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Rep. Prog. Phys., Vol. 45, 1982. Printed in Great Britain 

The fourth test of general relativity 

Kenneth Nordtvedt Jr 
Montana State University, Bozeman, Montana 59715, USA 

Abstract 

In the ‘fourth test of general relativity’ the gravitational acceleration of celestial 
bodies-the Earth and the Moon-were experimentally compared in the gravitational 
field of the Sun. Because such bodies obtain an appreciable fraction of their total 
mass-energy from their internal gravitational self-energy ( 5  x 10-l’ for the Earth), 
this comparison of free-fall rates measures, among other things, how gravity pulls on 
gravitational energy and how gravitational energy contributes to the inertial mass of 
celestial bodies. 

By using high-precision laser ranging between Earth and reflectors on the Moon’s 
surface, it was found that the Earth and Moon’s acceleration in the Sun’s gravitational 
field are the same to one part in lo l l .  Hypothesising that the gravitational to inertial 
mass ratio of a celestial body may differ from one by the order of the gravitational 
self-energy content of the body divided by the total mass-energy: 

k f G / k f I  = 1 + 7 ( u G / k f c 2 )  

7 being a dimensionless constant determined by gravitational theory, the lunar laser 
ranging experiment limits 171 to less than 1.4 x lo-’. 

This experiment is consistent with general relativity which predicts 7 = 0. However, 
scalar-metric tensor theories such as the Brans-Dicke theory, vector-metric tensor 
theories and two-tensor theories of gravity are, in most cases, inconsistent with this 
experiment unless sufficient adjustable parameters are used in such theories. 

This review was received in November 1981 
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1. Phenomenology of the ‘fourth test’ of general relativity 

The fourth test of general relativity is a precise comparison of the free-fall rate of the 
Earth and the Moon in the gravitational field of the Sun. Laser ranging between the 
surfaces of the Earth and Moon permits the detection of anomalous time-dependent 
range variations which would result if the two bodies’ free-fall rates differ by as little 
as one part in lo1’. Analysis of relativistic theories of gravity indicates that Einstein’s 
general theory of relativity is almost unique among theories in predicting a null result 
for this experiment. 

In a historical sense this new test of gravity theory can be considered as a 
continuation of experiments confirming the universality of free-fall rates for various 
bodies in gravitational fields performed by Galileo, Eotvos (1922), Dicke (Roll 1964) 
and Braginsky (1971). In a more theoretical sense, this experiment tests the full 
post-Newtonian structure of the general relativity theory of gravity. 

Eotvos (1922) employed a torsion balance on which platinum and copper, as well 
as other material masses, were placed and the balance was turned in the Earth’s 
gravitational field. No detectable torques were developed, which was interpreted to 
mean that these substances fell at the same rate in the Earth’s gravitational field to 
an accuracy of Sg/g < 3 x io-’. 

Dicke and co-workers (Roll 1964) altered the experiment to some extent, using 
a three-mass torsion balance to make it insensitive to nearby Newtonian quadrupole 
perturbations. The balance orientation was kept fixed relative to the Earth’s gravita- 
tional field, and instead the Earth’s daily rotation turned the apparatus in the Sun’s 
gravitational field. Finding no anomalous torques, they concluded that gold and 
aluminium fall in the Sun’s gravitational field at the same rate to an accuracy of 
Sg/g < 3 x lo-’’. Braginsky (1971) repeated a similar experiment and quoted some- 
what more accurate confirmation of the universality of free-fall rates: Sg/g < 

A theoretical interpretation of these historic Eotvos-type experiments can be stated 
as follows: all forms of energy in laboratory bodies-mass, nuclear, electromagnetic, 
kinetic, thermal, etc-contribute identically to both a body’s inertial mass MI and 
(passive) gravitational mass M~~ to a precision of one part in IO” or so: 

or 

Universality of a in a given gravitational field g implies universality of the MG/MI 
ratio for laboratory bodies of varying material composition. 

However, all these experiments compare the acceleration rates of laboratory-sized 
objects which possess a negligible fraction of gravitational self-energy (internal gravita- 
tional potential energy). The ratio of the internal gravitational self-energy of a 
laboratory object to its total mass energy is of the order of 

MIa = MGPg (1.1 (a ) )  

a = (MGP/MI)g* (l.l@)) 

I(-GM2/D)/Mc21 5 GM/c2D 6 (1.2) 
with G being Newton’s gravitational constant, M being the body’s mass and D being 
its size. 
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Celestial bodies possess more significant fractions of gravitational self-energy. 
GM/c2D is of the order of for the Sun, lo-’ for Jupiter, and 5 X lo-’’ for the 
Earth. It is therefore worthwhile to hypothesise that celestial bodies may have 
anomalous gravitational to inertial mass ratios proportional to their gravitational 
self-energy content (Dicke 1962, Nordtvedt 1968a): 

(1.3) M G p / M I  = 1 -k vuG/MC2 

with 

G 
UG= -7 [ p ( ~ ) p ( ~ ’ )  d3x d 3 ~ ’ / J ~ - ~ ’ I .  

L J  

7 is a dimensionless constant which experiment would seek to detect or limit and 
which any particular theory of gravity would determine by appropriate calculation. 

Lunar orbit i f  M,/M, 
Earth ) ,k 

\, A T o w a r d s  Sun 

kLunar orbit i f  M,/M, / o f  Earth and Moon d i f f e r  

Lunar orbit according t o  
Newtonian gravity 

Figure 1. If the gravitational to inertial mass ratio of the Earth and Moon differ from each other, then 
their acceleration toward the Sun will differ, producing a polarisation of the lunar orbit towards (or away 
from) the Sun. This manifests itself in the Earth-Moon distance as an anomalous range oscillation with a 
mean period of 29.53 d-the synodic month. If the MG/MI ratio of the Earth differed from 1 by an amount 
of the order of the Earth’s internal gravitational potential energy divided by the Earth’s total mass-energy, 
then this polarisation amplitude would be about 11 m. 

Standard celestial dynamics does not readily detect a non-zero v because Kepler’s 
laws are unaltered except for minute rescalings of Kepler’s third law (Nordtvedt 
1968a). The celestial three-body system offers a more hopeful method to test for a 
non-zero 7. Consider the Earth and Moon in the Sun’s gravitational field as shown 
in figure 1. In a coordinate frame free-falling with the Earth-Moon centre of mass 
(1.3) produces an anomalous relative acceleration of the Earth and Moon (Nordtvedt 
1 9 6 8 ~ ) :  

a = v[(uG/Mc2)E-(uG/Mc2)MlgS (1.4) 
with gs being the Sun’s gravitational field. For gs lying approximately in the Earth- 
Moon orbital plane and a near-circular lunar orbit (1.4) produces an Earth-Moon 
range oscillation (Nordtvedt 1 9 6 8 ~ ) :  

(1 .5 (a ) )  

S r ( t )  = 1 1 O O q  COS(W -n)t cm (1.5(b)) 

2 -1 ~ r ( t )  = ~ ~ ( U ~ / M C ~ ) ~ ~ ~ [ ( W :  -(U -a) )I cos(W -n)t 
or 
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using IVG/Mc21 = 5 x lo-’’ for the Earth. is the mean angular frequency of the 
Earth-Moon system around the Sun, w is the mean angular frequency of the Moon 
around the Earth, and wo is the natural angular frequency for radial perturbations of 
the lunar orbit, i.e. frequency of periastron occurrence. 

Measuring the range oscillation amplitude of frequency w - SZ to high accuracy is 
accomplished by laser ranging between the Earth and reflecting stations on the Moon’s 
surface (Faller 1970, Bender 1973). Ranging data to several reflectors placed on the 
Moon by the Apollo astronauts has been collected over the past decade. Analysis of 
several years’ data by two independent groups (Williams et a1 1976, Shapiro et a1 
1976) measures the appropriate range Fourier amplitude to 15 cm accuracy, and on 
finding no anomaly from Newtonian predictions one concludes that 

17+11.4x10-2. (1.6) 
To almost 1 O h  accuracy then, the gravitational self-energy of celestial bodies 

contributes properly to altering both a body’s gravitational and inertial mass. 
In § 6 we show that this result offers a comprehensive test of the full non-linear, 

non-static, non-spherically symmetric post-Newtonian structure of Einstein’s general 
relativity theory of gravity. 

2. Previous tests of general relativity 

When Einstein presented his full field equations for gravity in 1915-16, he found that 
there were corrections to Newtonian gravity which produced an additional 43” per 
century precession of Mercury’s perihelion, in very good agreement with a known 
discrepancy in the astronomical observations. In fact, there is evidence that Einstein 
felt constrained during the decade 1906-16 to explain, among other things, that 
precession anomaly by a proper relativistic theory of gravity. 

Einstein’s theory yields perihelion precession through two additions to Newtonian 
gravity. First, there is a non-linear potential in general relativity proportional to 
(GMlcr)’, and secondly there are corrections to the coupling of a moving object in 
a gravitational field proportional to (v/c)’g and U gvlc’. 

Prior to the development of a specific relativistic theory of gravity, Einstein (191 l ) ,  
using only arguments from the equivalence of uniform gravitational fields to acceler- 
ated coordinate frames (equivalence principle), predicted that light trajectories should 
be deflected by gravitational fields at the rate 

dO/dx = g d c 2  

where g, is the gravitational field perpendicular to the light propagation direction. 
For a light ray passing the edge of the Sun (radius D) from a distant star (2.1) gives 
a total deflection angle of the apparent position of the star of 

8 = 2GM/c2D. (2 .2 )  
Einstein’s full theory of gravity (1916), however, predicts a deflection which is twice 
that given by (2.2). The difference in these two predictions can be understood as 
follows. Figure 2 illustrates the geometry of rigid rods and light-ray trajectories in 
the vicinity of a massive body like the Sun. The light-ray trajectories do, in fact, 
deflect relative to the rigid ‘straight’ rods by an amount given by Einstein’s equivalence 
principle argument. But Einstein’s general theory of relativity also predicts that the 



636 K Nordtvedt Jr 

\ 

\ 
Figure 2. In metric theories of gravity the geometry of ‘straight’ rulers deviates from Euclidean geometry. 
The rigid-ruler triangle illustrated would have a sum of angles differing from 180” when a massive body 
M were in the proximity. This spatial geometry alteration differs from one metric theory to another and 
is parametrised by the PPN coefficient y. Light rays deflect relative to these rigid ‘straight’ rulers. This 
deflection is universal in all metric theories and is calculable by Einstein’s equivalence principle hypothesis. 
Deflection of a light ray with respect to the distant fixed stars will have contributions from the sum of 
these effects. 

spatial structure of ‘straight’ rods becomes non-Euclidean in the vicinity of matter; 
the ‘straight’ rods are curved with respect to distant star orientations. This spatial 
curvature produces an additional light deflection with respect to those distant stars. 

Measurements of the apparent location of stars during a solar eclipse in 1919 and 
in subsequent experiments have been found to be consistent with the predictions of 
Einstein’s full theory of gravity. Modern observations using interferometric techniques 
on radio signals from quasi-stellar sources passing behind the Sun (Fomalont 1976) 
have improved the quantitative verification of general relativity’s deflection prediction 
to about 1 ‘/o. 

Shapiro (1964) pointed out that one could measure a time delay of radio signals 
that necessarily accompanies these deflections in a gravitational field. In general 
relativity the speed of light as measured by a distant observer is reduced near a massive 
body: 

c(r) = cm (1 -2GMlc’r). (2.3) 

A radar pulse sent from a body at distance D1 from a massive body and returned by 
another body at distance D2 from the body, with the pulse passing the massive body 
at closest distance Do is anomalously delayed by 

At  = 4GM/c3 ln(4D1D2/Di) (2.4) 

which amounts to about 250 ,us for D1 and D2 being Earth’s and Mars’ orbital radii 
and Do being the solar radius. Radar time delay experiments to Viking satellites sent 
to Mars have confirmed the time delay (2.4) to 0.2% accuracy (Reasenberg 1979). 

It has been traditional to view experiments which measure the effect of gravitational 
potential on clock rates as tests of Einstein’s general relativity theory. In actuality, 
such experiments test Einstein’s equivalence principle (Einstein 191 1) which he 
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employed to predict that clocks would go slower when near massive bodies. For small 
changes in gravitational potential clock rates are expected to vary as 

(2.5) A t ’ / A t  = (1 - [ V(r’) - V ( r ) ] / c 2 }  for V(r) = GM/r. 

This was confirmed to 1% precision (Pound and Snider 1965) by comparing y-ray 
nuclear emitters and absorbers separated vertically in the Earth’s gravitational field 
and employing the Mossbauer effect to obtain recoiless nuclei for the emitters and 
absorbers. More recent 1% confirmation of the gravitational clock rate shift has 
become routine with high-precision atomic clocks flown on high-altitude aircraft (Alley 
1979). 

0.01% confirmation of (2.5) was accomplished using one-way and two-way Doppler 
tracking of the trajectory of a sub-orbital rocket flight, an atomic clock on board the 
rocket being compared with another precision clock on the Earth’s surface (Vessot 
1981). 

The clock rate variation caused by gravity (2.5) is present in all metric theories of 
gravity. This is a very broad class of possible theories, of which Einstein’s general 
relativity is one specific case. In fact, it has been shown (Nordtvedt 1975, Unruh 
1979, Haugan 1979) that the relation (2.5) is implied simply by conservation of energy 
and universality of free-fall rates in gravitational fields. 

3. Metric theories of gravity 

The very high accuracy to which the universality of free-fall for laboratory bodies has 
been confirmed, along with other high-precision experiments such as the Hughs- 
Drever experiment (Hughs 1960), implies that gravity must be represented by a metric 
field gwy(r, t ) .  This second-rank, symmetric tensor field (ten components at every 
space-time point) must in turn couple in a universal and prescribed way to all matter 
and fields of laboratory physics. A ‘space-time’ geometry then results given by the 
invariant interval between neighbouring space-time points; 

dT2 = gcLy(r, t )  dxw dx” (3.1) 

the indices p and Y are summed over 0, 1 ,2 ,3;  dxo = dt, dx1’2’3 = dx/c, dy/c, dz/c. In 
metric theories of gravity the equation of motion for small mechanical particles is 
obtained from the variational principle 

SI (gFv(r, t )  dx” dx”)1’2 = 0 (3.2) 

which defines the geodesics (extremum trajectories) of the space-time. Light rays 
travel on ‘null-geodesics’: 

d7 = 0. (3.3) 
Any physical clock at location r at time t ticks with an intrinsic elapsed interval 

given by (3,1), while the coordinate span of all physical rulers is also determined at 
all space-time locations by the metric field g”v(r, t ) .  This control of g,y(r, t )  over the 
chrono-metrical properties of clocks and rulers is not a postulational one in metric 
theories: it emerges from the actual coupling of gwY(r, t )  to all of the dynamical 
equations of motion of matter from which physical clocks and rulers are built. 
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The only additional specification needed for a unique metric theory of gravity and 
matter is the field equations fcr the metric gravity field g,,. 

4. The historic parametrised metric field expansions 

Eddington (1923) and Robertson (1962) suggested that in the vicinity of, but external 
to, a spherically symmetric mass M, the general form of the components of the metric 
field g,, for most metric theories of gravity must be a power series in m/r, with 
m = GM/c2 being a gravitational ‘length’ unit of measure for the central mass M, and 
r is a radial coordinate: 

g o o = 1 - 2 ( m / r ) + 2 ~ ( m / r ) 2 + .  . . (4.1 (a  )) 

gkl= -[1+2y(m/r)]Skl+, . . (4.l(b)) 

gOk = 0 (4.1 (c 1) 
and 

for k and 1 equal to 1 ,2 ,3 .  The asymptotic form for g,, far from the mass must 
necessarily be the Minkowski metric of special relativity. The leading term -2(m/r) 
in goo is necessary in order to obtain Newtonian gravity in lowest-order approximation. 
The dimensionless parameters y,P, etc, are dependent on the specific theory of 
gravity. For example, in general relativity both y and p are 1. In the Brans-Dicke 
theory p = 1 but y # 1. 

The y parameter indicates the degree of curvature of three-space produced by 
matter (see figure 2), while the p parameter indicates the post-Newtonian non-linearity 
of the central gravitational field. 

Figure 3 outlines the logic of how a gravitational phenomenon can be evaluated 
within the entire class of metric theories of gravity, without the knowledge or assump- 
tion of a specific theory of gravity. A general, parametrised expansion for the metric 
field in terms of the matter distribution permits an evaluation of the matter’s dynamical 
response to gravity in the general case. Experimental effects are finally expressed in 
terms of the parameters of the metric field expansion which multiplied the components 
of g,, which participated in that particular effect. 

In terms of the Eddington-Robertson parametrised metric expansion for a static, 
spherically symmetric mass source it is straightforward to confirm that the clock rate 
shift (2.5) is universally valid for any metric theory of gravity. The light deflection 
(2.2) and retardation (2.4) effects become generally in any metric theory 

0 = (1 + y)2GM/c2D 

At  = 2(1+ y)GM/c3 1n(4D1D2/D?j). 

w = (2+2y-p)87r2a2/c2T3(1 - e 2 )  (4.4) 

(4.2) 

(4.3) 

The relativistic perihelion precession of a planet or other body orbiting a central 

and 

mass is 

a, T and e are the semi-major axis, period and eccentricity of the orbit. 
The historic tests of general relativity are analysable in terms of the Eddington- 

Robertson metric field for the static, spherically symmetric gravitational environment 
of the Sun. These experiments, then, can be said to test the post-Newtonian structure 
of gravity only in this restricted situation. 
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L r An expansion of g,, in terms of the 
matter distribution, valid for all metric 
theories of gravity \r  

r-- 
1. Other possible gravitational fields 

4, 4, K,,, . . . , coupled to gFv 
2. Cosmological boundary conditions 
3. Field equations for g,. 

Existence of metric field gey 

PPN metric field 

Moving matter as 
source of gravity t Matter’s equation of motion 

in presence of metric field g 
I r 1 1 

Dynamics of matter 
(particles and fields) 

Figure 3. The logic of the PPN metric theory is shown in the closed operational loop for solving dynamical 
problems of matter plus gravity. Assuming the existence of a metric gravitational field g,, which interacts 
with matter’s stress-energy tensor according to the equation Tr,” = 0, the matter dynamics can be determined 
if g,, is known (i.e. we can close the outer loop). But if the full theory of metric gravity is not known 
(possible unknowns are listed outside the loop as 1, 2 and 3), making it impossible to calculate g,, from 
the matter distribution, g,, can instead be given as a general expansion (PPN expansion) in terms of the 
matter distribution, and we close via the inner calculational loop without the assumption of a specific theory 
of gravity. 

L Schiff (1961 private communication) enlarged the parametrised metric field 
expansion in order to include a stationary gravitational vector potential produced by 
a rotating mass. Defining h = (go,, goy ,  goz) 

h = 2 A G ( J  x r ) / c 3 r 3  (4.5) 

where J is the rotating body’s angular momentum, and the new parameter A introduced 
by Schiff is 1 in general relativity. This ‘Lense-Thirring’ potential has the effect of 
dragging the inertial coordinate frames slowly around in the vicinity of a rotating 
body. Schiff introduced this potential in order to derive the general effect of such a 
gravitational vector potential on the precession of a free-falling gyroscope. He  
obtained 

a= V x he. (4.6) 

The gravitational potential (4.5) also perturbs the orbits of bodies and trajectories of 
light rays passing near a rotating celestial body in, for example, an experiment where 
a satellite was put into an orbit which closely approached the Sun and was tracked 
by radar (Nordtvedt 1977b). 

5. The complete parametrised, post-Newtonian (PPN) metric field 

The limited metric expansions of 8 4 are not sufficiently general and complete to 
calculate the gravitational to inertial mass ratio of celestial bodies. A more complete 
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collection of post-Newtonian potentials play a role in determining MG/MI for such 
bodies. Figure 4 illustrates the configuration of masses involved in a theoretical 
derivation of MG/MI.  M is a distant mass toward which a celestial body accelerates. 
Mass elements mi, mi, mk, etc, make up the celestial body. These mass elements must, 
for purposes of this calculation, be considered to be in general motion at velocities 
ui and accelerations ai. Each mass element mi moves in the gravitational metric field 
of M plus the mjzi ,  as well as in response to any internal non-gravitational forces in 
the celestial body such as solid-state electrical forces. Our metric field expansion must 
be sufficiently general to have such a dynamical matter distribution as its source. 

Figure 4. The material configuration used in a calculation of the gravitational to inertial mass ratio for a 
celestial body is shown. The mass elements mi (mi, ink, etc) making up the celestial body are located at 
positions ri(t) from the body's centre; each mass element generally has a velocity v k ( t )  =drk(t)/dt  due to 
thermal, kinetic or rotational motion in the body, and has an acceleration a;(t) = do;(f)/dt due to acceleration 
of the body as a whole toward an external mass M (a) and internal accelerations due to internal gravitational 
and electrical forces for mass elements having non-zero charge ei. A gravitational metric field expansion 
must be sufficiently general to represent the gravitational fields for such a dynamical matter source. 

Because of the motion of the mass sources, and because of the superposition of 
sources, the phenomenological metric field expansions of Eddington, Robertson and 
Schiff must be enlarged and generalised to include all the post-Newtonian potential 
terms. Baierlein (1967) did some work in this direction in order to study general 
post-Newtonian perturbations of the Moon's orbit, but his metric expansion was not 
sufficiently complete for our purposes. 

Following an approach used by Einstein, Infeld and Hoffman who obtained a 
post-Newtonian expansion for general relativity theory, we consider gravitational 
environments in which the gravitational potentials are relatively weak and the sources 
are slow moving. Two small dimensionless quantities then exist in which a post- 
Newtonian metric field can be expanded: 

(GM/c2r)<< 1 and (v/c)'<< 1. 

M, v and r are any of the masses, velocities or spatial intervals in figure 4.  Nordtvedt's 
first generalised post-Newtonian metric field (Nordtvedt 1968b) took the form: 

(5.l(a)) -a"C mivf/lr-riI+a"'C mi[ui ' ( r - f i ) y / I r - r i ]  3 +. . . 

gok =4AC mi(ui)k/lr-riI+4A'C mi(r-ri)  ' Ui(r-ri)k/lr-ril 3 +. . . 

i i 

(the speed of light c is set equal to 1 in the metric expansions) 

(5.l(b)) 
i I 
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and 
g k l = - ( 1 + 2 Y U ) 8 k / + . . .  

for k and l equal to 1, 2 ,  3 .  U is the Newtonian potential function: 

( 5 . 2 )  

This form of the metric for a distribution of moving particles was obtained by imposing 
several conditions on the metric field. 

(i) goo and gk/ were required to be even under time reversal, while gOk was required 
to be odd. This guaranteed time-reversal invariance for the equations of motion of 
the interacting masses. 

(ii) goo was required to transform as a scalar under spatial rotations, gOk as a spatial 
vector and gkl as a spatial second-rank tensor. 

(iii) When there were several mass sources, the metric field was required to be 
properly symmetric under interchange of mass sources and was required to become 
equal to the Eddington-Robertson metric (4.1) in the appropriate limits of mass 
sources coalescing into single sources. 

If the linear part of g,, is form-invariant under Lorentz transformations of the 
space-time coordinates, the various PPN coefficients in (5.1) are not all independent 
of each other. Nordtvedt (1969, 1970a) found that Lorentz invariance implied that 
A = a‘’ = (1 + y ) / 2 ,  and that proper retardation of the static Newtonian potential 
implied x = 1 and A’ = 0. Will (1971b) derived similar conditions within his hydrody- 
namic PPN formalism. 

Using this metric field expansion Nordtvedt (1968b) calculated the gravitational 
to inertial mass ratio for a celestial body held in equilibrium solely by internal kinetic 
motion and pressure and internal gravitational forces, thereby avoiding in his initial 
investigation the necessity of any assumptions about the equations of interacting 
matter in gravitational fields. Nordtvedt’s result was 

MG/MI = 1 + [(4p + 3 y  - &A +x) + ( 2  + C Y ’ -  2p -x - 8 A f ) / 3 ] U ~ / M C 2  (5.3) 
= 1 + ‘r)uG/Mc2 

where VG is the internal gravitational self-energy of the celestial body and M is the 
total mass-energy of the body. 

More generally, for a rotating celestial body Nordtvedt (1969) found that MG/MI 
became a spatially anisotropic tensor: 

{MG/MI}kl = (1 + 71uG/kfC2)8kl + ‘r)’(J2/218ki - 3JkJ1/21)/MC2 (5.4) 

with ‘r)‘ = (SA’ + 2 p  + x - a’ - 2 ) .  J is the body’s angular momentum and I is its moment 
of inertia. However, rotational kinetic energy is much less than the gravitational 
self-energy for almost all celestial bodies (T,,, I: lOP3UG for Earth). Will (1971~)  
found the same anisotropic expression in the fluid PPN formalism described below. 

In general relativity the PPN coefficients y = p = x = A = a’ = 1 and A’ = 0, so there 
is no anomalous MG/MI in Einstein’s theory. But in the Brans-Dicke (1961) theory 
of gravity y = (1 + w ) / ( 2  + w )  and A = ( 3  + 2 w ) / ( 4  + 2 w ) ;  w is a dimensionless coupling 
constant in their theory which controls the amount of scalar gravitational field affecting 
matter. Therefore MG/MI differs from 1 in the Brans-Dicke theory: 

( M G / M I ) B - D =  1 + ( u G / M c 2 ) / ( 2 + w ) .  ( 5 . 5 )  
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Using the experimental limit (1.6) on 171 gives a lower limit on the Brans-Dicke 
coupling constant 

w a 7 0 .  

Will (1971a) considered celestial bodies as continuous fluids described by a stress- 
energy tensor 

T”” = p ~ ” ~ ~ + p ( g ” ” - ~ ~ ~ ” )  (5.6) 

where p is the fluid’s scalar mass density and p is the fluid pressure. An equation of 
state p ( p )  would also be assumed for any specific body. The fluid’s response to gravity 
was given by the covariant divergence condition 

TYuu = 0. (5.7) 
Will developed a version of a PPN metric with the components of the fluid stress-energy 
tensor acting as sources of gravity. He  calculated the MG/MI ratio for celestial bodies 
and found the ratio to be independent of the body’s fluid equation of state and in 
agreement with Nordtvedt’s result (5.3). Will’s work also first made clear the gauge 
freedom available in metric gravity. Under gauge (coordinate) transformations, some 
of the PPN coefficients change; however, linear combinations of PPN coefficients 
expressing physical effects must in all cases be unaltered by choice of coordinates 

Nordtvedt (197 l a )  later added electromagnetic interactions between the particles 
forming the celestial bodies (solid-state model of matter), with the electromagnetic 
fields properly coupled to the PPN metric field. The M G / M ~  ratio for a body was 
found to be identical to (5.4) for arbitrary equilibrium configuration of internal and 
gravitational forces and kinetic motion. 

These generalisations of the MG/MI calculation by Will and Nordtvedt show that 
(5.4) and (5.5) are universally valid for celestial bodies which are crystalline, fluid, 
gaseous, etc. 

Both Nordtvedt’s and Will’s metric field expansions were found to need 
modification in order to permit consistent use of the PPN metric by all asymptotic 
inertial observers. Suppose there were several distant observers in different inertial 
frames, and each of them employed a PPN metric to calculate an observable effect. 
The several observers must agree (up to appropriate special relativity adjustments) 
in their calculations of a physical effect for a theory to be consistent-indeed, to be 
meaningful. 

Will and Nordtvedt (1972) found that some of the PPN coefficients were related 
to  the emergence of preferred inertial frame (lack of Lorentz invariance in post- 
Newtonian gravitational phenomena) in the metric field expansion. Will and 
Nordtvedt’s extended PPN metric formalism contained new gravitational potentials 
which are dependent on the velocity of the observer’s inertial frame relative to a 
preferred inertial frame. These potentials produce observable gravitational effects on 
systems moving relative to the preferred frame. These modifications do not alter the 
calculation of MG/MI for massive bodies, but some of the PPN coefficients used to 
express the ratio are changed. The new PPN language facilitates tracing origins of 
anomalies in the MG/MI ratio to separate anomalous behaviour of MG or MI. 

In examining two-tensor theories of gravity Nordtvedt (1976) found that such 
gravitational theories will generally have intrinsic anisotropies in the various post- 
Newtonian as well as Newtonian potentials, and the PPN metric field expansion was 

(gauge). 
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generalised accordingly. Earth-based gravimeter experiments have provided the best 
experimental evidence against such theories. 

The original PPN formalism includes metric theories of gravity which lack post- 
Newtonian energy or momentum conservation laws. However, relationships among 
the PPN coefficients exist guaranteeing post-Newtonian conservation of energy, 
momentum and angular momentum, as well as uniform centre-of-energy motion 
(Nordtvedt 1970a, b, Will 1971b, Haugan 1979). 

The most general extended PPN metric field with energy, momentum and angular 
momentum conservation laws has five parameters--y, p, al, az  and 5. Its form in 
the preferred inertial frame is 

+( mi(r - r i )  * ~ ~ ( r - r ~ ) / ~ r - r ~ ~ ~  (5.8(b)) 

and 

for k, 1 = x ,  y ,  z .  U is the Newtonian potential function: 

U = mi/lr - r iJ .  
i 

A gauge (coordinate system) has been chosen in which goo has no potential term of 
the form xi miai * ( r  - rj ) / lr  - ril and no non-linear potentials proportional to the PPN 
coefficient c. Will (1971b) has shown that the preferred frame coefficients a1 and a2 

must vanish if a centre of mass-energy can be defined for an isolated system which 
moves necessarily at constant velocity. 

In other inertial frames moving at velocity w relative to the preferred inertial 
frame, new potentials are added to (5.8) of the form: 

and 

An additional gauge choice is used here to eliminate terms in goo of the form: 

3 mjw * ( r  - ri)ui * ( r  - r;)/ lr  - r j  . 
; 
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The preferred frame potentials (5.9) do not alter the calculation of MG/MI. However, 
the preferred frame coefficients in (5 .8 (6 ) )  do contribute to MG/MI as will be shown 
in 56. The results of that section are summarised here: 

M G / M I = ~ + ( ~ ~  - ~ - Y - ~ / ~ - C Y . ~ $ ~ C Y ~ / ~ ) U G / M C ~  (5.10) 

for a spherically symmetric celestial body in (internal) equilibrium. For bodies lacking 
spherical symmetry (rotating bodies, etc) there are additional contributions to kfG/MI 
including a non-isotropic term: 

s (MG/MI)ki = (t + 2( C mimj (ri - rj)k (ri - r j )J Iri - r, I 3  + 2 u G /  3 S k i )  / ~ c  

-35/4(C mimi[(ri - r i )  - 8 1 ’ / I r ~ - r j 1 ~ + 2 ~ G / 3 ) ~ k i .  (5.11) 

8 is a unit vector toward the external body accelerating the celestial body. The ratio 
(5.10) results from separate expressions for MG and MI: 

and 

where E is the mass-energy content of the body: 

( 5 . 1 2 )  

( 5 . 1 3 )  

(5.14) 

In the conservative metric theories to which we restrict our consideration, the active 
gravitational mass MGA is found to be equal to the passive gravitational mass given 
by ( 5 . 1 3 ) .  MGA is operationally defined as 

MGA = lim ( g ( r ) r 2 / G )  ( 5 . 1 5 )  

where g ( r )  is the gravitational acceleration field of the body. MGA = M G ~  guarantees 
equality of action and reaction in the gravitational force. 

6. Calculation of MG/MI in metric theories of gravity 

The equation of motion for each particle of mass mj and charge e j  in the celestial 
body (see figure 3 )  is obtained from the variation of the action integral: 

A = [ - mj(g,”(r, t) dx@/dt dx“/dt)1’2+ ejA, dx’ldt] dt. (6 .1)  

F,~ = a / a ~ ~ ~ , - a / a x ” A ,  (6 .2(a )) 

FFUiY = 4 r J F  (6 .2(b) )  

5 
The electromagnetic potentials appearing in (6 .1)  satisfy the equations 

and 

the latter equation following from the electromagnetic free-field action integral: 

A ’ =  -1 d4xJ~F,,,FFIIY/16.rr. 

Symbolically writing the gravitational metric field as 
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(see (5 .9)  for the full expressions). The particle equation of motion becomes 

d /d t ( l  + t u 2 +  U - h"')U = VU+ah/a t  + U X (V X h )  +iV[U'- hb?]+iV[U - h (1) ]U 2 

+ ( e / m ) E ( r ) ( l  - U) .  (6.4) 

We have kept only the necessary post-Newtonian terms. The electric field E ( r )  is 
obtained by a solution of (6.2) (Nordtvedt 1973): 

i i 

where g is the gravitational acceleration field of the external body 

g = GMR/ R 

and aj is the acceleration of the jth particle. The electric-field expression (6.5) is valid 
in a spatial coordinate system in which spatial geometry distortions due to the external 
mass have been eliminated by the appropriate coordinate transformation (Nordtvedt 
1973). In such coordinates a truly spherical body has a spherical coordinate 
representation. 

When collecting the various terms of (6.4), those proportional to the acceleration 
of the celestial body are identified as contributing to its inertial mass, and those terms 
proportional to g are identified as the body's gravitational mass contributions. Let 
us look at the terms in (6.4) one by one. 

(i) On the left-hand side of (6.4) the d/dt operating on U yields a ;  the coefficient 
of a includes inertial mass modifications due to kinetic motion, $v2 ,  and gravitational 
potential energy, U-h") ,  due to the other matter in the celestial body. The d/dt 
operating on i o 2  creates another inertial mass term. When d/dt operates on U - h(') 
the significant contribution comes from the external mass contribution to U. The d/d't 
becomes U V, producing a gravitational mass contribution proportional to g .  

(ii) Turning to the right-hand side of (6.4), U is simply the Newtonian gravitational 
acceleration which includes a g contribution. 

(iii) Since h is proportional to U of the mass sources in the celestial body, ah/at 
is proportional to the ai (accelerations) of celestial-body mass elements and contributes 
to the body's inertial mass. 

(iv) U x (V x h )  makes no contributions to MGp or MI. 
(v) u2 - hi? is a non-linear gravitational potential. Cross terms proportional to 

Mmi (mi being any mass elements inside the celestial body) contribute gravitational 
mass contributions proportional to g .  

(vi) The last gravitational term in (6.4) proportional to v 2  is a motional correction 
to Newtonian gravity and contributes to gravitational mass. 

(vii) The electrical accelerations in (6.4) contribute to both gravitational and 
inertial mass of the celestial body (from the g and aj terms, respectively, in (6.5)). 
There is a further gravitational mass contribution from the - UE(r) term. 

The acceleration of each mass element of the celestial body (see figure 3)  consists 
of an internal part relative to the body and the acceleration a of the body as a whole 
in the external field. Collecting all terms proportional to a and g and summing over 
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the mass elements, appropriately weighted, gives 

MGpg = Mia 
with 

with 

E = 1 mi(1 +$UT) +$ 1 eiei/lri - ril -$I mimj/Iri - ril. (6.8) 

For bodies in equilibrium (or averaged over time scales of internal variations of 
structure) and free from external forces (celestial bodies in gravitational free-fall fulfil 
this condition neglecting gravitational tidal forces) the last bracket of terms in both 
(6.7(a)) and (6.7(b)) is seen to be virial tensor summations which vanish: 

i i,i i,i 

1 mi(Ui)k(vi)l+$1 ( f i j ) k ( r i - r j ) i  = O  (6.9) 
i i,i 

with 

3 3 
f i i = e i  1 e j ( r i - r j ) / l r i - r j l  -mi m j ( r i - r j ) / ~ r i - r j ~  . 

i i 

With the virial condition (6.9) fulfilled, division of M G ~  by MI as given above yields 
the previously quoted ratios (5.11) and (5 .12 ) .  

7. Dependence of Newton's gravitational constant on motion and proximity of 
matter 

Another outcome of the previous calculation is a general expression for the effect of 
proximate matter on Newton's gravitational constant in metric theories. It is found 
that an external body M at distance ]RI alters G by the relation: 

(G)kl = Go[l-(4p -3-y-$5)GoM/C2R]8kl-~5G~MRkRl/C2R3.  (7.1) 
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G becomes anisotropic in metric theories with [ZO (Will 1 9 7 1 ~ ) .  Averaging over 
all directions in a spherically symmetric body gives 

(7 .2)  
On the other hand, (5 .9(a) )  indicates that preferred frame metric theories of gravity 

(cy1 # 0 and/or a2 # 0) produce a velocity dependence and anisotropy of Newton’s 
gravitational constant (Nordtvedt and Will 1972): 

( G ( R ) )  = Go[l-  ( 4 p  - 3 - y - [ / ~ ) G O M / C ~ R ] .  

(G)kl = Go{[l -+(ai -a2)W2/C2]8ki - $ a 2 W k W l / C 2 )  (7 .3)  
where w is the velocity relative to the preferred inertial frame. Averaging over 
directions in a spherically symmetric body yields 

( G ( w ) )  Go[l -+(ai - 2 . 2 / 3 ) ~ ~ / ~ ~ ] .  (7 .4)  
An anomalous gravitational or inertial mass for a celestial body can be understood 
in terms of the dependences of G on the proximity of matter (7 .2)  or on motion (7 .4) .  
Dicke (1969) first suggested this interpretation with regard to the position dependence 
of G (see also Haugan 1979). 

Let E be the mass-energy of a celestial body in the absence of motion relative to 
the preferred inertial frame (w = 0) and in the absence of proximate matter (M = 0). 
The effective Lagrangian for a slowly moving celestial body with a proximate mass 
M at distance lRl is then 

(7 .5)  L =  E +;EW2/c2+ GoME/c2R - [G(R ,  W ) / G o -  ~ ] U G .  

The celestial body’s equation of motion is then 

d/dt(V wL) - VRL = 0 

with 

V W L = E w  - UG(VwG/Go) 

and 

V R L  = Eg - UG(VRG/Go). (7 .6(6) )  
Using (7 .2)  and (7 .4)  in the above reproduces the results for MG and MI given in 
(5.12) and (5.13).  

8. Implications for gravitational theory constraints 

In 86 the PPN metric expression for the experimentally measured parameter 77 was 
obtained: 

q = ( 4 p  - 3  - y - i / 3  -a1 + 2 f f 2 / 3 )  (8 .1)  
with 

MG/MI = 1 + 77uG/MC2. 

Lunar laser-ranging experimental results presently limit 77 : 

IV1<1.4x10-2 

which (8 .1)  translates into constraints on PPN coefficients. 
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(7 
5, 

Both a2 and 5 coefficients imply an anisotropic gravitational constant as given by 
.1) and (7.3). Gravimeter experiments on Earth can put stringent limits on a2 and 
since the Earth's 24 h rotation translates an anisotropic G into 12 h period gravita- 

tional force variations at a gravimeter station whose orientation relative to the spatial 
directions w and R rotates. The dominant proximate mass for this effect is the 
galaxy-GA4/c2R =e 10-6-and also w 2 / c 2  = (Will 1971c, Nordtvedt and Will 
1972, Warburton and Goodkind 1976). The present experimental limits on these 
coefficients are 

l a 2 1  s 1 0 - ~  (8 .2b) )  
and 

151 s 

The PPN coefficient y has been most precisely measured by the radio signal time 
delay experiments discussed in 62 (Reasenberg 1979): 

11 - y~ s 2 x (8.3) 

The most sensitive experimental limit on a1 comes from the perihelion precession 
of Mercury; a1 makes a contribution to this precession (Nordtvedt and Will 1972) of 

w = 35al  arc-seconds/century. 

The uncertainty in that observation (*0.4"/century) therefore imposes the constraint 

lalis 1 0 - ~  (8.4) 

unless there is a correlated variation of al  and p from their values as predicted in 
general relativity. y = p = 1, cy1 = a2 = [ = 0 in Einstein's general theory of relativity 
of gravity. 

The factor of 4 multiplying p in (8.1) makes the lunar laser-ranging experiment 
primarily a ' p '  experiment, with the resulting experimental constraint 

11 - p i 5  4 x 10-3. (8.5) 
A different way of viewing the significance of the MG/MI measurement for celestial 

bodies is by noting the post-Newtonian gravitational potentials of general relativity 
which participate in determinirig MG/MI,  but which play no role in the other previous 
historic tests of general relativity (Nordtvedt 1977a). In Einstein's general relativity 
post-Newtonian field expansion there is the gravitational vector potential: 

and there is a second type of non-linear gravitational potential not present in the 
Eddington-Robertson metric: 

If the gravitational vector potential were absent from the metric field, the lunar orbit 
polarisation toward the Sun would be 70 m! If the second type of non-linear potential 
in goo were absent, the lunar orbit polarisation would be 3 m! The experimental upper 
limit of 15 cm for this polarisation amplitude clearly indicates the presence of these 
general relativistic post-Newtonian potentials as predicted from calculation. 
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Anyone proposing an alternative theory of gravity must subject his theory to all 
the experimental tests of post-Newtonian gravity-including the result for MG/MI for 
celestial bodies. The full PPN metric for any theory must therefore be calculated and 
its values of y, p, 6, o1 and c y 2  compared with general relativity’s values which are 
now confirmed by observations to a few parts in a thousand. 

Application of general relativity to cosmology, astrophysics, gravitational radiation, 
or to probe the interior mass structure of our Sun by measuring its angular momentum 
and quadrupole moment (Nordtvedt 1977b), should now be possible with higher 
confidence, because of the additional post-Newtonian empirical tests that general 
relativity has successfully met during the last decade. 

Gravitational theories can be classified by the long-range fields which produce the 
gravitational interaction among the massive bodies. ‘Pure’ metric gravity has only the 
metric field gFv. Einstein’s general theory of relativity is a specific ‘pure’ metric theory 
with specific field equations for g,,. 

Scalar-metric theories have a scalar field cp in addition to the metric field; vector- 
metric theories contain a vector field k ,  supplementing the metric field, while two- 
tensor theories have a second tensor field k,, in addition to the g,”. 

If, in each of the above cases, the augmenting fields (cp, k,, k,,, . . . ,) do not couple 
to matter, but only to gFu, then the gravitational theory is a metric theory and is 
subject to a PPN expansion. 

k,= (0 ,  k )  kG # k, 
W 
4 

Figure 5. Two identical sources (S) of gravitational fields move relative to each other with velocity w. The 
asymptotic background fields (far from source) are shown for the two rest frames and are related to each 
other by a Lorentz transformation. Pure metric gravity-theories in which only the field g,, plays a role 
in gravity-and scalar-metric theories are seen to lead to frame-independent gravitational physics because 
of the invariance of the asymptotic fields. Vector-metric theories would have a preferred frame for the 
gravitational physics, while two-tensor theories of gravity will generally have anisotropies in the gravitational 
fields as well as preferred-frame effects. 

In a general way one can relate the PPN coefficients to the kind of fields present 
in the gravitational theory. Figure 5 illustrates two identical, localised gravitational 
sources (S) (e.g. the solar system), except that one system is in motion relative to the 
other. In the rest frame of each system there are the asymptotic (background, 
cosmological) values of the various gravitational fields (g,,, cp, k,, k,,, , . . ,) which are 
straightforwardly related in the two frames by Lorentz transformations. 

In one preferred inertial frame it is possible by coordinate transformations (includ- 
ing Lorentz transformations) to make the asymptotic gFLY equal to  the Minkowski 
metric T,,; and simultaneously to make a vector field either pure time components 
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or pure space components; or to diagonalise a second tensor field into four diagonal 
elements which will generally not be proportional to the Minkowski metric T,,, 

The solution for g,,, , the gravitational metric field, and any supplementary fields, 
is determined by the sources and the boundary conditions on the fields. Since the 
two sources are identical, Lorentz invariance of T,, and cp indicates that there can be 
no preferred frame PPN coefficients in ‘pure’ metric or in scalar-metric theories of 
gravity. cp could, however, depend on cosmological time, and thereby produce time 
variation of the gravitational ‘constant’. Pure metric-field theories can not have a 
time variation of G since v,, has no time dependence (i.e. an ability to perform 
arbitrary coordinate transformations always allows the asymptotic g,, to be the 
Minkowski metric T , ~ ) .  

For vector-metric theories of gravity in which the cosmological background vector 
field is time-like, there is a preferred frame in which only the time component of k, 
is non-zero, but in other inertial frames k, signals a preferred direction in space 
resulting generally in preferred frame and anisotropic gravity effects (al and/or a2 # 0). 

For a space-like vector field in a vector-metric theory or in two-tensor theories it 
is seen from figure 5 that frame-dependent and anisotropic gravity will generally result. 

The fourth test of general relativity-measurement of the gravitational to inertial 
mass ratio for celestial bodies-confirms predictions of general relativity’s post- 
Newtonian structure for moving, non-linear and non-spherically symmetric sources; 
a domain of the field equations not reached in the other tests. Taken with the other 
tests, it is unlikely that any other fields augment the metric field gFV in producing 
gravity unless the supplementary fields play a very small role (one part in a thousand 
or less) in determining the metric field gFV to which matter responds. 
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