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The title assertion is proven, and two corollaries are established. First, the topology of every past and
future distinguishing spacetime is determined by its causal structure. Second, in every spacetime the path
topology of Hawking, King, and McCarthy codes topological, differential, and conformal structure.

1. SUMMARY

Suppose one has two spacetimes (M,g) and (M, g")
together with a bijection f: M — M’, where both f and
1! preserve continuous timelike curves; i.e., if y:
I— M is a continuous timelike curve in (M,g), then
fey: I—M' is a continuous timelike curve in (M’, g');
and symmetrically for f-!. We show that f must be a
homeomorphism. In this sense the class of continuous
timelike curves in spacetime determines its topology.

The result is of interest because, at least in some
sense, we directly experience whether events on our
worldlines are “close” or not. That experience alone,
it appears, allows a complete determination of topo-
logical structure. The result also has two consequences
which are of independent interest.

It is well known that in all strongly causal spacetimes
the Alexandroff topology is equal to the manifold topo-
logy.! Hence, at least in strongly causal spacetimes, if
one knows of all points p and ¢ whether it is possible
that a particle travel from p to g, then one can recover
the topology of spacetime. The question naturally
arises whether the condition of strong causality is
necessary for this recovery. We show that it is not.
The weaker condition of past and future distinguish-
ability suffices. One has the following result: If (M, g)
and (M',g’) are past and future distinguishing space-
times and if f: M — M’ is a causal isomorphism (i.e.,

a bijection where both f and f-! preserve the causal
connectibility relation «), then f must be a homeo-
morphism. But we also show that the assertion be-
comes false if the hypothesis of past and future distin-
guishability is relaxed to that of future distinguishability
{(or past distinguishability) alone.

A second consequence of our theorem is an improve-
ment of a result of Hawking, King, and McCarthy.?
They define a path topology on spacetimes and prove
that, in the presence of strong causality, the path to-
pology “codes” (standard) topological, differential, and
conformal structure. We show that their hypothesis of
strong causality is unnecessary. Indeed their result is
true of all spacetimes.

2. STANDARD DEFINITIONS AND RESULTS

In what follows a spacetime (M, g) is taken to be a
connected, four-dimensional smooth manifold without
boundary M, together with a smooth pseudo-Riemannian
metric of Lorentz signature g. Spacetimes are as-
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sumed to be temporally orientable and endowed with a
particular temporal orientation.

Given subsets A and O of M with O open, I'(4,0) is
the set of points ¢ in O such that there exists a future
directed smooth timelike curve y: I~ O (where ICR is
connected) and points #;,4, < I such that ¢, <t,, y({t)c A,
and y(t,) =q. I'(4, 0) is called the chronological future
of A relative to O. The causal future of A velative to O,
J*(A,0), is the union of AN O with the set of points ¢
in O such that there exists a future directed smooth
causal curve (i.e., a smooth curve whose tangent vec-
tors are everywhere nonvanishing, nonspacelike, and
future directed) y: I— O and points {,,t,c I such that
t,<ty, y{t,)e A, and y({t,) =q. Finally, the horismos
futuve of A velalive to O, E*(A,0), is the set J'(4,0)
—I'(4,0). These sets have duals I7(4,0), J-(4,0), and
E-(A,0) which are defined analogously (substitute past
directed curves for future directed curves). I(4,0) is
the union (A, 0)U I"(4,0). The sets J(4,0) and
E(A,0) are defined similarly,

If A={p}, we write I*(p,0) instead of I*(4,0) and
I*(p) instead of I*(p,M). Similarly for the other I, J,
E sets. The relations gc I*(p,0), ge J*(p,0), and
g< E*(p,0) will sometimes be written as p<< ¢(0),
p<q(0), p— q(0). Furthermore, p< q(M), p<qM), and
p— qM) will sometimes be written as p<< ¢, p<g, and
b—gq.

The I, J, E sets have the following basic properties.?
If ge F(p,0), then pcl-(g,0) and conversely (similarly
for the J and E sets), Both I*(p, 0) and I'(p, O) are
open. If p<«< g(0) and g <#(0), then p<«< »(0). Similarly,
if p<q(0) and g<«< 7(0), then p<«<#(0). If p — ¢(0), then,
if y: [0,1]~ 0 is a future directed smooth causal curve
with ¥(0) =p and (1) =¢, y must be a null geodesic.

An open set O is convex iff given any two points p and
g in O there is a geodesic y: [0,1]— 0 with y(0) =p,
¥{1) =¢ and y is unique (up to reparametrization). If O
is an open convex set, then, for all points p in O,
J*(p,0)=Cl[I*(p,0)] =the closure in O of I(p,0); and
E*(p,0)=Bnd[I*(p, 0)] = the boundary of I*(p,0)} in O.
{These assertions are false in general if O is not con-
vex. But J*(p,0)C Cl[F*(p, 0}] and E*(p,0) < Bnd{I*(p, 0)]
are always true.} Dual assertions hold for J- and E-,
The open convex sets form a basis for the manifold
topology; i.e., given any point p and any open set U con-
taining p, there is an open convex set O with pe OC U.

A set A is achronal in O iff for all points p and ¢ in
AN O, it is not the case that p« ¢(0).
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A spacetime (M, g) is chronological iff it admits no
closed, future-directed smooth timelike curves. (M, g)
is causal iff it admits no closed, future-directed smooth
causal curves.

A spacetime (M, g) is future (resp. past) distinguish-
ing iff for all p and q: I*(p)=1I*(g) = p=gq (resp. I"(p)
=1(q) = p=¢q). Equivalently, (M,g) is future (resp.
past) distinguishing iff for all p in M and all open sets
O containing p, there exists an open set O, with
p e 0,< 0 such that no future (resp. past) directed
smooth timelike curve through p which leaves O, ever
returns to it.

Finally, a spacetime is strvongly causal iff, for all
points p and all open sets O containing p, there exists
an open set O, with pe 0, C O such that no future direct-
ed smooth timelike curve which leaves O, (whether or
not if passes through p) ever returns to O,.

If (M,g) is a spacetime and OC M is a connected
open set, then we may think of (0,g,,) as a spacetime
in its own right, If O is convex, (0, g,) is necessarily
strongly causal.

These “causality conditions” can be ordered in terms
of (strictly) increasing strength:

strong causality
future and past distinguishability
future (or past) distinguishability
causality
chrojfllology
The respective converse implications are all false.

If (M,g) is a spacetime, the Alexandroff topology on
M, T ,, is the coarsest topology on M in which all sets
I*(p) and I"(g) are open. The collection of all sets of
form I*(p)N I~(q) form a basis for 7 ,. If 7 is the
(standard) manifold topology on M, then it is always
true that / , C7 . But the condition / , =7 is equivalent
to strong causality. Suppose (M, g} is strongly causal.
Then the condition that a set AC M be open (in 7) is
explicitly definable in terms of the relation «: A is
open iff, for all points p in A, there exist points v and
s in A such that pe P(r)NI-(s)C A.

Given two spacetimes (M, g) and (M’,g’), a bijection
fi M— M is a smooth isomelry iff f and f~! are smooth,
and f,(g) =g'. fis a smooth conformal isometry iff f
and f-! are smooth, and there is a smooth nonvanishing
map §2: M’ —~ R such that f, (g) =R%g"*.

So far “causal structure” has been developed entirely
in terms of smooth curves. For our purposes it is
essential to work with the larger class of continuous
curves. Suppose y: I— M is a continuous curve. We
say that y is future dirvected and timelike iff, for all
to< I and all open convex sets O containing f(¢,), there
exists an open (i.e., open in the relative topology on
I) subinterval I CI containing ¢, such that

teT and t<t=>y()<y() (0), (%)
teT and ¢, <t=>y(t,) <y ({) (0).

We say that y is future divected and causal iff the above
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condition obtains but with « replaced by < in (*). Final-

ly, we say that y is a future divected null geodesic iff
the above condition obtains but with (*) replaced by

thotye T and £ <1,=>y () —y(t,) (0).

Note that every future directed continuous null geodesic
can be reparametrized so as to become a (smooth)
future directed null geodesic. (The corresponding as-
sertions for continuous timelike and causal curves are
false.) Dual definitions can be given for past directed
continuous timelike (causal, null geodesic) curves.

The sets I*(4,0), J*(A,0), E*(A,0) could be redefined
in terms of continuous curves, but doing so would not
affect the resultant point sets. For example, p<< ¢(0)
(according to our definition involving smooth timelike
curves) iff there is a future directed continuous time-
like curve y: I = C and points ¢,,¢,& I with {, <i,,
y(t)=p, and y{t,) =gq.

When there is no chance of confusion we shall not
distinguish between curves y: I— M and their point set
images y[I]. Also, we shall sometimes refer, simply,
to continuous (causal, null geodesic) curves and it
should be understood that the curves are either future
or past directed.

3. FROM TOPOLOGICAL STRUCTURE TO
DIFFERENTIAL AND CONFORMAL STRUCTURE

We shall prove that the class of future directed con-
tinuous timelike curves determines the topology of
spacetime. Having done so, it will follow automatically
that this class of curves also determines the differen-
tial and conformal structure of spacetime. This is all
that one can hope for since all conformally equivalent
Lorentz metrics on a manifold induce the same con-
tinuous timelike curves.

That differential and conformal structure will follow
on the heels of topological structure is a consequence
of:

Hawking’s theovem®: Suppose (M, g) and (M',g’) are
spacetimes and f: M — M’ is a homeomorphism where
both f and f~! preserve future directed continuous null
geodesics, Then fis a smooth conformal isometry.

To avail ourselves of this result, we need a simple
lemma.

Lemma 1: Suppose (M,g) and (M’,g’) are spacetimes
and f: M — M’ is a homeomorphism where both f and
f~! preserve future directed continuous timelike curves.
Then both f and f-! preserve future directed continuous
null geodesics.

Proof: It suffices to observe that the future directed
continuous null geodesics of a spacetime (M, g) can be
characterized in terms of its future directed continuous
timelike curves and its topology.

First, given any open set U and points p,q in U, we
have that g Bnd[F*(p, U)] iff for all future directed
continuous timelike curves o: (0,1) = U, if o(f,) =q for
some #, where 0 <{,<1, then there exist {,,¢, where
0<t,<t,<t,<1 such that o(t,)& I*(p,U), but o(4,)
el*(p,U).
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Next, note that if y: /— M is a continuous curve, then
y is a future directed null geodesic iff for all {,e and
all open sets O containing y(f,), there exists an open
set U C O containing y(¢,) such that for all ¢,,¢,¢ I with
t, <t,, if y(t,), ¥(t,) € U then y(t,) € Bnd[I*(y(t,), U)]./

4. THE PRINCIPAL RESULT AND ITS CONSEQUENCES

Theorem 1: Suppose (M, g) and (M’,g’) are space-
times and f: M— M’ is a bijection where both f and f-*
preserve future directed continuous timelike curves.
Then f is a homeomorphism. (By Hawking’s theorem f
must also be a smooth conformal isometry.)

A proof of the theorem is given in the next section,

As it is stated, the hypothesis of the theorem is
slightly stronger than necessary. It suffices that f and
7! take (past or future directed) continuous timelike
curves to (past or future directed) continuous timelike
curves.® This follows immediately from the following
lemma,

Lemma 2: Suppose (M, g) and (M’,g’') are spacetimes
and f: M — M’ is a bijection. Suppose further that both
f and f-! preserve continuous timelike curves. Then
either: (a) Both f and f~! preserve future directed con-
tinuous timelike curves, or (b) both f and f~! take future
directed continuous timelike curves to past directed
continuous timelike curves.

Proof:. Let p be any point in M. Suppose there are
future directed continuous timelike curves y and ©
through p such that fey, but not f-0, is future directed
in (M’,g’). Let ¥~ be the “lower segment” of y with
future end point p. Let 0* be the “upper segment” of ¢
with past end point p. Then the continuous timelike
curve which results from “linking” v~ with 0* is one
whose image under f is not a continuous timelike curve
at all, This is impossible. So at least as restricted to
continuous timelike curves through some particular
point in M, f either systematically preserves or system-
atically reverses orientation.

Let A (resp. B) be the set of points in M at which f
preserves (resp. reverses) orientation. We show A is
open. Suppose p is in A and p < g for some point 4.
Then there is an open set O with pe 0CI-(q). Let y be
a future directed continuous timelike curve with initial
point p and terminal point g. Suppose now there is a
point = ON B. Let 0 be any future directed continuous
timelike curve with initial point » and terminal point
g. Then the result of linking ¢ with o is not a continuous
timelike curve, but its image under f is a continuous
timelike curve. This is impossible since f*! preserves
continuous timelike curves. Therefore, OC A and so
A is open as claimed. A symmetric argument establishes
that B is open.

It thus follows that f either systematically preserves
or systematically reverses the orientation of continuous
timelike curves. The same argument applies to ! and,
of course, f preserves orientation iff ! does too./

We consider now the question whether the topological
structure of spacetime can be recovered from its
causal structure. Rather than thinking of the topological,
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differential, and conformal structure of spacetime as
given and abstracting a causal connectibility relation
«, we ask if the construction can be turned “on its
head” with the relation <« construed as primitive. It
turns out that it can be if the spacetime in question is
sufficiently well behaved in its causal structure. “Suf-
ficiently well behaved” means “at least past and future
distinguishing.”

If (M, g) and (M’, g') are spacetimes, a map f: M — M’
is a causal isomorphism iff f is a bijection and for all
points p and ¢ in M: p << g <=>f(p) << f(g). Our result fol-
lows from the following lemma.

Lemma 3: Suppose (M,g) and (M’,g’) are past and
future distinguishing spacetimes and that f: M — M’ is a
causal isomorphism. Then f and f-! preserve future
directed continuous timelike curves.

Proof. Suppose y: I— M is an arbitrary future directed
continuous timelike curve in (M, g). Suppose p=1v(t,)
with ¢, I, and suppose O’ is an arbitrary open convex
set containing f(p). We must show that there exists
an open subinterval I C I with t;e 7 such that

teT and t<t=>(fen)(t)<f(p) (0),
teT and t, <t=>f(p) < (foy)(t) (07). (*)

Since (M’,g’) is future distinguishing, there is an
open set U’ with f{p)e U’ C 0’ such that no future direct-
ed timelike curve from f(p) which leaves U’ ever re-
enters. Let f(g) be any point in I*(f(p), U’). Since
fp)< flg), we must have p<<g. So there must exist
an open convex set O with pe 0SS TI'(g). Since y is a
future directed continuous timelike curve, there must
exist an open subinterval 7, C I with f,< I, such that

tel, and t, <t=p<<y(t) (0).
We claim now that
p<y(t) (O)=f(p)<(fer)t) (0').

For, if p<y({}(0), we have p<<y ()<< g. Hence f(p)

< {foy)t) << f(g). So there exists a future directed
smooth timelike curve through f(p), (foy)(¢), and f(q)
in sequence. We know that this curve cannot leave U’
between f(p) and f(g). So we must have (f<v)(?)

e I'(f(p), U I(f(p),0).

A parallel argument using past distinguishability
of (M’,g’) establishes that there is an open subinterval
1,C1 with {;e 1, such that:

teT, and t <t,=>(foy)(t) < f(p) (0').

Hence the set I ={tc1,/t> t,}U{tcI,/t <t} is an open
subinterval of I with t,c T which satisfies (*)./

Thus we have

Theorem 2: Suppose (M, g) and (M',g’) are past and
future distinguishing spacetimes and f: M—~ M’ is a
causal isomorphism, Then f is a homeomorphism. (By
Hawking’s theorem f must also be a smooth conformal
isometry.)

As was the case with Theorem 1, Theorem 2 can be
recast so as to be completely “time symmetric” in
formulation.% Let T be the symmetric causal connect-

David B. Malament 1401

Downloaded 11 Jul 2006 to 128.200.240.128. Redistribution subject to AIP license or copyright, see http://jmp.aip.org/jmp/copyright.jsp



ibility relation on spacetime points defined by pTq < p
<« g or g<< p. Given two spacetimes (M,g) and (M’,g")
amap f: M—~ M’ is a symmetric causal isomorphism
iff f is a bijection and for all points p and ¢q in M:

p7q <=>f(p)7f(q). To recast Theorem 2 in symmetric
form, it suffices to prove the following lemma and in-
voke Lemma 2.

Lemma 4: Suppose (M,g) and (M’,g’) are past and
future distinguishing spacetimes and that f: M — M’ is
a symmetric causal isomorphism. Then f and f-! pre-
serve continuous timelike curves.

One proves the lemma by compounding the construc-
tions of Lemmas 2 and 3, We skip the argument as it is
somewhat tedious and involves no new ideas.

The following example shows that the hypothesis of
past and future distinguishability in Theorem 2 (and
hence Lemma 3) cannot be relaxed to either future dis-
tinguishability or past distinguishability alone. We give
the example in a two-dimensional version to simplify
matters.

Start with the two-dimensional plane carrying a
metric:

ds®= (cosht — 1 2(dt? — dx®) + dtdx

with respect to global Cartesian coordinates 7,x. Next
form a vertical cylinder by identifying the point (7, 0)
with all points (¢, 2#n) for all n. Finally excise two
closed half-lines: {(,x): x=0 and > O} and {(¢,%): x=1
and ¢ > 0} (see Fig. 1.) Along the “equator” =0 the
metric reduces to the form ds?=dtdx and its associated
null cones are horizontal, pointing in the direction of
increasing x. But as |#| — <, the cones “tip to the left”
and asymptotically approach the upright position they
have in Minkowski spacetime. Because of the excisions
the spacetime is future distinguishing. But it is not past
distinguishing, Every point on the f =0 equator has for
its chronological past the entire region of the space-
time falling below the equator.

Now let f be a bijection of the spacetime onto itself
defined by
i<
) - (£, x) if <0,

(t.x+1) if t=0.

f leaves the “lower open half” of the spacetime fixed,
but reverses the position of the two upper slabs. fis
surely discontinuous along the {=0 equator; it “cuts”
continuous timelike curves which cross the equator.

excise———=
FIG. 1.

I
|
AFeXCISE
)
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But fis a causal isomorphism. The important thing to
notice here is that every point below the =0 equator

has all points in both upper slabs in its chronological

future.

This establishes that the condition in the hypothesis
of Theorem 2 cannot be relaxed to future distinguish-
ability. A symmetric example (with excisions below the
{ =0 equator) shows that it cannot be relaxed to past
distinguishability either.

Finally, we use Theorem 1 to generalize a result of
Hawking, King, and McCarthy.? They define the path
topology on a spacetime to be the finest topology which
induces on all continuous timelike curves the same
topology induced on them by the standard manifold topol-
ogy. Equivalently, if (M, g) is a spacetime with AZ M,
A is open in the path topology on M iff given any con-
tinuous timelike curve y: I— M there exists a (stan-
dard) open set O such that y[I]n A=4{I]n O. Their
interest in the new topology is motivated in part by the
belief that, in some sense, we “experience” continuity
along future directed continuous timelike curves. The
standard topology, they claim, has no comparable
physical significance.

Hawking, King, and McCarthy prove that given any
strongly causal spacetime (M,g), if f M—M is a
homeomorphism with respect to the path topology, then
J must be a smooth conformal isometry. But along the
way they prove the following:

Lemma 5% If (M, g) is a spacetime and f: M—~ M is a
homeomorphism with respect to the path topology, then
both f and f-! preserve continuous timelike curves.

Thus it follows immediately that we have

Theorem 3: 1f (M,g) is an arbitrary spacetime and f:
M — M is a homeomorphism with respect to the path
topology, then f is a smooth conformal isometry.

One can easily reformulate the theorem so as to be
parallel in form to Theorems 1 and 2. One simply takes
fi: M— M to be a path topology homeomorphism be-
tween arbitrary spacetimes (M,g) and (M’,g’). The
conclusion is affected not at all,

5. PROOF OF THEOREM 1

If it were assumed that f preserves all continuous
curves, it would follow immediately that f is continuous.
Given any sequence {pl} converging to p, one could
find a continuous curve “threading” all the b, in se-
quence and then p. Its image would have to be a con-
tinuous curve threading all the f(p,) in sequence and
then f(p). Hence { f(p)} would have to converge to f{p).
Under our hypotheses, however, this construction can
only cope with sequences {pi} which converge chrono-
logically to p. The problem is with those sequences
{p,} which converge to p but are locally spacelike re-
lated to p.

Our proof is rather long and so is divided into a se-
quence of lemmas. The crucial idea is this: To show
that f is continuous at p, one proves that one may as
well assume that f is contihuous over a nice-looking
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region near p (Lemma E). Then one uses continuous
null geodesic segments in that “safe region” to char-
acterize the convergence of points to p. This does the
trick because (by Lemma 1 above) continuous null geo-
desics in the safe region are necessarily preserved by
f.
In what follows /) (resp. /)’} is taken to be the set of
points at which f (resp. f~!) is discontinuous.

Lemma A: If O is an open set in M, O’ is an open
convex set in M’, and f[O]C0O’, then OCM~)).

Proof: Let p be any point in O. To show f is continuous
at p, it suffices to show that given any open set U’ con-
taining 7 (p), f-[0’ N U’] is open in M. Since O’ is con-
vex, the spacetime (0’, g,,,) is strongly causal. So the
Alexandroff topology on O’ is equal to the relative mani-
fold topology induced in O’ Thus U’'N O’ is open in the
Alexandroff topology on O’. But f,:0— 0’ is certainly
continuous with respect to the Alexandroff topologies on
O and 0’. So f-}{U'n O'] must be open in the Alexandroff
topology on O. A fortiori f-{U'N (] is open in (the
manifold topology on) M./

Lemma B: Given p in M, there is an open set O in
M containing p such that I(p,0)C M =/). (So fis at
least continuous over “local futures and pasts.”)

Pyoof: Let O be an open convex set containing f(p).
We show first that there is an open set O containing p
such that f[I*(p,0)]C 0.

Suppose there is no such O. Then given any open O,
containing p there must be a point p, in O, such that
poe*(p,0,) but f(p,)& O, Since I~(p,,0,) is open, we
can find an open set O, < O, containing p such that
0, I7(p,,0,). There must exist a p, in O, such that
pae F(p,0,)CI(p,0,) but f{p,)d O'. Clearly p, << p,(0,).
Continuing in this way, we can generate a nested se-
quence of open sets O, =2 0, = O,*°* all containing p, and
a sequence of points {p,} where, for all i, p,= O, p.,
<<pi(0i)‘ p<< pi(()i), butf(pi)@;‘ 0’ (see Fig. 2), Further-
more, we may choose the {Oi} so that they converge to
p (i.e., so that their intersection is {p}). Now we can
certainly join p.,, to p, with a continuous future directed
timelike curve segment y,; contained in O,. Linking
these segments together and adjoining the point p, we
obtain a future directed continuous timelike curve y
through p which “threads” all the p,. By our construc-
tion no initial segment of f<y can intersect O’, But this
is impossible since foyis a continuous timelike curve
through £ (p).

Therefore, as claimed, there is an open set con-
taining p—call it O,~such that f[I*(p,0,)]< 0’. Simi-
larly, there is an open set O, such that f[I-(p,0,)]C 0’.
Let 0=0,N 0,. Then clearly, f[I{(p,0}]< 0’. It now
follows by Lemma A that I{p,0)C M -/) ./

Lemma C: f and f-! preserve continuous causal
curves.

Proof. Let y: I— M be a future directed continuous
causal curve in M with y({,)=p for some {;c I. Let O’
be any open convex set containing f(p). We must show
that there exists an open subinterval 7 C 7 containing ty
such that:

tel and ¢ <t=>(foy)(t) <f(p) (0",
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r‘ FIG. 2.
A @
teT and t, <t=>f(p) <(fev)(t) (O). (*)

Just as in the proof of Lemma B we can show that there
must exist an open set O in M containing p such that
FlI(p,0)]< 0’. By moving to a subset we may take O to
be convex. We choose / C I containing ¢, so that:

tel and t<t=y(t)<p (0),
teT and t,<t=>p<y(t) (0).

Now if ¥(f) <p, then every continuous timelike curve
segment through y(¢) intersects 7-(p, 0). Hence every
continuous timelike curve segment through (f cy)(f)
intersects I*(f(p), 0’). Thus (f<y}(t)e CLI~(f{p),0')]
and therefore, since O’ is convex, (foy)(t)e J=(f(p),0’).
Thus the first half of (¥) is established. The second

half is symmetric. Hence f -y is a future directed con-
tinuous causal curve. (The argument for ! is, of
course, symmetric.)/

Lemma D: (i) /) is closed in M; /)’ is closed in M.
(i) For all pe M, pec /) iff f(p)e /).

(iii) If pe /), then there is an inextendible future
directed continuous causal curve through p fully con-
tained in/).

Proof: Suppose f is continuous at p. Let O be any
open convex set containing f(p). Let O be an open set
with pc O Cf-[0°]. Then, applying Lemma A, we have
that 0C M ~/). Thus M - /) is open. Similarly M’ - /)’
is open. So (i).

Suppose p is in/). Then there exists a sequence {p{}
which converges to p and an open convex set O’ in M’
which contains f(p) but none of the f(p,). We can find
sequences {r;} and {s ;} converging chronologically to p
from below and above respectively such that for each
i there is a local future directed continuous timelike
curve y, through p, with initial point 7; and terminal
point s,. The only accumulation point of the vy is p.

Now {7 (r;)} and {f(s,)} must converge to f(p). So
(passing to a subsequence if necessary) we may assume
that all fey, begin and end in O’. But since f(p,) & 0’,
each of these curves foy, must leave O’ as well, There
will be a future directed inextendible continuous causal
curve A through f(p) every point of which is an ac-
cumulation point of the foy, .® Since the only accumula-
tion point of the y, is p, it must be the case that
a-{f(p)}cp’. Sinces) is closed, it follows that A
CP'. Thus pe) =>f(p)e)’. The converse is sym-
metric. So we have (ii). For (iii) we need only repeat
this past argument with respect to 7( p} and f-*./
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Lemma E: 1f /) # @, then there exists an open convex
set O with/) N O#@® such that:

(i) /) is achronal in O.

(ii) Through each point p in/) N O there passes a uni-
que continuous null geodesic I‘P such that T', N oc/.

(iii) Given any continuous null geodesic I" which in-
tersects ) N O, either TNOCH orTNONYJ) is a
singleton.

Proof: First note that (ii) and (iii) follows from (i) in
view of Lemma D, For (i) suppose /) #@ but no O exists
satisfying the required conditions. Let O, be any open
convex set meeting /) with compact closure. By our
assumption we can find points #, and s, in O;N /) such
that 7, « s,(0,). Now let O, be any open convex set where
v, € 0,C1(s,;,0,). Repeating the argument with respect
to O,, we can find points r, and s, in O,N /) such that
¥, << 5,(0,). Certainly s,<< s,;{0;). Continuing in this
fashion, we generate a sequence {si} in O;N /) with
S, <<5,(0,) for all i. This sequence must have an ac-
cumulation point s. But now if we apply Lemma B to
s, we find that there must exist an open set O contain-
ing s such that I*(s,0)C M -/). This leads to a con-
tradiction since eventually all the s, must enter
I'(s,0,)./

Prcof of the Theorem: Suppose /) #© and O is as in
Lemma E. Let p be any point in /) N O with correspond-
ing I',. Clearly I(I',n 0,0)C M~ /). There must exist
a Ssequence {pi} converging to p and an open convex set
O’ containing f(p) but none of the f(p,).

Let & be any future directed continuous null geodesic
segment through p distinct from I', which is sufficiently
“short” that foQ is fully contained in O’. There exist
continuous null geodesic segments &, within O, passing
through p, respectively, which converge to & in the
sense that every open set which intersects Q intersects
eventually all £,. We may choose {Q,} so that it has no
convergence points off ., Eventually all 9.' enter
I(T,n 0, 0) and hence M ~/) . It follows from Lemma
E (iii) that, for eventually all i, ,0/) is either empty or
a singleton. The intersection point of Qi with /) (if there
is one) comes either “before p,,” at p; itself, or “after
p;.” Without loss of generality we may assume that
there is an infinite subset of {Q,} in each member of
which the intersection point with /) (if there is one) does
not come before p,. Now let &; be the “lower-half” of
2, with future end point p, included. By moving to a sub-
sequence we can thus find a sequence of continuous null
geodesic segments {Q;} in O with the following prop-
erties (see Fig. 3):

(i) {Q7} converges to the lower half Q- of &, but has
no convergence points off Q-.

(ii) For each i, @;n ) <{p,}.

From (ii), Lemma C, and Lemma 1, it follows that
each image curve foQ; is a continuous null geodesic
segment in M’. From (i) and the fact that Q- -{p}CM -/,
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FIG. 3.

it follows that these segments converge to fo -

Now recall that no point f(p,) lies within O’. So,
though the fo @ converge to foQ, they must all leave
O’ before reaching their respective f(p,). Let f{g) be
any point of the null geodesic extension of fo -, We
claim f{g)e/)’. For suppose to the contrary that
fl@)e M~ /). Then, since f(g) is a convergence point
of {f°R2;}, ¢ must be a convergence point of {Q;}. This
is impossible since ¢ & 2,

In our construction we assumed that Q satisfied the
“not before p,” clause for an infinite subset of Q,;. Drop-
ping that assumption, we have the following conclusion.
If Q= and Q* are the respective lower and upper segments
of &, then either the future null geodesic extension of
foQ" or the past null geodesic extension of foQ* is a
future directed continuous causal curve segment through
f(p) lying within /)’. But this is true of all future
directed continuous null geodesic segments; Q was
chosen arbitrarily. Thus, since fis a bijection, it fol-
lows that there exist distinct future directed continuous
causal curves through f(p) lying within/)’. Their pre-
images under f~! must be distinet future directed con-
tinuous causal curves through p lying within/) . But this
contradicts our assumption that/) is achronal in O,

Thus, /) is empty, and, hence, /)’ is empty as well./
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