METRIC OF A CLOSED FRIEDMAN WORLD PERTURBED
BY AN ELECTRIC CHARGE
(’I'XIE(i*RY OF ELECTROMAGNETIC "FRIEDMONS"}

M.A. Markov and 'V.P. Frolov

Tolmans' well-known problem s generalized to the case of electrically charged dust-like
matter of & centrally symmetric system. Flrst Integrals are found of the corresponding
Einsteln— Maxwell equations. The problem s then speclalized In such a way that the
metric of a closed Friedman world Is obtalned when the total charze of the system tends
to zero. Such a system 18 considered at the Initial Instant, the time of maximuim expan-
sion. For any arbitrarily small electric charge, the metric is not closed. The metric
of the almost Friedman part of the world I8 continued through a narrow throst (fora
small charge) by the Nordstrtm ~ Reissner metric with parameters satisfving Y»my = e;.
The expression for the electric potertial In the throat ¢y = ¢?/v does not depend on the
magnitude of the electric charge. With increasing charge, the radius of the throat in-
creases (ry = evn/c?). The state of the throat in the classical description is essentially
unstable from the point of view of quantum physics. The generation of all kinds of pairs
in the tremendously strong electric {telds of the throat polarize the latter to an effective
charge Z < 137e, irrespective of the inltial, arbitrarily large charge of the material
system.

1. Generalization of Tolman's Solution to the Case of Electrically

Charged Dust-Like Matter

The solution of Finstein's equations Jor the case of a centrally symmetric gravitational field in a
comoving frame for dust-like matter /pressure p = 0) was found by Telman [1].

In connection with a number of problems, Interest attaches to a generalization of Tolman's solu-
tion to the case Qf’e!ectvica]!y charged dust-like matter. It is well known that Friedman's closed world
is described by particular solutions of Telman's problem. It is also well known that the metric of the
world eannot be closed if the matter is charged, even if the matter density exceeds the critical density.

The question arises of the manner in which the metric of a closed Friedman world is altered under
the influence of, say, a weak perturbation resulting from the presence of an electric charge. The answer
to this question must be found by solving simultancously the Einstein — Maxwell system of equations
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We take the energy tensor cn the right-hand side of (1) in the form
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arises ag g result of the solution of the Maxwell equation for the case of a spherically symmetric system.
Here

T = 8*5 {6)
is the matter tensor In the comoving frame (x! = q).

Written out in fuli, Eg. (1) has the form
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Here, we have taken the metric in the form

dst = e7di® — e*drV — e¥dod, )]
where do? = dx? + sin? x?dx%. The dot denotes differentiation with respect to x° and the prime differentia-
tion with respect ta gq.

Using the confirmation laws, we readily obtain {1}
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In our case, the comoving system is not a synchronous system (v = 0).

Integration of (V) with respect to x" yields
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and Eqg- (IV) can be rewritten in the form
20nr) —A—vijr =0 {10)
Integrating Eq. (10) with respect to x®, we obtain
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we rewrite'Eq. (11) in the form
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r;'
& =z ——m—— ¥,
i+f
An.expression for ¢ can be obtained as follows. Using (13), we rewrite Eq. (17) as an integral equation
for ¢:
: 2ee’ j %
iy

from which we obtaln a differential equation for ¢: -
¢ = Blg)e™ /R,

where

8(q) = 2ee’ iICOV+T,
2e92 == % [r 4 29{q).

and, hence,

Substituting (17 Into (13}, we obtaln
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or, writing
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we obtain finally
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Equation (1) can be rewritten as follows:
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It is readily seen that
e+ ) = (1 + )1 —8/4r),
eV (2Fr 4 P — Frv) = —:~ (e*Fr) .
Integrating {22) with respect to x°, we obtain
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where m{qg) is the constant for the integration with respect to x°.

We rewrite Eq. (IID) in the form ] :
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Noting that
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substituting {21).and {23) into these expressions and setting
ey 5(141)
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we obtaln the relation

m(q) == T FT.

{15)
{16)
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Equation (II) doesnot yieldany new reldtions, for it isa consequence of the other eguations we have used,
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Three unknown functiens occur In the first integrals we have cbtained for Egs. {I) and (I1Ix
He) mig), elq). {27)
The problem Is made completely concrete when these functions, which must be determined by the initial
conditions, are specified. We shall take the surface x% ='0 as the space-like hypersuarface Z on which the

initial conditions are specified.
The coadition {IV) Go‘ = 0 is compatible with the relation
r"(0,9) i

ks 28
T+ 1(2) (1= 8(@)/2r(0.g))" =9
On the surface Z, Fq. (IIT) can be wr(ttep in the form
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Wetaks g to be a canonical coordinate, the distance from the center-at the initial instant of time {exp X(0,
g} = 1]; the relation {28) then becomes the definition of fig):

o

s |
MF=r O 0+ g (30)

In what follows, we shall specialize our problem principaly to the case when a closed Friedmaa
world is obti; 2d asthe eclectric charge of the system tends to zero.

2. Friedman World Deformed by the Presence of 2n Electric Charge

-

The Interior Solution. In what follows, we shall attempt to define the unknown functions f(q). mig),
and e(g) in such a way that the metric of a ciosed Friedman world is obtained in the limiting case efg) — 0.
Since the total electric charge vanishes in a closed world, it is a priori evident that the metric of such a .
world, even in the case of a small electric charge, cannot be completely closed and that a Friedman metric
deformed by the charge must have a Nordstrém — Reissner continuation outside the matter. Our task is to
find at least special examples for which one can describe the whole space of such a world contmuoud\ We
therefore expect that the interior solution, v&hlch is close to Friedman's solution for a closed world, must
2o through a throat into the well-known exterior Nordsttm — Reassner solution. For the interior soluuon.
we shall therefore try to formulate the initial conditions at x® = 0, the mement of maxamum expansion of
the system, so that they are most nearly Friedman. Namely, suppose that 1) on x® = 0 the whole space
belongs to the R region {2]; 2) the initial velogities of all particles varish; 2) the energy density at the initial
instant does not depend on g

Too + Euo == gp == CcODSt,
We shall show below that, under these conditions, the problem has a solution in the case of electrically
charged dust, i.€., there exists a function Clg) or M{g) which is compatible with the given conditiors.

For the chosen initial conditions, Eq. (29) can be rewritten in the form

oy = .
1— > —--2-;8::6&3. {31)
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and integrate Eq. (31); then,
rz e ]
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or, since rig = 0) = 0,
, r == 2aq sin ¢ / 2aq, (34)
so that the expression {29} can now be rewritten In the form
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Further, we prescribe the charge distribution. Let all the dust particles of the s:'stem hawe the same
charge-to-musa ratio 8. If

i q
— 4 == M{ 36
=] Clorda=Ma), (3)
the new conditlon can be written in the form
e(g) = PM(g). 57)
Equation {35} now takes the form of an equation for the dctermination of M{q):
' Mi(q) g & (38)
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One can verify by substitution that the following expression satisfies Eq. {38):

4
M =22 sin y(betg by sin g — cos g,

B
where
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It is readily seen that, as 8—~0, M goes over into
3 sin 2%
Mo(q) zao(x 3 ) {40)

f.e., into the expression for the "interior™ mass {3] in the uncharged Friedman world.” Further. using
(9)’. one ¢an obtain

sin bx')‘. (41)
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With these remarks,. we eonclude our corsideration of the interior solution at the Initial insitant of
time, the time of greatest expansion of the material system. In the follow v sections, we shall mnalyze
the solution in vacuiim {in the regions where & = 0} and the problem of fit: -« ti:- interior and ext=rior
solutions.

Exterior Nordstrém — Reissner Solution. As is.well known, the geometry of spaco outside @ mass
mg which has a spherically symmetric distributicn and an electric charge € is described by the Mordstrom
— Reissner metric:

dst = Q(r)det — dr? | @{r) — rido?, (42)
where .
2xrme €l
Olr)=1—— +?§" (43)

In this problem, we must distinguish three cases:
1) Yamo > €0, 2) Ymo =0, 3) Yrmo < ew (44)
In the first case. the metric is characterized by two pseudosingularities of the type of the Sshwarz-
schild pseudosingularity: &(ry) = ¢(ry) = 0. Forr, <r < ry, the coordinate r is time-like. For this case, the
\&Jtoie of space-time can be described in Kruskal-type coordinates [4]. A test particle placed at r = v; ou
=0 rcaches r = r, after atime T = 'i'i»'.n'lo/cJ It then comes to rest instantancously and returns to to 1y,

At the Initial instant (the instant of time symmetry), the geometry of space has the form of & "worm-
hole” ("Einstein ~ Résen bridge™). The throat of the wormhole pulsates with a period of 2T and newer closes

* The total mass, taking Into account the gravitation m‘as's defect in a closed world, vanighes {i].



{in conlrast to the Schwarzschild case). Complete closing of the throat is prevented by the electric lines
of force puzotag through the thynat inte the Fuclidean Infinity. ®

The second case differs from the {first in that there i3 no T revion. At the point

wme  eo¥x
==
we have a zeroc of second orden:
Q(r) = (1 = ra /7% where ry = wmo/e¥ == Yreo! e, {45)

The following analysis will show that the geemetry at the Instant of time symmetry can have twe forms in
this case: an a’~type "wormhole®; i®-geometry with a monotonic variation of r. The second case Is real-
{zed, in particular, in Papapetrou's model (a static charged-dust model with 3= evrM = 1). I we are con-
cerned with a semiclosed charged world, the exterior solution satisfying the condition of flatness at infin-
ity 1 of a®-type.

The third case (e, > v vmy) goes over into the 3° case as ¢, decreases. There are now no singularities
and the whole of space is R-type. In this case, semiclosed worlds {with flat space at infinity) arenot real-
ized. The limit -1 gives an everywhere static system in this case (Papapetrou’s model).

We are interested in the problem of fitting an exterior Nordstrom — Reissner solution to an interlor
sclution describing an almost closed world, i.e., 2.world whose metric goes over into the metric of a
closed Friedman world as e; ~ 0. For ey = 0, our problem is to {ind a maxima} continuation of the interior

Friedman solution {to decrease the size of the throat) as far as this is permittéd by the presence of the
electric field. From this point of view, it is expedient to consider a deformation of the Friedman metric

by a small electric charge B <1,
Of all the cases considered above, only case 2 (a® - 1) satisfies our conditions. None of the remzin-
ing cases leads to a closed world as e; —~0.
Fitting of Interior and Exterior Solutions. In order to be able to use thé boundary conditions of fitting
~more conveniently, we transform Eq. (7) to a form similar to (42), namelyto
ds? = fdP — adr® — ride?®, (46)
where x' {(or the q coordinate) is taken to be the coordinate whose square appears as the coefficient of do.
The transformation

dr=Fd®+ ¢ dz', dx':-é::;-;gio-

transforms the first two terms of Eq. (7) to the form
(47)

ie @, a7
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The expression in the brackets can be transformed by means of an integrating multiplier Ji{t, r) to the form

O e e

which has a total differential on the right-hand side. For what follows, the expression obtained for o is
important:
Q== ! 48
- l'"C"‘ -i’c" - 1 ‘)

From the conditions of fitting of the interior and exterior solutions at the interface I-

alt = qot|y, PR == pout]y {19)

* For e —0, the Schwarzschild solution (r) = 1 —~ 2umy/c’r can be Interpreted as the exterior solution for
a semiclosed world [2. 5]. The Kruskal metric is interpreted phycically In {5}. ‘



weo obtain

2umg , xedt )
/'a“—f’e*lq_ﬂﬂi“‘—;,';—+-:i;:—. 50)
Uslng {21}, (22}, and (25}, we find
: mi(go) = my,
151)
G(QQ) = £,

We still have not ohtalned an answer to the fundamental question, namely, that of the value of gy at
which we must fit the inferior and éxterior solutions if we wish to continue the Friedman world to the maxi-
mum possible degree of closure with the minimum size of the throat at the instant of time symmetry, In
the third case, it ig Impossibie to fit a8 semiclosed world (o a space that is flat at infinlty. Conseguently,
Vem, (q) = efqy, at the boundary and the desired value of gy can be found from the equation

Vomi(go) = e(go).
The condition (52} can be written in the form*
r® = {§ —ra/ro)%,

(52

{53}

where ry, = ey /c? = xmy/e?, and ry and ry are the values of r and r' at the matter boundary. The condl-
tion (53) for a semiclosed world (r' < 0} fitted to u space that is flat at infinity leads tc the relation ry < ry,
which nbrrequnds to the presence of 2 "wormhole”®, i.e., {6 case 2 (&%), For a-semiclosed worlid fitted to
a space that ;s {Iat at inflnity, the condition {53) may therefore be rewritten'in the form

(54

ro'=—"2—"“i.
re

Let us consider in more detail the model of 2 world with 2-small charge E«'l {or 78 <« 1). Inthis
case,

H--ig—ao(xr-slnroc0310)+0(ﬂ’).rn~———5ac(7o-smx«:CO~Xo)+0(B’) o == 2a0singo, 7o’ = cos¥e, (55)

- where 0< Xy < 7, X5 = qp/24,.

The condition {54 for 7/2 < Xg <7 and small values of 3 can be written in the form

4+ {1+ 5)cosu-—~asm” {56)

Forf =0, Xp=7, i.e., X, attains its maximum value, and the world becomes a completely clased Friedman
world.

In the case of a small charge 8 (3<< 1), the desired boundary of the interior (Friedman) solution must
be somewhere near 7, L.e., Xp =7 ~8, where & is small. For it follows from the graph (Fig. 1} that Eq.
(56) has a single solution X,. Forﬁ« i, the solution X Is near = and, as /3 — 1, the solution X; tends to
n/2.

As the charge ey of the world increases, its exterfor (Schwarzschild) mass also increases. The
radius of the throat Increases accordingly:

7 = Yueo/ % (5%
It Is important to realize that the potential of the electric field in the throat
e =¢o/7a (58}
does not change when the charge e, Increases, but remains equal ‘o the constant value
§n =/ x. (59

The quantity ¢y plays the role of a maximum potential in the theory; it is
composed of universal constants and it {s-Interesting that it does not contaln
an electric charge.

* Equation (31 ) in this case can be rewritten In the form {(1—~~ )r)’—-':—‘::-f

tetted preus”

%1’ é‘;ﬁ? N-d 2 N
T, e hence, e t———ey " | By virtue of the continuity of r and r* on the
%’ , : ctr cte
Fig. 1 matter - vacuum boundary, Eq. {52} is valid in this region of r.

307



Exterior space The Throat

The condition Viumg = e,y ensures that the throat is static,
An exterior observer always sces a charged, maximally con-
tinued semiclosed world in the form of a solidified charged
sphere,?

In this case, too, the dynamics of part of the almost
closed uniformly charged world remains nonstationary, After
the instant of maximum expansion, the charged cloud described
by the interior solution contracts. However, the collapse of
the system s halted by the electrical forces at the minimum
radius determined by the dimensions of the throat, i.e., by
the total electric charge of the system,

It should be emphasized that there is no matter in the
throat. The nonstatic behavior of the-material cloud does not
affect the static behavior of the throat, In the throat, the
bundle of electric lines of force are compressed by the maximum amount possible (op = ¢?/Vv). From the
throat, a bundle of lines of force diverge both outward, into the Zuclidean infinily, and also into the almost
Fricdman world. Thus, the throat simulates a source of the electric field (a charge), although no material
charge carriers are localized in the throat,

A more detaiied consideration shows that the field in the exterior space and the field between the mat-
ter and the throat have ¢ :posite signs (Fig. 2):
Fy == e ]r? (in the exterior space. region 1), 60)

Fi == —e/r* (between the matter and the throat, region 0).

For the connection between ¥,iq 2nd Fyy is given the transformation

D{t.r)

Fu:mfx'q- (61)
Further, one can showyt that
' . D("’) e <8 ¥
sign Do sign v/, {62)

i.e., the sign of D{t, r)/DIx?, q) is equal to the sign of r' and this implies (60).

In the throat itself, a test electric charge must always rest. In the regions 1 and 0, one can easily
realize a static system-of reference by using appropriately charged and weightless dust particles, This
system coincides with the Reissner — Nordstrém system. As is well known, a complete description of the
Reissner — Nordstrém metric (i. e., including the regions between its two pseudosingularities) can be given
by Kruskal-type coovrdinates (a nonstatic system of reference).

_In our case, the region (r;, ry} contracts to the single value ry = r; = rp, the throat. The static frame
of reference does not cover only this section immediately adjoining the throat.

* We recall that in the case vemy > eg the throat oscillated between r; and ry. In the limit eg ~ \»my, we
have ry = r;. For the case [.»mp = e}, the exterior (Schwartzechild) mass vanishesas e, — 0. The world
becomes completely closed, i.e., inthecase vxmy = ¢p, the entire massis of electric origin, Under these

* conditions, any initial value of the interior mass of nonelectric origin is completely offset by the gravita-
tional mass cGefect.’

3 F-TRG dryt
T g = i’— ‘en + :’:) grn  Eeg = (—~—) fie + (——) gr. But  goo> 0 geq<0, g4 >0, gr <0. Consequently,
drt dx* dq ag
a ar o ary? TR ot ar ar
(-;;-) xu>(\;;. - (~—g.) and (3;) (—~gr)> (;;) g« ; hence ?_;3;!>15;3;I and, consequently, the sign

Ds, a @ a3 - . : .
tn o %% is determined by the first term since at/ax? 5 0, f.e., thetime always increases

D(=*.q) 9r*dq dgas

("arrow of time").



Polnrized Tﬁroats (The Need For a Quantum Description of the Throat)

On the basis of the relation (57) (rj = Yney/c?), we concluded that the radiug of the throat increases
proportionally to the total electric charge. This is the description of the throat that we obtain from the
classical theory. However, from the peint of view of quantum physics, such a state of the throat arlses
with the propertles described above, a viclent process of gereration of all kinds of eléctrically charged
palrs, such as proton - antiproton palrs, all kinds cf meson pairs, and, finally, electron - positron pairs,
would inevitably be taitiated In the superstrong clectrlc field of the throat. The charges of opposite sign
would tend to decrease the effective charge of the throat, while the charges of the other components of the
palrs would éscape Into the Euciidean infinity. In this process, the charge of the throat would gradually
cecrease; at the same time, the radius of the throut would also.drcrease and the interfor metric of the
system would become more and more closed. l.ct us consider this offect In more detail, not so much for
the purpose of giving an exhaustive quantitative description of the generation of palrs In such a field, but
rather in order to fix attention on a very curious, in our view, situation: the need to take into account
quantum theory in the ultramacroscopic world, namely, to describe processes which one would imagine
were only important in the microscopic world. Although the guantitative estimates are as yet far from
satisfactory, they are not entirely develd of interest in their own right.

_The generation of patrs of electrically charged particles in a strong homogenecus electric field has
been considered by Nikishov [6].*

If there ic a homogeneous electrostatic field of intensity E fliling the space of a ¢ube of volume L,
the probability of creatlon of pairs (say, electrens) in the field with given momentum {p) and spin (r) dur-
ing the whole time is given by the expression
c(ps® + pr? + mo’c?)

" ekEhe
~where m; is the mass of a particle of the pair and p is the value of the particle momentum of the generated
pair after the field has been switched off. In such a problem, p must belong to a discrete spectrum, I.e:,

Lp == 2afin.

Wyre=exp(—ai), A== (E=(0,0,E)), 63

Equation (63) can be rewritten in the form
) rmget ne?  2afiy 3 . et 4 2nm02
o (= 2o (52 ] [ 2 (B2
iiad ‘ex,) eEhe sxp ekhe L i B eERé L ) S €4
Here, the state of the gererated particle is characterized by the numbers (nynnjr). Summing Wi, n,iyr
over all guantum numbers and then replacing the sum over n by an integral, we ebtain

nimalct : _
Wiy exp( eLhe ) eEhc( Znhc) O,
where
n  2nfte 2 & 2ahN . eQmax .
= - N., L1743 e C‘Ed‘, N:: M = P ( - e
& Vemc 7 (g) 7’“; 3 Bpasi  Pmas Z e{me+ a ) {66)

For a large maximum momentum (p;,4.)s £ > 1 and (&) ~1. By virtue of (65) and {66), the proba-
bility of pair creaticn in unit velume is

13 4 3 2“
p: eEh exp ( e ) D2 (L). (67

U ey eEhe

Further, in order to obtaln an estimate, we apply (incorcectly) Eq. (67) to an inhomogeneous
static field F = Ze/r’or ¢ = Ze/r. In caleulating the total number of pairs (Np) in.the whole of space, w2
shall assume that Py, in (67) depends on '

Pmax = Ze/er, {68)

vhere Ze is the total charge of the material system. For the total number of palrs generated in the given
fleld during the whole time, we obtsin

16a2%'8 7 4 nmgietr? 167Z%% T e
== d3 P e e - A s e vt = — Pr—
T iw Y= amye }: y ( Zeihe ) (@anya ] % (69)

* The authors are grateful to A.I. Nikishov for letting them know his results.



where 4g = fnm.k‘/Zélhmo. am_i ag == Yﬁelc' Is the minimal racius. Since

i

&= f-—dx ==L E:(—Ae’),

m......

we have

Np=« -;;—»(Za)’ Ei{(—AoY).- {70}
For small valies of A, L.=., for

e/Tx
—— ~ 71

Z< na ( me ) 104, (Th

we have
Ei(—Ad) ~ ¢4+ In A& (12)

wthet;e ¢ is Euler's constant and, conseqguently,
=, e/Tx \®
Hy = (o) 1o (0 ) — e~ nnza],
or, taking into account the condition {71},
g, e/¥x \?
Np -~ —:-;;-\Za)’ln (—-;n';-—) - (73)

The condition (Z - Np) = max = Zf gives the value of the charge Zf which cannot be suppressed by the effect
of pair creation:

c,’}x a?
Zj=mﬂl{ {i—Z—-——-in( —— ‘
2 Vx \? {?74)
* o 4n’in( e/:‘: )
~ _ .
Since (_ﬁ/l’i) ~ i » we have Z; ~137. In other words, the effect of pair creation in such a strong eice~
me a.

tric field is to decrease the effective charge of the throat to a finite value Z§~137, irrespective of the
value of the initial charge Z.*

The independence of the value of the final charge of the arbitrarily large initial charge also follows
from Landau's well-known iormula’[9], "which relates the value of a bare charge e, localized in a small
region to the value of the physically effective charge e to which the effect of vacuum polarization reduces
the original charge e

— €
£ L 75
ERALE h(-l}—) (75)
3a mo
For a large value of the charge e; or, more precisgely, ‘for

e A 3x (76)

| ( {, N

P mo) > T (Afma)?

It {8 interesting to note that the crudely estimated expression (74) contains the very same character-
istic logarithm as Landau's expression and that the argument of the logarithm in (73) gives

Acee[Yx ~ 108 v : (1.
for the expression Introduced by Landau. This is precisely the quantity A discussed by Landau in his pzper
in connection with the poesib'e role of gravitation in the theory of elementary particles. The image of such
an object Is, even from the point of view of a Schwarzschild observer, extremely complicated. The dif-
ficulty is that, at the Initial instant of existence of such a system with a large electric charge, the exterior
dimensions, which are proportional to the charge, may be very large: rhl = Zjevn/cl,

* This result is hardly surprising, since, as I= well known, the process of real creation of palrs com-
mences. for Z > 137 {7, 8.

310



Tt palr creation decieases the initial cherge {Zg) to Zg ~137; hence,*

{37 e)‘x ~ 10-% e,

"u’s
However, in this region of 7 {Zy ~137), the shells (amund the source of the field) begin to be populated.
The shells have radit ~~K/me, where m takes the values of the masses of the part ‘les of the generated
palrs. Now hadron particles (for example, protons) have thelr own intrinslc dimensions. It follows that
our system is surrousnded by a distinctive stmosphere, which Increases its exterlor dimensions by 20
orders of magnitude. Be it chance or no, an obj(c“ whose exterlor properties ure characieristic of the
physics of the microscopic world arises from an object of the cosmological world nnd the latter perslstﬁ
ag the lntrinalc content of the object.

The special name "friedmons® was Introduced in [10] for ebjects with these properties.
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