays has
also been independently suggested by I. Robinson (unpublished).

8 This phase and magnitude of Yapcp can be interpreted in an invariant way as the argu-
ment and modulus of, say, +/I. This is not really satisfactory, however, since I may van-
ish. It might be better to use the argument and modulus of the « which is defined by the
relations (4.5). This only need vanish if I = J = 0, the condition for three of the null
directions to coincide. Its definition depends on an arbitrary ordering of the null directions,
however, as does the definition of .
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up to a duality rotation. The principal null directions are therefore associated
even more closely with these “energy’ expressions than with the field quantities
themselves. These expressions are completely characterized by the principal null
directions, apart from their actual magnitude. It might be expected that the
gravitational null directions are in some way associated with flow of “‘gravita-
tional density.” There does appear to be such a connection, as may be seen from
the following argument.
Let z, be any null vector pointing into the future, so that

Tan = falpr .
Then by (3.9) and (4.3)
Topot’z 2"z’ (¥aBcpE*EPECEP) ( \ZE’F’G’H’EEIEF,EG’EH,)

(az") (b,2") (c2") (do”),

I

I

where
Gap = aplp’, bap’ = BaBn/, Can’ = Ya¥p’, dan: = 0403 .

The vectors a, , b, , C. , 4, are null vectors, pointing into the future, correspond-
ing to the gravitational principal null directions. Thus T,.,.2*¢"z°2" only vanishes
for null vectors z* which point in one of the gravitational principal null directions.

Otherwise it is positive. But for any time-like vector {*, the expression

Topal 88
measures the gravitational density for an observer whose time axis is ¢ (see Bel
(8, 9)). It is positive (for empty space) unless Ry, = 0. Thus the gravitational
principal null directions are characterized by the fact that for observers travelling
with a given velocity infinitessimally less than ¢, the gravitational density will
be 2 minimum for those observers who travel approximately along a principal
null direction.

It is convenient, from a geometrical point of view, to represent null directions
as points on a sphere. This sphere may be thought of as the field of vision of some
observer. It may also be interpreted as a realization of the complex projective
line mentioned above. (A complex projectivelineis, topologically, a real 2-sphere. )
This sphere is the Argand sphere of the ratio of the two components of a one-
index spinor (see Penrose, 19, p. 138). Any Lorentz transformation corresponds
t0 a bilinear transformation of this ratio and therefore to a projective (conformal)
transformation of the sphere, which sends circles into circles.

Four points on the sphere are concyclic if and only if their cross-ratio is real.
A particular case of this is harmonic points for which the cross-ratio is —1, 2, or
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14 according to the order in which the points are taken. The symmetry of a har-
monic set is best exhibited when the points are equally spaced around a great
circle. The symmetries are then just the symmetries of a square. Any harmonic
set can be brought into this form by a suitable projective (Lorentz) transforma-
tion, since any three points on the sphere can be transformed into any three
others. Harmonic sets are of interest here because they have a greater symmetry
than a general set of four points. They correspond to the vanishing of the in-
variant J (see Grace and Young, 18, p. 206). Also of interest is the equianhar-
monic set which has an even greater symmetry. The cross-ratio here is —w or
—o” where w = ¢”"'°, By a suitable projective transformation these four points
can be made the vertices of a regular tetrahedron. Equianharmonic points cor-
respond to the vanishing of the invariant I (18, p. 206).

In the case of a general cross-ratio u the symmetry is given by the Klein 4-group
(except that there are also some reflectional symmetries if p is real or has modu-
lus unity). There is a unique projective transformation (involution) which in-
terchanges any pair of the points with the remaining pair. These and the identity
constitute the complete projective symmetry group provided that u is different
from —1,2,34, —w, —’, 0,1, or , the cases 0, 1, and % occurring when a pair
of points coincide. The value of x4 can be obtained from 13/J% sinceit can be shown
that

I =6+ o)+ o), J==6"u+ (p— 24 —2) (46)

for some « (see (16) p. 205). There are in general six values of u for a given value
of I’/J*. They correspond to different orders in which the four points can be
taken. The valuesare p, 1 — g, 1/u, 1 — (1/0), 1/(1 — u), u/{u — 1). The
symmetries in the general case can also be realized as rotational symmetries of
the sphere similarly to the two cases considered above. By a suitable projective
transformation the four points, A, B, C, D can be transformed into the vertices
of a tetrahedron which has opposite edges equal in pairs (a disphenoid). Such a
tetrahedron has three orthogonal dyad axes of symmetry. These axes are the
joins of the midpoints of opposite edges. If the cross-ratio is real, the tetrahedron
is flattened into a rectangle but the three symmetry axes remain.

To see that such a transformation exists consider the three pairs (EF),
(G,H), (K,L) of united points for the three involutions which send (A,B,C,D)
into (B,A,D,C), (C,D,A,B) and (D,C,B,A), respectively. Now the involu-
tion which sends (A,B,C,D) into (B,A,D,C) transforms the other involutions
into themselves. It therefore sends G into H and K into L. Hence, (E,F) is
harmonic with respect to (G,H) and also with respect to (K,L). Similarly
(G,H) is harmonic with respect to (K,L). Now, E, G, F, H can be transformed
(as above) into four points equally spaced, in that order, around the equator.
K and L will then be the north and south poles, so that the six points form the
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vertices of a regular octahedron. The three involutions are then represented as
rotations through 7 about the three axes EF, GH, KL. The point A is rotated
into B, C, D by means of these involutions giving the symmetrical tetrahedron
described above.

This symmetrical representation of the points A, B, C, D is of interest because
it is related to Petrov’s canonical representation of the Riemann tensor with
Ry, = 0 (17, 20). The rest frame in which the gravitational prineipal null direc-
tions appear to have this symmetrical form determines the canonical time axis,
the three canonical space axes arising from the three axes of symmetry. These
four axes are orthogonal to each other and are called the Riemann principal di-
rections. They are uniquely defined provided that A, B, C, D are all distinct. If
A, B, C, D coincide in pairs they can still be considered to exist but they are
not uniquely defined.

The rotational symmetries of the tetrahedron A B C D in the general case give
rise to the corresponding symmetries for R, , since being dyad axes the only
other possibility would be R, — —Ru,. (a duality rotation of «).” Such an
alternative is easily ruled out as impossible. It follows that, for the canonical
choice of axes,

Rijw = 0 whenever 7 =%k and 7 =1

as is required in Petrov’s canonical form. Conversely, the above condition is
sufficient for the Riemann prinecipal directions to be the axes.

The usual definitions of the Riemann principal directions is in terms of the
intersections of certain planes which are determined by the “eigenbivectors” of
Rue , 1.e., from the nonzero (complex) skew tensors z*° which satisfy a relation

R¥, 2" = az®. (4.7)
Writing this in a spinor form with
2ACBD" }é{n“’ec'D’ + eABg'-C'D'}
(see 1.3) 7B and {*® being symmetric, (4.7) becomes

‘bABEMEFec’D' + ABJOD L FEF — f(yABLCD | ABFC'DY
(since ¢ppernr = 0, A = 0) so that
PYABLenBF = apAB,  JABLL(EF = GrAB

One or the other of #*B, {*® may be zero. The eigenbivectors of R*,, are thus

¢ In the special cases where the set of points A, B, C, D has an additional rotational sym-
metry, this does not always lead to a corresponding symmetry of Ry, , although it does
for the case when A, B, C, D coincide in pairs. In particular, in the equianharmonie case,
the triad axes of symmetry give rise to duality rotations through angles 2x/3, 4x/3.
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expressible in terms of “eigenspinors” of ¢*®qp , the eigenvalues of R*,, being
being those of ¥AByp and their complex conjugates. Witten (6) also considers
these eigenspinors.

Now if the eigenvalues of y*B.p are o), az, a3 (the space of symmetric £4B
being three-dimensional) we have

o+ o+ a3 = 'I/ABAB = 0,
2 2 2
ar + o +ag = \I/ABCD'I’CDAB = I;
3 3 3
o +oar ‘a3 = KbABCD ‘I’CDEF\PEFAB = J.

With the expressions for I and J given in (4.6), it is easily verified that these
relations are satisfied by

ar = k(20 — 1), ay=x(2 —u), az=«(—1—p). (4.8)

The six eigenvalues of R",, are therefore these three numbers and their complex
conjugates. It will be seen that the vanishing of just one of the eigenvalues (4.8)
is the condition for the principal null directions to form a harmonic set. If two
of them vanish they must all vanish and I = J = 0. This is the condition for at
least three of the principal null directions to coincide (since they form both a
harmonic and an equianharmonic set). If two of the eigenvalues (4.8) coincide,
this is the condition 4 = 0, 1, or « for a pair of principal null directions to coin-
cide. This is the case I’ = 6J° (18, p. 198). ‘

The three eigenspinors B, {AB, 928 of A8y, will next be considered. They
are symmetric and therefore each is expressible as a symmetrized product of a
pair of one-index spinors (see 4.1). Each of #*B, {48 4B corresponds to a pair of
points on the projective line considered earlier, so in the general case we have
six points on this line determined by A, B, C, D. These can only be E, F, G, H,
K, L since a general quartic form has only one sextic covariant (18, pp. 92, 94).
This sextic covariant is

Vrora ¥ e ¥ perE  EPECEDERET,
whence
‘/’PQR(A ‘/‘PQBC lPRDEF) = nuslcolen

choosing the scale factor suitably. The vanishing of this expression is the condi-
tion for A, B, C, D to coincide in pairs, since E, F, G, H, K, L are not then de-
fined uniquely. It does not vanish if just two of A, B, C, D coincide, or if they
coincide three and one.

The planes determined by the eigenbivectors of R*,, are those determined by
7AB, ¢AB gAB They are therefore the three planes of the pairs of null directions



188 PENROSE

corresponding to EF, GH, KL and the three orthogonal complements of these
planes. Their intersections give the Riemann prineipal directions defined here, as
is required. This is easily seen from the symmetrical representation of A, B, C, D
given above.

These considerations have so far been essentially only concerned with Petrov’s
tensors Ry, of Type 1. This is the case when the eigenbivectors of R*,, span
the six-dimensional space of bivectors. In special cases these eigenbivectors span
only a four-dimensional space (Type II) and in very special cases, a two-dimen-
sional space (Type III). In spinor terms, this means that Type I occurs when
the eigenspinors of ¥*%p span a three-dimensional space, Type II when they
span a two-dimensional space and Type III when they span only a one-dimen-
sional space. Thus, Type II can only occur when at least two of the eigenvalues
(4.8) are equal and Type III when they are all equal (and therefore all zero).
We have seen that equality of eigenvalues implies coincidences among A, B, C,
D so the cases where such coincidences oecur must now be considered.

There are six different cases to be distinguished including the general case [1111]
where the null directions are all distinct. There is the case [211] where exactly
two of them coincide, [22] where they coincide in pairs, [31] where they coincide
three and one, and [4] where all four directions are the same. Finally, there is
the case [—] when ¥4scp = 0 and the null directions are undefined. This gives us
a natural classification of Riemann tensors in empty space into six types (see
also Géhéniau (21) for a closely related procedure™). In each case, the eigen-
spinors can be obtained by observing what happens to B, F, G, H, K, L when
A, B, C, D are specialized. However, this must be done with care so that possible
limiting positions of E, F, G, H, K, L are not omitted. Figure 1 shows how the
different special cases arise from one another. The vertical specializations can
be carried out keeping the positions of E, F, G, H, K, L fixed, butin the diagonal
specializations, further pairs of them are forced to coincide. (For example,
in the case [1111] — [211] if B — X and A — X, we have (G, H — (X, X),
(K, L) - (X, X) and (E, I') — (X, Y) where Y is the harmonic conjugate of
X with respect to the limiting positions of C and D.) The Petrov type for each
case may be obtained in this way and the results are shown in Fig. 1. Each column
corresponds to a particular type. Thus, [1111], [22], and [—] are Type I, [211]
and [4] are Type 1I, while [31] is Type III. The different rows can be distinguished
by the invariants I and J (or by the eigenvalues). Hence the invariants and
Petrov type together serve to characterize Yapcp .

It is of interest to see how this classification is in accord with that given by the
elassical canonical form of Y., considered as a (3 X 3) matrix, These corre-
sponding canonical forms are given in Fig. 2.

The various algebraic conditions for each case (or one of its specializations)

0 Note added in proof: See also, more explicitly, Debever (15, 16).
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(1111} I # 6J2

Ve
@11] — [22] TP = 6J2 % 0
s L v
Bl — [4] — [ I=J =0
Petrov. 1y np I
type:

Fig. 1. Classification scheme for yapcp in terms of coincidences between principal null

directions.
«(2u — 1)
k(2 — p
K(“l - ll)

e l !
01 01 0
01)— 0 — 0
0 0 0
Fi6. 2. Classification in terms of matrix eanonical form of yABgp.

to occur may be collected together as follows:
211]: T* = 6J°, [22]: Yeorx ¥ ec¥ pem = 0, [B1:1 =17 =0,
[4]: Y™ ¥omer = 0, [—]: ¥anco = 0.

The only case that has not already been dealt with is the condition for {4] to
occur. The quartic form ¥, p®F YcprrE2EPECEY is the Hessian of the form

Yancpb EPEOED

and its vanishing is known to be the condition for the latter form to be a perfect
fourth power (18, p. 235). The interest of this condition lies in the fact that
Vs~ Yooy 18 precisely the term (in the case A = 0) which prevents Eq. (3.8)
from being a covariant wave equation" for Yancp . Thus, plane wave solutions
can only reasonably be expected in case [4].”° This is Petrov’s Type II with van-
ishing invariants and is apparently the case characteristic of a “pure” gravita-
tional radiation field (8, 22, and 23). The other cases which might conceivably
also be considered as “pure gravitational radiation” are [211] and [31] (see 17).

11 Cage [4] therefore appears to be the only case (apart from [—]) in which the gravita-
tional field has no “‘gravitational mass’’. See also Bondi ef al. (23), p. 532.

12 However, a point perhaps worth mentioning is that in case [22], ¥ascp and ¥ as®Fycen)er
are proportional.
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Case [211] would seem to be wrong since [22], which is a special case of it, would
also have to be considered as pure gravitational radiation. But we have seen
that the Schwarzschild solution is [22].

Case [31] is, however, worthy of consideration in this respect since it shares
with Case [4] the property that the gravitational density (4.5) can be made as
small as we please by a suitable choice of time axis (“following the wave”). If

Yarcp = aaapaclp)
and
tp = Qu + €Ty, Qap’ = lp’, bAB’ = BABB' ’

where ¢ > 0 is small and z, is time-like pointing to the future, we have

1 ’
T t}‘tvtﬁtv 1 63 I BAaA l2 (aBaC'ch )3
nypo — ’
() 4¢(a.x7)?

(bua") (a2")*
16(a.z7)?

If B4 = au , the right-hand side would be of order ¢ instead of e. Thus, the gravi-
tational density tends to zero for observers, whose velocity approaches the multi-
ple principal null direction, both in Case [31] and in Case [4], but it tends to zero
more rapidly in Case [4]. It would appear to be correct to call Case [4] “pure”
radiation field”® but not Case [31]. Case [4] is like a null electromagnetic field
(“pure” electromagnetic radiation field) in that it determines only one null di-
rection, and in that it is the general limiting case obtained as a result of a high-
velocity Lorentz transformation (see also 24). (However, it is worth remarking
that for a null electromagnetic field, the energy T,.¢'¢"/(t4") can only be made
to tend to zero to order € by “following the wave”, like Case [31] above.)

The invariants of ¥,scp have been treated in considerable detail above. It now
remains to give a brief discussion of the combined system ¥ ,pcp , ¢as for the
case when electromagnetic field is present. We expect to find just three more
complex invariants, since ¢, 1s determined by its phase and magnitude, and
by the positions relative to A, B, C, D of the two complex points ¥ and Z on
the argand sphere, corresponding to the electromagnetic principal null direc-
tions. There is the obvious invariant

K = ¢apo™®

of ¢p alone. This is the discriminant of the binary form ¢,p¢4£B, the condition

13 It is probably preferable, however, to call case [4] simply a null gravitational field (as
suggested by Robinson) analogously to the electromagnetic case.
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K = 0 being necessary and sufficient for the points X and Y to coincide, that is,
for the field to be null.*» The list is completed by the two independent invari-
ants

L= ¢AB¢ABCD¢CD, M = ¢'AB'I’ABCD ¢CDEF¢EF-

The fact that I, J, K, L, M are in general independent is most easily seen if
AB.p 1s thought of as a matrix and ¢*® as a “vector” which may then be ex-
panded in terms of the eigenspinors of ¥4Pop with arbitrary coeflicients. K, L,
and M then become independent linear functions of the squares of these coeffi-
cients.
However, I, J, K, L, and M do not form a complete system of invariants in
the sense of invariant theory (18). That is, not every algebraic invariant of

Yascp and ¢, can be expressed as a polynomial in I, ..., M. The invariant
N = ¢as¥*Pep ¥ Prrdtc ¥ Cred™
clearly is not even a rational function of I, ... , M since every such functions is of

even order in ¢,5 . Also N does not vanish identically. On the other hand, N
is algebraically dependent on I, ..., M, there being the syzygy

N? = BLJKLM — 14JL® — 14M® — KTPKL?
— UKL — Y{gJ’K® + LIKM® + LIL'M .

The system I, J, K, L. M, N does, in fact, form a complete system of invariants
for Yascop and ¢as .

The condition for an electromagnetic principal null direction to coincide with a
gravitational principal null direction is that the resultant of the quartic and
quadratic forms should vanish. Expressed in terms of invariants this condition
turns out to be

2K — 4KM + L2 = 0.

The condition for both electromagnetic null directions to lie along a gravitational
null direction is therefore

K=0, L=0.

The electromagnetic and gravitational fields together have ten independent
real invariants, namely the real and imaginary parts of I, J, K, L, M. However,
only nine of these are determined by the curvature R,,,. since it is unaffected by
duality rotations of the electromagnetic field. These are the nine independent

s The real and imaginary parts of K are the usual invariants F,,F# and 1/2 v/ —
Fw#vFeoe,, ., respectively, of F,.
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real invariants of ¥,scp and ¢apc'n’ = Papporn’ - The phase of ¢, is undeter-
. . . 14
mined by ¢sncp’ , 80 we can take for these invariants

LI, [K[,|L|, | M|
and the arguments of the two ratios
K:L:M.

(The invariants | K [}, | L [}, [M [}, KL, LM, MK are easily expressible in terms
of Yasop and ¢apcip’-)

5. ANALYTIC SOLUTIONS OF EINSTEIN’S EQUATIONS

Let 91 be an analytic (connected) Riemannian manifold. Then starting from
any point O on 91 at which the curvature tensor R,,,, and all its covariant de-
rivatives are known, it is possible to calculate the curvature tensor (and its
derivatives) at any other point by means of a power series:

(Ruww)z = (vapv)() + xa(aaRuvw)O + él"xaxﬂ(aaaﬂvapa)o + MR (51)

The point  is that point on 91 whose geodesic distance from O is 4/ (z,z*) and
which lies on the geodesic through O which starts off in the direction of z*(Rie-
mannian coordinates). (If =% is null this has to be interpreted suitably.) The
Rou,s at the point x is referred to axes which are those at O transferred in parallel
along this geodesic. If the power series does not converge, the point = may be
reached in several steps, using intermediate points, in the manner of analytic
continuation. This power series expression and its convergence is considered by
Thomas (25, p. 234).

Equation (5.1) is a special case of the more general situation, whereby any
analytic tensor field may be calculated from a knowledge of the tensor and all its
covariant derivatives at the point 0 alone:

It

(7o e = (oo 2%(8uf. - Do + a2 (0udpf. . Do+ -+

(5.2)

i

lexp(2°0.)f...Jo = I:lim (1 + %x"&a)ﬂf. . .-L.

n-»0

14 When the electromagnetic field is null there still remain the seven real invariants given
by 1,J, | L], | M| and the argument of L/M. Thus Witten (6) is mistaken when he claims
that there remain only the four real invariants of yanscp in this case. For example, the in-
variant ¢aper APy BT o ¢tP¢'E = | L |2 need not vanish when K = 0. Such an invariant
could appear as a quotient of invariants built up from Witten’s list.
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The 9.’s are to betaken asacting only on f- - - and not on z* (This last expression
can be used to obtain the power series expression since

(fo o De =1+ exaaa)f...]o + 0(62):

which may be applied n times with ¢ = 1/n, giving (f. .. ), correct to order 1/n).

These power series can be used as the basis for a coordinate-free approach to
Riemannian geometry. Instead of specifying a space by giving the metric tensor
g as a function of some coordinates, the space may be determined (except pos-
sibly for some of its topological properties in the large) by specifying R, ,
0oRiwps » 0a08Ruspe , *++ 8t a point 0. To specify a set of tensors at & point does
not require coordinates since their algebraic tensorial properties need only be
given. The metric tensors g,, , ¢ and the alternating tensor v/ +ge,..., are also
supposed to be specified at the point 0. They are an essential part of the tensor
algebra at O.

A difficulty about specifying a space in this way is that Ruu., 8.Rup.,
8408Rup0 , - - - are not algebraically (tensorially) independent of one another.
Relation (2.1) implies identities (Ricci) connecting second derivatives with the
curvature tensor, and also there is the Bianchi identity which is the consistency
condition for (2.1). The Bianchi identity is in fact the only consistency condition
required (25, pp. 131, 132). Applying these two types of identity to the higher
derivatives of R,,,. a host of relations is obtained. It is therefore of importance to
be able to single out a set of tensors which are algebraically independent (in the
general case) and from which R,,,, and all its derivatives are obtainable by alge-
braic operations. It is possible to show that the following set of tensors, in fact,
has all these properties:

Q”ﬂv = Ru(nva) ’ Q‘wpaa = d(a “pVV) y Q#ypwﬂ = a(aaﬂR“pvv) , ete.

Each Q... has the symmetry given by a Young tableau operator corresponding
to a partition (r — 2, 2). That is to say, we have

Qurpo-8 = Qunee--s and  Queps..py = 0.

Apart from these symmetries and from certain considerations of convergence,
the Q’s may be chosen arbitrarily.”” Unfortunately, however, if it is required to
impose a condition such as Einstein’s R",,, = 0 (or = Ag,,) on the space, this
implies a condition not only on Q“,. , but also on Q“,sa , Q“,sas , etc. These con-
ditions are all linear, but they appear to be somewhat complicated. It seems for
this reason that an approach based explicitly on these @’s would not be usually
very convenient for general relativity. (However, in a later paper it is proposed

15 These Q’s are somewhat analogous to (but different from) the ‘‘normal tensors” (see
Thomas 25, p. 102).
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to give a class of special solutions using this method.) On the other hand, if a
spinor approach is used, these linear conditions take on a particularly simple form.
This approach will now be described in more detail.

Suppose that 9 has four dimensions and signature (4 ———), and that
R’... = Ao . Then we have seen that R,,,, can be represented uniquely by a
totally symmetric spinor ¥ascp (A being known). We wish to find a set of alge-
braically independent spinors from which

WABCD ) aEP/ ‘PABCD ) aEP,aFQ,¢ABCD y ©°° (5-3)

(at the point O) can be constructed by means of algebraic spinor operations.
The identities relating the spinors (5.3) arise from the equivalent of the Bianchi
identity, namely (3.5):

** Yanop = 0 or E*95¥ Yanop = 0 (5.4)
and the equivalent of (2.1), namely, (2.14), (2.15), (2.16), and (2.17):
s {06 9nY + 9n® 0™ JEa = Yomant® — {Z; {Ecema T Emecal,
(5.5)
ere{06™ 9 + 980" = 0
O™ 0" + 86795 )En = 0

A (5.6)

GGH{GGR’()HS’ + aGsIaHR'}ﬂP — ‘;RS P Q"’lQ — ?_) {nR SP + ns &P }

(see 3.7 and 3.3) applied to Y,pcp and its derivatives.
The various derivatives of (5.4) must all hold identically also. Hence the alge-

braic relations on the spinors (5.3) arising from (5.4) are
A(9x7 - - 3™ 35> Yapen) = 0. (6.7)
This expresses a condition on (namely, the vanishing of) the part of 35* - -

34® ¥apcp Which is skew in H, A and says nothing about the part symmetric in
H, A. Moreover the relations (5.5) connect

GR'S’(aEP’ ctT aGR,aHS, e aKV’ \//ABCD) + eR’S'(aEP' ot 3HR’6GS’ et 3KV, ‘I’ABCD)
with lower derivatives of Yancp , while (5.6) connect
GGH(aEP, e aGR,aHs, T aKv’\bABCD) + éGH(aEP’ e 3GS,3HR' e aKv"‘l/ABCD’)

with lower derivatives of Y.pep . These express conditions only on parts of
3% -+ 3xY Yapcp Which are skew in a pair of primed indices or in a pair of un-
primed indices. Thus the algebraic relations arising from (5.4), (5.5), and (5.6)
connecting the spinors (5.3) are all concerned with parts of ds¥ -+ dx" Yascp
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which are skew in at least one pair of indices. They imply no conditions on the
parts totally symmetric in all primed indices and in all unprimed indices. (It
might, perhaps, be thought that other relations could be obtained by expanding

skew parts of IR Yasop in two different ways. However, these all lead
back to (5.7) which is the only consistency condition implied.) Hence the spinors
YaBCeD > 'I’ABCDEP’ = a(EP,‘pABCD) ) 'pABCDEFP’Q, = a(E(P'aFQ,) Vascn) , (5-8)

are all algebraically independent and can therefore be specified arbitrarily (apart
from convergence considerations) at the point 0.

The problem is now to show, conversely, that all the spinors (5.3) can be
obtained algebraically from the spinors (5.8). For then yapcp, ¥ancose,
VYascprrror , - Will be a complete set of algebraically independent spinors
at O, which can be used to generate the space 9. In order to show that they form
such a complete set, an argument by induction will be used. We wish to express
9g® -+ 0xY ¥ancp in terms of Yapcpe...x” ¥ and lower order derivatives of
Yascp Since it may be supposed as the inductive hypothesis that all these lower
derivatives have already been expressed algebraically in terms of symmetrized
derivatives z,[/AB...GP'"'R'. Now, if we add together all the spinors obtained from
9t -+ 9x" ¥asep by permuting P/, -+, V’ in all possible ways and A, B, C,
D, E, -, K in all possible ways, we get a multiple of Ysp...x* V. Thus, if it
can be shown that each of the spinors obtained by such permutations differs from
3 -+ 9k Yapop by expressions involving only lower derivatives of Yapcp
the result will be proved. The spinor dg¥ --- k¥ Yapcp Will then be seen to
differ from ¢as...x* 'V by a spinor built up from lower derivatives of Yapcp .

Any two spinors obtained by such a permutation of indices from

P’ v’
ds" - 9k’ Yampcp

will be called equivalent (denoted by ~ ) if they differ from each other by expres-
sions built up from lower order derivatives of ¥apcp . This is clearly an equiva-
lence relation. It is required to show that all such spinors are, in fact, equivalent
to one another. Now since

IwXdy” — 9y owE = 15X ¥ an 9w OV + 9x™ aw" )
+ %EWYGST{aSX'aTZ' + asz'aTx’}
(see 2.12), we have, applying (5.5) and (5.6)
e awx’ayz’ *++ Yamop ~ " ayz’awx’ “** ¥aBoD -

Hence any permutation of the 8, symbols gives rise to an equivalent spinor.
(Any permutation can be expressed as a product of transpositions of adjacent
elements.) That is, any permutation of P/, ---, V' can be applied to



196 PENROSE

d5F -+ dx¥ ¥ancp provided that the same permutation is applied to E, - -+ , K
and an equivalent spinor is obtained. It remains to show that E, --- | K, A, B,
C, D can be permuted independently and an equivalent spinor is still obtained.
The symmetry of Yspco implies that A, B, C, D can be permuted without change.

Furthermore, from 5.7, K and A can be interchanged in 8zF -+ 9x¥ ¥ancp -
Also,
‘ 3YZ, T aKv’\bABCD ~ 3KV, ce 3YZ/ YaBeDp
~ e 3Kvl cre aAZl VYypep ~ ¢ aAZI et axv’ ¥yBop

so that A can be interchanged with any other unprimed index and an equivalent
spinor is obtained. It follows that any pair of unprimed indices can be inter-
changed since

x' z ... X' ..3.% ...
- 0wt - Oy Vasop ™~ dw™ - Oa -+ YyBeD ,
’ ’

! z’ X' ... z’ .
- 3,% -+ Yweep ~ dy™ -0 Ow - YaBcD -

~ e g%

Hence all the spinors are equivalent and the result is proved.
As examples of the above, we have

14 1
aEP YaBop = \I’ABCDEP s

4 ’ 4 ’ ’ ’
aEP 6FQ 'PABCD = 'PABCDEFP e + EEFEPQ {%‘P(ABGH#’CD)GH - %7\¢ABCD}
+ &9Q { l//(ABCG'PD)EFG + %’\ \bE(ABCeD)F + ,1/3)\'PF(ABCGD)E}-

Higher derivatives involve Yxscp; ¥armomer, ** also. We have from
(51), Wlth \pABcD = (¢ABCD)0 ) etc.,

’ 1 ’ ’
(!PABCD):: = Yapcp T 2EF 3gp¥anop T+ 5—, ZBF g FQ OgpOrq¥ancp + - .

Hence
(¥aBcp)s = Yamcp T+ &= YupopEe + %xEP’xFQllpABCDEFP’Q’
+ ¥4 (zepa™ ) {34 ¥ s Yomian — YA ¥ason} + O(<°).
It is possible to obtain a class of exact solutions for gravitational plane waves
using this method. Such solutions, obtained using more conventional methods,
have been known for some time (for references, see Bondi et al., 23). Let

YaBcD = QTATBTCTD , VABCDER’ = QITATRTCTDTET e’ ,

(5.9)

VABCDEFP/Q’ = QT ~°° Tpiplq , " *

at the point O, where =, is a spinor corresponding to the null direction giving the
direction of motion of the wave and «g, @, - - - are complex numbers. Suppose
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A = 0. It will now be shown that the unsymmetrized derivatives of ¥ascp are
all equal to the symmetrized derivatives, so the situation is much simplified in
this case. As an inductive hypothesis we assume that all the derivatives of
¥ancp of lower order than 9gT - 9x¥ ¥apcp are already symmetric and there-
fore equal to the corresponding expressions 5.9. The argument given above shows
that 9g® -+ x¥ Vascp differs from Yancps..x® ¥ by expressions obtained
by applying rule (5.5) and (5.6) to ¥ascp and derivatives of ¥apcp , and per-
haps differentiating further. Since A = 0, this leads to terms of the form

T’...V’ X P/-..S' - P’T’a..v’ -Y’ I...s’
XAG- K ¥*p..F or Yy GxVa.p 2

only. (By the inductive hypothesis all the derivatives of Y¥.gscp Which occur are
equal to the ... ’s.) These terms all involve contractions between the ¢..." s,
But with ¢... s given by (5.9), any contraction must clearly vanish (since
wxm~ = 0). Hence

(85" -+ k" Yamop)o = QTaTs ‘- WA oo &V

as required.
The curvature at points other than O can now be calculated:

. N ,
(IPABCD)x = qymampTcmp T o™ wy

- 1 ’ ’
ccc WETPp + —2—| OlszP il wA " TpTeg +-...

= f(2B¥ mgwp ) wamnmorp = f(2'p)mampmemy,

where
1
Jls) = ao + cus F g e’ + 5w’ + - (5.10)

and pap = wa7Fp . Thus the curvature is a function of the one parameter z*p,
only. It is constant along the (null) 3-spaces z“p, = constant. Furthermore, by
(5.2),

(aEP"pABCD)z = (aEP"PABCD)O + xFQ’(aFQ’{aEP"pABCD})O

]_ ’ ’
+ 51 ¥R (95 g dcr {Opr-¥ancn})o + - -

= f’(x“pn)WAWBWCWDTE"?P’ ’
(8gpOrq¥ancn): = f”(x“Pp)W'A s wpTp Ty,

etc. Hence Yanco ; Yapcper » Yascoereq’ » - - are all constant along the 3-space
z*p, = 0. It follows that the whole space 9 admits the three-parameter group of
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translations™ in the directions lying in this 3-space. The space 91 thus represents
a plane wave which moves uniformly with the velocity of light in the direction
represented by p, . The intensity and polarization of the wave are determined
by the modulus and argument of the function f(s).

Particular cases of interest are:

(i) the constant gravitational field with Y,pcp constant everywhere.
Here f(s) = constant, i.e., ¢ = as = -+ = 0, and MM admits additional transla-
tional motions.

(i1) Sinusoidal waves;

f(8) = ae™ + be™, ie., a = a(in)" + b(—in)".

In this case 91 admits an additional discrete group of translations.
(iii) Gravitational pulse; for example,

c c .
f(s)=beXp<s—a_s+a> if~a<s<a

0 fs < —aors =a.

Case (iil) is not strictly an analytic manifold. 91 has to be constructed from three
analytic pieces (two of which are flat). The middle piece fits on smoothly to the
other two pieces, the join being C*. The space is exactly flat before the puise ar-
rives and is again exactly flat after the pulse has departed (23, p. 523).

An advantage of a method such as this for obtaining spaces satisfying Einstein’s
equations is that the usual problem of deciding whether an effect is real or merely
due to a bad choice of coordinates simply does not arise. The curvature at any
point is found directly. However, it will naturally be convenient to be able to
introduce eoordinates into a space defined in this way, if desired. A coordinate
system on 91T may be thought of as a set of four scalar fields u (¢ = 0, --- 3).
The symmetric derivatives d¢, * -+ 3, u¢;) of each u, may be specified arbitrarily
at the point 0. The values of the coordinates u.) and their derivatives at any
other point may then be calculated using (5.2), after some of the unsymmetrized
derivatives have been obtained using (2.1). The expression for the metric at
each point can be obtained from the first derivatives of the u(;y at that point.
This method will be described in detail in a later paper.

The case when an electromagnetic field is present in the space can be treated
by an extension of the coordinate-free method for empty space described above.
The spinors

LA

PR o g ® .. R
'pABCDE"'G - (E "G ‘#ABCD)

18 91 also admits a two parameter group of rotational (Lorentz) symmetries given by the
unimodular matrices t4p satisfying tAgz® = +4, and disconnected from these, the rota-
tions for which tApx® = LirA. There may also be some reflectional symmetries in special
cases. This five parameter group of motions serves to characterize the plane wave solu-
tions (see Bondi et al., (23)).
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are defined as before and spinors ¢an , danc®, danco® ¢, -+ are introduced,
defined similarly by
banc- st F = 9c® -+ 35 bam -

By the same ki,nd of argument as before, it follows that ¢an, ¢asct, - .
Yancp , Yascpr? , « - - are all algebraically independent. Instead of (5.4) we have
ECAaCP'¢AB =0 and —EEAaEP, YaBop = J’P,Q’aDQ"bBC
from (3.10) and (3.12). The first of these states the symmetry of

3CP, e aER’qSAB
in E, A, while the second expresses the part of
¥ -+ 3™ Yanop

skew in G, A in terms of derivatives of ¢,p of at most the same order. They
imply no condition on the symmetrized derivatives of ¢,p Or ¥apcp . Nor do the
equivalents of (5.5) and (5.6), which differ from them only in that the second
relation (5.5) is replaced by

eR's:{agR’OHsl -+ aHR’aGS’}ﬂP’ = ¢GH$P’Q"’7Q’
(see 3.13) and the first relation (5.6) by
(6™ 9x + 85 0x™ JEs = ¢ T pant®

The argument to show that the unsymmetrized derivatives can be expressed
algebraically in terms of the symmetrized derivatives is exactly analogous to

that for pure gravitational case. The derivative 3 -+ 0xR'¢an differs from
banc..xt by expressions constructed from lower order derivatives of ¢, and
Vascp , While aEP, +++ 3% Yapcp differs from Yupepr...6¥ R by expressions

constructed from derivatives of ¢,p of the same order or lower and from lower
order derivatives of Yapcp. Thus, we can construct dc¥¢an, 9&¥ Yanco ,
3 359 ban , 05 0¥ Yancp , ** , in that order, from the symmetrized deriva-
tives. The symmetric spinors ¢ap , ¢‘ABCP,: ¢ABCDP,QI; <+, YaBcp, ‘/’ABCDEPI, T
can therefore be specified arbitrarily at a point 0 (apart from convergence con-
siderations) and é.n, Yascp at any other point can be determined from them

by (5.2).

A simple example is the case of a combined gravitational-electromagnetic
wave (see also 22). Here ¥apcp , ¥ancore, - - are given by (5.9) and
¢ap = Bomams, Papcer = B1TATeTCTe ,

baBcDP ) = BeMaTpWeTpip g, **

at the point 0. As was the case, considered earlier, with the pure gravitational
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TABLE I

SuMMARY OoF SOME OF THE REsSULTS OF THIS PAPER ON THE COMPARISONS
BETWEEN ELECTROMAGNETIC AND GRAVITATIONAL FIELDS IN SPINOR ForM

Maxwell field Curvature tensor with R¥yue =0
Tensor-spinor F.y © Y{¢apecn + eandon) Ruyew © Y4{¥ancneerean:
correspon- + eapecodeFan)
dence
First order | Maxwell equations: 3AC¢,s = 0 | Bianchi identities: A 'Yapop = 0
equation
(Super-)energy | Maxwell stress tensor < Robinson-Bel tensor <
tensor 14éapdom: VABCDYE/FG/E
Duality rota- | ¢ap — e%¢an Yasep — €®Yanop
tions
Canonical rep- | ¢as = nafs) YaBcp = a@aBuycdp;
presentation
Classification {11] K= 0 [1111] I3 == 6J2
scheme | Ve
[2l>[—] K =0 [211] > [22] Is = 6J2 » 0
v
Bll -4 —-> [ I=J=0
Plane wave das(x*) = g(x*p.)wars VYancp{x*) = f(x*pu)ramsromp

wave, the unsymmetrized derivatives of ¢,p and Yascp turn out to be equal to
the symmetrized derivatives provided that A = 0. Hence

(¢as)z = g(a"pu)maws, (V¥aBcp)z = f(x“Pu)WA"fB"chD y

where
g(s) = Bo+ﬁls+%(3232—|—

and f(s) is given by (5.10) as before. The discussion given in the pure gravita-
tional case applies here also. The function g(s) determines the intensity and
polarization of the electromagnetic part of the wave and f(s) the “purely gravi-
tational”” part. The electromagnetic field is null everywhere and the gravitational
field is [4]. All six principal null directions coincide and point in the direction p,
giving the motion of the wave.

Table I summarizes some of the many analogies between the electromagnetic
and gravitational fields, that are brought out by the spinor formalism.

I should like to offer my thanks to Dr. D. W. Sciama for his early encouragement and
for many invaluable discussions.
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